
Alapati
Kuhn

Padfield

US $49.99

Shelve in
Databases/Oracle

User level:
Beginning–Advanced

www.apress.com

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Oracle Database 11g
Performance Tuning Recipes
Inside this book, you will find the solution to your Oracle performance problems.
Oracle Database 11g Performance Tuning Recipes takes an example-based
approach in which each chapter covers a specific problem domain. Recipes within
each chapter show you, by example, how to perform common tasks. Solutions in
the recipes are backed by clear explanations of background and theory from the
author team.

With Oracle Database 11g Performance Tuning Recipes, you’ll learn how to:

• Optimize the use of memory and storage
• Monitor performance and troubleshoot problems
• Identify and improve poorly performing SQL statements
• Adjust the most important optimizer parameters to your advantage
• Create indexes that get used and make a positive impact upon performance
• Automate and stabilize performance using key features such as SQL Tuning
 Advisor and SQL Plan Baselines

Oracle Database 11g Performance Tuning Recipes offers you a set of solutions
ready for immediate implementation. It gives you the power to solve any common
database performance problem.

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance

About the Authors .. xvi

About the Technical Reviewer .. xvii

Acknowledgments ... xviii

■Chapter 1: Optimizing Table Performance ... 1

■Chapter 2: Choosing and Optimizing Indexes .. 43

■Chapter 3: Optimizing Instance Memory ... 83

■Chapter 4: Monitoring System Performance ... 113

■Chapter 5: Minimizing System Contention .. 147

■Chapter 6: Analyzing Operating System Performance .. 185

■Chapter 7: Troubleshooting the Database ... 209

■Chapter 8: Creating Efficient SQL .. 253

■Chapter 9: Manually Tuning SQL .. 299

■Chapter 10: Tracing SQL Execution ... 327

■Chapter 11: Automated SQL Tuning ... 367

■Chapter 12: Execution Plan Optimization and Consistency 409

■Chapter 13: Configuring the Optimizer .. 447

■Chapter 14: Implementing Query Hints ... 491

■Chapter 15: Executing SQL in Parallel ... 525

Index ... 555

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 1

1

Optimizing Table Performance

This chapter details database features that impact the performance of storing and retrieving data within
a table. Table performance is partially determined by database characteristics implemented prior to
creating tables. For example, the physical storage features implemented when first creating a database
and associated tablespaces subsequently influence the performance of tables. Similarly, performance is
also impacted by your choice of initial physical features such as table types and data types. Therefore
implementing practical database, tablespace, and table creation standards (with performance in mind)
forms the foundation for optimizing data availability and scalability.

An Oracle database is comprised of the physical structures used to store, manage, secure, and
retrieve data. When first building a database, there are several performance-related features that you can
implement at the time of database creation. For example, the initial layout of the datafiles and the type
of tablespace management are specified upon creation. Architectural decisions instantiated at this point
often have long-lasting implications.

A tablespace is the logical structure that allows you to manage a group of datafiles. Datafiles are the
physical datafiles on disk. When configuring tablespaces, there are several features to be aware of that
can have far-reaching performance implications, namely locally managed tablespaces and automatic
segment storage–managed tablespaces. When you reasonably implement these features, you maximize
your ability to obtain acceptable future table performance.

The table is the object that stores data in a database. Database performance is a measure of the
speed at which an application is able to insert, update, delete, and select data. Therefore it’s appropriate
that we begin this book with recipes that provide solutions regarding problems related to table
performance.

We start by describing aspects of database and tablespace creation that impact table performance.
We next move on to topics such as choosing table types and data types that meet performance-related
business requirements. Later topics include managing the physical implementation of tablespace usage.
We detail issues such as detecting table fragmentation, dealing with free space under the high-water
mark, row chaining, and compressing data. Also described is the Oracle Segment Advisor. This handy
tool helps you with automating the detection and resolution of table fragmentation and unused space.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

2

1-1. Building a Database That Maximizes Performance

Problem
You realize when initially creating a database that some features (when enabled) have long-lasting
ramifications for table performance and availability. Specifically, when creating the database, you want
to do the following:

• Enforce that every tablespace ever created in the database must be locally
managed. Locally managed tablespaces deliver better performance than the
deprecated dictionary-managed technology.

• Ensure users are automatically assigned a default permanent tablespace. This
guarantees that when users are created they are assigned a default tablespace
other than SYSTEM. You don’t want users ever creating objects in the SYSTEM
tablespace, as this can adversely affect performance and availability.

• Ensure users are automatically assigned a default temporary tablespace. This
guarantees that when users are created they are assigned a temporary tablespace
other than SYSTEM. You don’t ever want users using the SYSTEM tablespace for a
temporary sorting space, as this can adversely affect performance and availability.

Solution
Use a script such as the following to create a database that adheres to reasonable standards that set the
foundation for a well-performing database:

CREATE DATABASE O11R2
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 680
 CHARACTER SET AL32UTF8
DATAFILE
'/ora01/dbfile/O11R2/system01.dbf'
 SIZE 500M REUSE
 EXTENT MANAGEMENT LOCAL
UNDO TABLESPACE undotbs1 DATAFILE
'/ora02/dbfile/O11R2/undotbs01.dbf'
 SIZE 800M
SYSAUX DATAFILE
'/ora03/dbfile/O11R2/sysaux01.dbf'
 SIZE 500M
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE
'/ora02/dbfile/O11R2/temp01.dbf'
 SIZE 500M

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

3

DEFAULT TABLESPACE USERS DATAFILE
'/ora01/dbfile/O11R2/users01.dbf'
 SIZE 50M
LOGFILE GROUP 1
 ('/ora01/oraredo/O11R2/redo01a.rdo',
 '/ora02/oraredo/O11R2/redo01b.rdo') SIZE 200M,
 GROUP 2
 ('/ora01/oraredo/O11R2/redo02a.rdo',
 '/ora02/oraredo/O11R2/redo02b.rdo') SIZE 200M,
 GROUP 3
 ('/ora01/oraredo/O11R2/redo03a.rdo',
 '/ora02/oraredo/O11R2/redo03b.rdo') SIZE 200M
USER sys IDENTIFIED BY topfoo
USER system IDENTIFIED BY topsecrectfoo;

The prior CREATE DATABASE script helps establish a good foundation for performance by enabling
features such as the following:

• Defines the SYSTEM tablespace as locally managed via the EXTENT MANAGEMENT LOCAL
clause; this ensures that all tablespaces ever created in database are locally
managed. If you are using Oracle Database 11g R2 or higher, the EXTENT
MANAGEMENT DICTIONARY clause has been deprecated.

• Defines a default tablespace named USERS for any user created without an
explicitly defined default tablespace; this helps prevent users from being assigned
the SYSTEM tablespace as the default. Users created with a default tablespace of
SYSTEM can have an adverse impact on performance.

• Defines a default temporary tablespace named TEMP for all users; this helps
prevent users from being assigned the SYSTEM tablespace as the default temporary
tablespace. Users created with a default temporary tablespace of SYSTEM can have
an adverse impact on performance, as this will cause contention for resources in
the SYSTEM tablespace.

Solid performance starts with a correctly configured database. The prior recommendations help you
create a reliable infrastructure for your table data.

How It Works
A properly configured and created database will help ensure that your database performs well. It is true
that you can modify features after the database is created. However, oftentimes a poorly crafted CREATE
DATABASE script leads to a permanent handicap on performance. In production database environments,
it’s sometimes difficult to get the downtime that might be required to reconfigure an improperly
configured database. If possible, think about performance at every step in creating an environment,
starting with how you create the database.

When creating a database, you should also consider features that affect maintainability. A
sustainable database results in more uptime, which is part of the overall performance equation. The
CREATE DATABASE statement in the “Solution” section also factors in the following sustainability features:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

4

• Creates an automatic UNDO tablespace (automatic undo management is enabled by
setting the UNDO_MANAGEMENT and UNDO_TABLESPACE initialization parameters); this
allows Oracle to automatically manage the rollback segments. This relieves you of
having to regularly monitor and tweak.

• Places datafiles in directories that follow standards for the environment; this helps
with maintenance and manageability, which results in better long-term
availability and thus better performance.

• Sets passwords to non-default values for DBA-related users; this ensures the
database is more secure, which in the long run can also affect performance (for
example, if a malcontent hacks into the database and deletes data, then
performance will suffer).

• Establishes three groups of online redo logs, with two members each, sized
appropriately for the transaction load; the size of the redo log directly affects the
rate at which they switch. When redo logs switch too often, this can degrade
performance.

You should take the time to ensure that each database you build adheres to commonly accepted
standards that help ensure you start on a firm performance foundation.

If you’ve inherited a database and want to verify the default permanent tablespace setting, use a
query such as this:

SELECT *
FROM database_properties
WHERE property_name = 'DEFAULT_PERMANENT_TABLESPACE';

If you need to modify the default permanent tablespace, do so as follows:

SQL> alter database default tablespace users;

To verify the setting of the default temporary tablespace, use this query:

SELECT *
FROM database_properties
WHERE property_name = 'DEFAULT_TEMP_TABLESPACE';

To change the setting of the temporary tablespace, you can do so as follows:

SQL> alter database default temporary tablespace temp;

You can verify the UNDO tablespace settings via this query:

select name, value
from v$parameter
where name in ('undo_management','undo_tablespace');

If you need to change the undo tablespace, first create a new undo tablespace and then use the
ALTER SYSTEM SET UNDO_TABLESPACE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

5

1-2. Creating Tablespaces to Maximize Performance

Problem
You realize that tablespaces are the logical containers for database objects such as tables and indexes.
Furthermore, you’re aware that if you don’t specify storage attributes when creating objects, then the
tables and indexes automatically inherit the storage characteristics of the tablespaces (that the tables
and indexes are created within). Therefore you want to create tablespaces in a manner that maximizes
table performance and maintainability.

Solution
When you have the choice, tablespaces should always be created with the following two features
enabled:

• Locally managed

• Automatic segment space management (ASSM)

Here’s an example of creating a tablespace that enables the prior two features:

create tablespace tools
 datafile '/ora01/dbfile/INVREP/tools01.dbf'
 size 100m -- Fixed datafile size
 extent management local -- Locally managed
 uniform size 128k -- Uniform extent size
 segment space management auto -- ASSM
/

■ Note As of Oracle Database 11g R2, the EXTENT MANAGEMENT DICTIONARY clause has been deprecated.

Locally managed tablespaces are more efficient than dictionary-managed tablespaces. This feature
is enabled via the EXTENT MANAGEMENT LOCAL clause. Furthermore, if you created your database with the
SYSTEM tablespace as locally managed, you will not be permitted to later create a dictionary-managed
tablespace. This is the desired behavior.

The ASSM feature allows for Oracle to manage many of the storage characteristics that formerly had
to be manually adjusted by the DBA on a table-by-table basis. ASSM is enabled via the SEGMENT SPACE
MANAGEMENT AUTO clause. Using ASSM relieves you of these manual tweaking activities. Furthermore,
some of Oracle’s space management features (such as shrinking a table and SecureFile LOBs) are
allowed only when using ASSM tablespaces. If you want to take advantage of these features, then you
must create your tablespaces using ASSM.

You can choose to have the extent size be consistently the same for every extent within the
tablespace via the UNIFORM SIZE clause. Alternatively you can specify AUTOALLOCATE. This allows Oracle to
allocate extent sizes of 64 KB, 1 MB, 8 MB, and 64 MB. You may prefer the auto-allocation behavior if the
objects in the tablespace typically are of varying size.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

6

How It Works
Prior to Oracle Database 11g R2, you had the option of creating a tablespace as dictionary-managed.
This architecture uses structures in Oracle’s data dictionary to manage an object’s extent allocation and
free space. Dictionary-managed tablespaces tend to experience poor performance as the number of
extents for a table or index reaches the thousands.

You should never use dictionary-managed tablespaces; instead use locally managed tablespaces.
Locally managed tablespaces use a bitmap in each datafile to manage the object extents and free space
and are much more efficient than the deprecated dictionary-managed architecture.

In prior versions of Oracle, DBAs would spend endless hours monitoring and modifying the physical
space management aspects of a table. The combination of locally managed and ASSM render many of
these space settings obsolete. For example, the storage parameters are not valid parameters in locally
managed tablespaces:

• NEXT

• PCTINCREASE

• MINEXTENTS

• MAXEXTENTS

• DEFAULT

The SEGMENT SPACE MANAGEMENT AUTO clause instructs Oracle to manage physical space within the
block. When you use this clause, there is no need to specify parameters such as the following:

• PCTUSED

• FREELISTS

• FREELIST GROUPS

The alternative to AUTO space management is MANUAL space management. When you use MANUAL, you
can adjust the previously mentioned parameters depending on the needs of your application. We
recommend that you use AUTO (and do not use MANUAL). Using AUTO reduces the number of parameters
you’d otherwise need to configure and manage. You can verify the use of locally managed and ASSM
with the following query:

select
 tablespace_name
,extent_management
,segment_space_management
from dba_tablespaces;

Here is some sample output:

TABLESPACE_NAME EXTENT_MAN SEGMENT
------------------------------ ---------- -------
SYSTEM LOCAL MANUAL
SYSAUX LOCAL AUTO
UNDOTBS1 LOCAL MANUAL
TEMP LOCAL MANUAL
USERS LOCAL AUTO
TOOLS LOCAL AUTO

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

7

■ Note You cannot create the SYSTEM tablespace with automatic segment space management. Also, the ASSM
feature is valid only for permanent, locally managed tablespaces.

You can also specify that a datafile automatically grow when it becomes full. This is set through the
AUTOEXTEND ON clause. If you use this feature, we recommend that you set an overall maximum size for
the datafile. This will prevent runaway or erroneous SQL from accidentally consuming all available disk
space. Here’s an example clause:

SIZE 1G AUTOEXTEND ON MAXSIZE 10G

When you create a tablespace, you can also specify the tablespace type to be smallfile or bigfile.
Prior to Oracle Database 10g, smallfile was your only choice. A smallfile tablespace allows you to
create one or more datafiles to be associated with a single tablespace. This allows you to spread out the
datafiles (associated with one tablespace) across many different mount points. For many environments,
you’ll require this type of flexibility.

The bigfile tablespace can have only one datafile associated with it. The main advantage of the
bigfile feature is that you can create very large datafiles, which in turn allows you to create very large
databases. For example, with the 8 KB block size, you can create a datafile as large as 32 TB. With a 32 KB
block size, you can create a datafile up to 128 TB. Also, when using bigfile, you will typically have fewer
datafiles to manage and maintain. This behavior may be desirable in environments where you use
Oracle’s Automatic Storage Management (ASM) feature. In ASM environments, you typically are
presented with just one logical disk location from which you allocate space.

Here’s an example of creating a bigfile tablespace:

create bigfile tablespace tools_bf
 datafile '/ora01/dbfile/O11R2/tools_bf01.dbf'
 size 100m
 extent management local
 uniform size 128k
 segment space management auto
/

You can verify the tablespace type via this query:

SQL> select tablespace_name, bigfile from dba_tablespaces;

Unless specified, the default tablespace type is smallfile. You can make bigfile the default
tablespace type for a database when you create it via the SET DEFAULT BIGFILE TABLESPACE clause. You
can alter the default tablespace type for a database to be bigfile using the ALTER DATABASE SET DEFAULT
BIGFILE TABLESPACE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

8

1-3. Matching Table Types to Business Requirements

Problem
You’re new to Oracle and have read about the various table types available. For example, you can choose
between heap-organized tables, index-organized tables, and so forth. You want to build a database
application and need to decide which table type to use.

Solution
Oracle provides a wide variety of table types. The default table type is heap-organized. For most
applications, a heap-organized table is an effective structure for storing and retrieving data. However,
there are other table types that you should be aware of, and you should know the situations under which
each table type should be implemented. Table 1-1 describes each table type and its appropriate use.

Table 1-1. Oracle Table Types and Typical Uses

Table Type/Feature Description Benefit/Use

Heap-organized The default Oracle table type and the
most commonly used

Table type to use unless you
have a specific reason to use a
different type

Temporary Session private data, stored for the
duration of a session or transaction;
space is allocated in temporary
segments.

Program needs a temporary
table structure to store and sort
data. Table isn’t required after
program ends.

Index-organized (IOT) Data stored in a B-tree index structure
sorted by primary key

Table is queried mainly on
primary key columns; provides
fast random access

Partitioned A logical table that consists of separate
physical segments

Type used with large tables with
millions of rows; dramatically
affects performance scalability
of large tables and indexes

Materialized view (MV) A table that stores the output of a SQL
query; periodically refreshed when you
want the MV table updated with a
current snapshot of the SQL result set

Aggregating data for faster
reporting or replicating data to
offload performance to a
reporting database

Clustered A group of tables that share the same
data blocks

Type used to reduce I/O for
tables that are often joined on
the same columns

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

9

Table Type/Feature Description Benefit/Use

External Tables that use data stored in operating
system files outside of the database

This type lets you efficiently
access data in a file outside of
the database (like a CSV or text
file). External tables provide an
efficient mechanism for
transporting data between
databases.

Nested A table with a column with a data type
that is another table

Seldom used

Object A table with a column with a data type
that is an object type

Seldom used

How It Works
In most scenarios, a heap-organized table is sufficient to meet your requirements. This Oracle table type
is a proven structure used in a wide variety of database environments. If you properly design your
database (normalized structure) and combine that with the appropriate indexes and constraints, the
result should be a well-performing and maintainable system.

Normally most of your tables will be heap-organized. However, if you need to take advantage of a
non-heap feature (and are certain of its benefits), then certainly do so. For example, Oracle partitioning
is a scalable way to build very large tables and indexes. Materialized views are a solid feature for
aggregating and replicating data. Index-organized tables are efficient structures when most of the
columns are part of the primary key (like an intersection table in a many-to-many relationship). And
so forth.

■ Caution You shouldn’t choose a table type simply because you think it’s a cool feature that you recently heard
about. Sometimes folks read about a feature and decide to implement it without first knowing what the
performance benefits or maintenance costs will be. You should first be able to test and prove that a feature has
solid performance benefits.

1-4. Choosing Table Features for Performance

Problem
When creating tables, you want to implement the appropriate data types and constraints that maximize
performance, scalability, and maintainability.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

10

Solution
There are several performance and sustainability issues that you should consider when creating tables.
Table 1-2 describes features specific to table performance.

Table 1-2. Table Features That Impact Performance

Recommendation Reasoning

If a column always contains numeric data,
make it a number data type.

Enforces a business rule and allows for the greatest
flexibility, performance, and consistent results when
using Oracle SQL math functions (which may behave
differently for a “01” character vs. a 1 number); correct
data types prevent unnecessary conversion of data types.

If you have a business rule that defines the
length and precision of a number field,
then enforce it—for example, NUMBER(7,2).
If you don’t have a business rule, make it
NUMBER(38).

Enforces a business rule and keeps the data cleaner;
numbers with a precision defined won’t unnecessarily
store digits beyond the required precision. This can affect
the row length, which in turn can have an impact on I/O
performance.

For character data that is of variable length,
use VARCHAR2 (and not VARCHAR).

Follows Oracle’s recommendation of using VARCHAR2 for
character data (instead of VARCHAR); Oracle guarantees
that the behavior of VARCHAR2 will be consistent and not
tied to an ANSI standard. The Oracle documentation
states in the future VARCHAR will be redefined as a separate
data type.

Use DATE and TIMESTAMP data types
appropriately.

Enforces a business rule, ensures that the data is of the
appropriate format, and allows for the greatest flexibility
and performance when using SQL date functions and
date arithmetic

Consider setting the physical attribute
PCTFREE to a value higher than the default of
10% if the table initially has rows inserted
with null values that are later updated with
large values.

Prevents row chaining, which can impact performance if
a large percent of rows in a table are chained

Most tables should be created with a
primary key.

Enforces a business rule and allows you to uniquely
identify each row; ensures that an index is created on
primary key column(s), which allows for efficient access
to primary key values

Create a numeric surrogate key to be the
primary key for each table. Populate the
surrogate key from a sequence.

Makes joins easier (only one column to join) and one
single numeric key performs better than large
concatenated columns.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

11

Recommendation Reasoning

Create a unique key for the logical business
key—a recognizable combination of
columns that makes a row unique.

Enforces a business rule and keeps the data cleaner;
allows for efficient retrieval of the logical key columns
that may be frequently used in WHERE clauses

Define foreign keys where appropriate. Enforces a business rule and keeps the data cleaner; helps
optimizer choose efficient paths to data; prevents
unnecessary table-level locks in certain DML operations

Consider special features such as virtual
columns, read-only, parallel, compression,
no logging, and so on.

Features such as parallel DML, compression, or no
logging can have a performance impact on reading and
writing of data.

How It Works
The “Solution” section describes aspects of tables that relate to performance. When creating a table, you
should also consider features that enhance scalability and availability. Oftentimes DBAs and developers
don’t think of these features as methods for improving performance. However, building a stable and
supportable database goes hand in hand with good performance. Table 1-3 describes best practices
features that promote ease of table management.

Table 1-3. Table Features That Impact Scalability and Maintainability

Recommendation Reasoning

Use standards when naming tables, columns,
constraints, triggers, indexes, and so on.

Helps document the application and simplifies
maintenance

If you have a business rule that specifies the
maximum length of a column, then use that
length, as opposed to making all columns
VARCHAR2(4000).

Enforces a business rule and keeps the data cleaner

Specify a separate tablespace for the table and
indexes.

Simplifies administration and maintenance

Let tables and indexes inherit storage
attributes from the tablespaces.

Simplifies administration and maintenance

Create primary-key constraints out of line. Allows you more flexibility when creating the primary
key, especially if you have a situation where the
primary key consists of multiple columns

Create comments for the tables and columns. Helps document the application and eases
maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

12

Continued

Recommendation Reasoning

Avoid large object (LOB) data types if
possible.

Prevents maintenance issues associated with LOB
columns, like unexpected growth, performance issues
when copying, and so on

If you use LOBs in Oracle Database 11g or
higher, use the new SecureFiles architecture.

SecureFiles is the new LOB architecture going forward;
provides new features such as compression,
encryption, and deduplication

If a column should always have a value, then
enforce it with a NOT NULL constraint.

Enforces a business rule and keeps the data cleaner

Create audit-type columns, such as
CREATE_DTT and UPDATE_DTT, that are
automatically populated with default values
and/or triggers.

Helps with maintenance and determining when data
was inserted and/or updated; other types of audit
columns to consider include the users who inserted
and updated the row.

Use check constraints where appropriate. Enforces a business rule and keeps the data cleaner;
use this to enforce fairly small and static lists of values.

1-5. Avoiding Extent Allocation Delays When Creating Tables

Problem
You’re installing an application that has thousands of tables and indexes. Each table and index are
configured to initially allocate an initial extent of 10 MB. When deploying the installation DDL to your
production environment, you want install the database objects as fast as possible. You realize it will take
some time to deploy the DDL if each object allocates 10 MB of disk space as it is created. You wonder if
you can somehow instruct Oracle to defer the initial extent allocation for each object until data is
actually inserted into a table.

Solution
The only way to defer the initial segment generation is to use Oracle Database 11g R2. With this version
of the database (or higher), by default the physical allocation of the extent for a table (and associated
indexes) is deferred until a record is first inserted into the table. A small example will help illustrate this
concept. First a table is created:

SQL> create table f_regs(reg_id number, reg_name varchar2(200));

Now query USER_SEGMENTS and USER_EXTENTS to verify that no physical space has been allocated:

SQL> select count(*) from user_segments where segment_name='F_REGS';
 COUNT(*)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

13

 0

SQL> select count(*) from user_extents where segment_name='F_REGS';
 COUNT(*)

 0

Next a record is inserted, and the prior queries are run again:

SQL> insert into f_regs values(1,'BRDSTN');

1 row created.

SQL>> select count(*) from user_segments where segment_name='F_REGS';
 COUNT(*)

 1

SQL> select count(*) from user_extents where segment_name='F_REGS';
 COUNT(*)

 1

The prior behavior is quite different from previous versions of Oracle. In prior versions, as soon as
you create an object, the segment and associated extent are allocated.

■ Note Deferred segment generation also applies to partitioned tables and indexes. An extent will not be
allocated until the initial record is inserted into a given extent.

How It Works
Starting with Oracle Database 11g R2, with non-partitioned heap-organized tables created in locally
managed tablespaces, the initial segment creation is deferred until a record is inserted into the table.
You need to be aware of Oracle’s deferred segment creation feature for several reasons:

• Allows for a faster installation of applications that have a large number of tables
and indexes; this improves installation speed, especially when you have
thousands of objects.

• As a DBA, your space usage reports may initially confuse you when you notice that
there is no space allocated for objects.

• The creation of the first row will take a slightly longer time than in previous
versions (because now Oracle allocates the first extent based on the creation of the
first row). For most applications, this performance degradation is not noticeable.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

14

We realize that to take advantage of this feature the only “solution” is to upgrade to Oracle Database
11g R2, which is oftentimes not an option. However, we felt it was important to discuss this feature
because you’ll eventually encounter the aforementioned characteristics (when you start using the latest
release of Oracle).

You can disable the deferred segment creation feature by setting the database initialization
parameter DEFERRED_SEGMENT_CREATION to FALSE. The default for this parameter is TRUE.

You can also control the deferred segment creation behavior when you create the table. The CREATE
TABLE statement has two new clauses: SEGMENT CREATION IMMEDIATE and SEGMENT CREATION DEFERRED—for
example:

create table f_regs(
 reg_id number
,reg_name varchar2(2000))
segment creation immediate;

■ Note The COMPATIBLE initialization parameter needs to be 11.2.0.0.0 or greater before using the SEGMENT
CREATION DEFERRED clause.

1-6. Maximizing Data Loading Speeds

Problem
You’re loading a large amount of data into a table and want to insert new records as quickly as possible.

Solution
Use a combination of the following two features to maximize the speed of insert statements:

• Set the table’s logging attribute to NOLOGGING; this minimizes the generation redo
for direct path operations (this feature has no effect on regular DML operations).

• Use a direct path loading feature, such as the following:

• INSERT /*+ APPEND */ on queries that use a subquery for determining which
records are inserted

• INSERT /*+ APPEND_VALUES */ on queries that use a VALUES clause

• CREATE TABLE…AS SELECT

Here’s an example to illustrate NOLOGGING and direct path loading. First, run the following query to
verify the logging status of a table. In this example, the table name is F_REGS:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

15

select
 table_name
,logging
from user_tables
where table_name = 'F_REGS';

Here is some sample output:

TABLE_NAME LOG
------------------------------ ---
F_REGS YES

The prior output verifies that the table was created with LOGGING enabled (the default). To enable
NOLOGGING, use the ALTER TABLE statement as follows:

SQL> alter table f_regs nologging;

Now that NOLOGGING has been enabled, there should be a minimal amount of redo generated for
direct path operations. The following example uses a direct path INSERT statement to load data into the
table:

insert /*+APPEND */ into f_regs
select * from reg_master;

The prior statement is an efficient method for loading data because direct path operations such as
INSERT /*+APPEND */ combined with NOLOGGING generate a minimal amount of redo.

How It Works
Direct path inserts have two performance advantages over regular insert statements:

• If NOLOGGING is specified, then a minimal amount of redo is generated.

• The buffer cache is bypassed and data is loaded directly into the datafiles. This can
significantly improve the loading performance.

The NOLOGGING feature minimizes the generation of redo for direct path operations only. For direct
path inserts, the NOLOGGING option can significantly increase the loading speed. One perception is that
NOLOGGING eliminates redo generation for the table for all DML operations. That isn’t correct. The
NOLOGGING feature never affects redo generation for regular INSERT, UPDATE, MERGE, and DELETE statements.

One downside to reducing redo generation is that you can’t recover the data created via NOLOGGING
in the event a failure occurs after the data is loaded (and before you back up the table). If you can
tolerate some risk of data loss, then use NOLOGGING but back up the table soon after the data is loaded. If
your data is critical, then don’t use NOLOGGING. If your data can be easily re-created, then NOLOGGING is
desirable when you’re trying to improve performance of large data loads.

What happens if you have a media failure after you’ve populated a table in NOLOGGING mode (and
before you’ve made a backup of the table)? After a restore and recovery operation, it will appear that the
table has been restored:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

16

SQL> desc f_regs;

Name Null? Type
 --- -------- ----------------------------
 REG_ID NUMBER
 REG_NAME VARCHAR2(2000)

However, when executing a query that scans every block in the table, an error is thrown.

SQL> select * from f_regs;

This indicates that there is logical corruption in the datafile:

ORA-01578: ORACLE data block corrupted (file # 10, block # 198)
ORA-01110: data file 10: '/ora01/dbfile/O11R2/users201.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

As the prior output indicates, the data in the table is unrecoverable. Use NOLOGGING only in situations
where the data isn’t critical or in scenarios where you can back up the data soon after it was created.

■ Tip If you’re using RMAN to back up your database, you can report on unrecoverable datafiles via the REPORT
UNRECOVERABLE command.

There are some quirks of NOLOGGING that need some explanation. You can specify logging
characteristics at the database, tablespace, and object levels. If your database has been enabled to force
logging, then this overrides any NOLOGGING specified for a table. If you specify a logging clause at the
tablespace level, it sets the default logging for any CREATE TABLE statements that don’t explicitly use a
logging clause.

You can verify the logging mode of the database as follows:

SQL> select name, log_mode, force_logging from v$database;

The next statement verifies the logging mode of a tablespace:

SQL> select tablespace_name, logging from dba_tablespaces;

And this example verifies the logging mode of a table:

SQL> select owner, table_name, logging from dba_tables where logging = 'NO';

How do you tell whether Oracle logged redo for an operation? One way is to measure the amount of
redo generated for an operation with logging enabled vs. operating in NOLOGGING mode. If you have a
development environment for testing, you can monitor how often the redo logs switch while the
transactions are taking place. Another simple test is to measure how long the operation takes with and
without logging. The operation performed in NOLOGGING mode should occur faster because a minimal
amount of redo is generated during the load.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

17

1-7. Efficiently Removing Table Data

Problem
You’re experiencing performance issues when deleting data from a table. You want to remove data as
efficiently as possible.

Solution
You can use either the TRUNCATE statement or the DELETE statement to remove records from a table.
TRUNCATE is usually more efficient but has some side effects that you must be aware of. For example,
TRUNCATE is a DDL statement. This means Oracle automatically commits the statement (and the current
transaction) after it runs, so there is no way to roll back a TRUNCATE statement. Because a TRUNCATE
statement is DDL, you can’t truncate two separate tables as one transaction.

This example uses a TRUNCATE statement to remove all data from the COMPUTER_SYSTEMS table:

SQL> truncate table computer_systems;

When truncating a table, by default all space is de-allocated for the table except the space defined by
the MINEXTENTS table-storage parameter. If you don’t want the TRUNCATE statement to de-allocate the
currently allocated extents, then use the REUSE STORAGE clause:

SQL> truncate table computer_systems reuse storage;

You can query the DBA/ALL/USER_EXTENTS views to verify if the extents have been de-allocated (or
not)—for example:

select count(*)
 from user_extents where segment_name = 'COMPUTER_SYSTEMS';

How It Works
If you need the option of choosing to roll back (instead of committing) when removing data, then you
should use the DELETE statement. However, the DELETE statement has the disadvantage that it generates a
great deal of undo and redo information. Thus for large tables, a TRUNCATE statement is usually the most
efficient way to remove data.

Another characteristic of the TRUNCATE statement is that it sets the high-water mark of a table back to
zero. When you use a DELETE statement to remove data from a table, the high-water mark doesn’t
change. One advantage of using a TRUNCATE statement and resetting the high-water mark is that full table
scan queries search only for rows in blocks below the high-water mark. This can have significant
performance implications for queries that perform full table scans.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

18

Another side effect of the TRUNCATE statement is that you can’t truncate a parent table that has a
primary key defined that is referenced by an enabled foreign-key constraint in a child table—even if the
child table contains zero rows. In this scenario, Oracle will throw this error when attempting to truncate
the parent table:

ORA-02266: unique/primary keys in table referenced by enabled foreign keys

Oracle prevents you from truncating the parent table because in a multiuser system, there is a
possibility that another session can populate the child table with rows in between the time you truncate
the child table and the time you subsequently truncate the parent table. In this situation, you must
temporarily disable the child table–referenced foreign-key constraints, issue the TRUNCATE statement,
and then re-enable the constraints.

Compare the TRUNCATE behavior to that of the DELETE statement. Oracle does allow you to use the
DELETE statement to remove rows from a parent table while the constraints are enabled that reference a
child table (assuming there are zero rows in the child table). This is because DELETE generates undo, is
read-consistent, and can be rolled back. Table 1-4 summarizes the differences between DELETE and
TRUNCATE.

If you need to use a DELETE statement, you must issue either a COMMIT or a ROLLBACK to complete the
transaction. Committing a DELETE statement makes the data changes permanent:

SQL> delete from computer_systems;
SQL> commit;

■ Note Other (sometimes not so obvious) ways of committing a transaction include issuing a subsequent DDL
statement (which implicitly commits an active transaction for a session) or normally exiting out of the client tool
(such as SQL*Plus).

If you issue a ROLLBACK statement instead of COMMIT, the table contains data as it was before the
DELETE was issued.

When working with DML statements, you can confirm the details of a transaction by querying from
the V$TRANSACTION view. For example, say that you have just inserted data into a table; before you issue a
COMMIT or ROLLBACK, you can view active transaction information for the currently connected session as
follows:

SQL> insert into computer_systems(cs_id) values(1);
SQL> select xidusn, xidsqn from v$transaction;
 XIDUSN XIDSQN
---------- ----------
 3 12878
SQL> commit;
SQL> select xidusn, xidsqn from v$transaction;
no rows selected

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

19

Table 1-4. Comparison of DELETE and TRUNCATE

 DELETE TRUNCATE

Option of committing or rolling back changes YES NO (DDL statement is
always committed after
it runs.)

Generates undo YES NO

Resets the table high-water mark to zero NO YES

Affected by referenced and enabled foreign-key
constraints

NO YES

Performs well with large amounts of data NO YES

■ Note Another way to remove data from a table is to drop and re-create the table. However, this means you
also have to re-create any indexes, constraints, grants, and triggers that belong to the table. Additionally, when
you drop a table, it’s temporarily unavailable until you re-create it and re-issue any required grants. Usually,
dropping and re-creating a table is acceptable only in a development or test environment.

1-8. Displaying Automated Segment Advisor Advice

Problem
You have a poorly performing query accessing a table. Upon further investigation, you discover the table
has only a few rows in it. You wonder why the query is taking so long when there are so few rows. You
want to examine the output of the Segment Advisor to see if there are any space-related
recommendations that might help with performance in this situation.

Solution
Use the Segment Advisor to display information regarding tables that may have space allocated to
them (that was once used) but now the space is empty (due to a large number of deleted rows).
Tables with large amounts of unused space can cause full table scan queries to perform poorly. This is
because Oracle is scanning every block beneath the high-water mark, regardless of whether the blocks
contain data.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

20

This solution focuses on accessing the Segment Advisor’s advice via the DBMS_SPACE PL/SQL
package. This package retrieves information generated by the Segment Advisor regarding segments that
may be candidates for shrinking, moving, or compressing. One simple and effective way to use the
DBMS_SPACE package (to obtain Segment Advisor advice) is via a SQL query—for example:

SELECT
 'Segment Advice --------------------------'|| chr(10) ||
 'TABLESPACE_NAME : ' || tablespace_name || chr(10) ||
 'SEGMENT_OWNER : ' || segment_owner || chr(10) ||
 'SEGMENT_NAME : ' || segment_name || chr(10) ||
 'ALLOCATED_SPACE : ' || allocated_space || chr(10) ||
 'RECLAIMABLE_SPACE: ' || reclaimable_space || chr(10) ||
 'RECOMMENDATIONS : ' || recommendations || chr(10) ||
 'SOLUTION 1 : ' || c1 || chr(10) ||
 'SOLUTION 2 : ' || c2 || chr(10) ||
 'SOLUTION 3 : ' || c3 Advice
FROM
TABLE(dbms_space.asa_recommendations('FALSE', 'FALSE', 'FALSE'));

Here is some sample output:

Segment Advice --------------------------
TABLESPACE_NAME : USERS
SEGMENT_OWNER : MV_MAINT
SEGMENT_NAME : F_REGS
ALLOCATED_SPACE : 20971520
RECLAIMABLE_SPACE: 18209960
RECOMMENDATIONS : Perform re-org on the object F_REGS, estimated savings is 182
09960 bytes.
SOLUTION 1 : Perform Reorg
SOLUTION 2 :
SOLUTION 3 :

In the prior output, the F_REGS table is a candidate for the shrink operation. It is consuming 20 MB,
and 18 MB can be reclaimed.

How It Works
In Oracle Database 10g R2 and later, Oracle automatically schedules and runs a Segment Advisor job.
This job analyzes segments in the database and stores its findings in internal tables. The output of the
Segment Advisor contains findings (issues that may need to be resolved) and recommendations (actions
to resolve the findings). Findings from the Segment Advisor are of the following types:

• Segments that are good candidates for shrink operations

• Segments that have significant row chaining

• Segments that might benefit from OLTP compression

When viewing the Segment Advisor’s findings and recommendations, it’s important to understand
several aspects of this tool. First, the Segment Advisor regularly calculates advice via an automatically
scheduled DBMS_SCHEDULER job. You can verify the last time the automatic job ran by querying the
DBA_AUTO_SEGADV_SUMMARY view:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

21

select
 segments_processed
,end_time
from dba_auto_segadv_summary
order by end_time;

Here is some sample output:

SEGMENTS_PROCESSED END_TIME
------------------ ----------------------------
 9 30-JAN-11 02.02.46.414424 PM
 11 30-JAN-11 06.03.44.500178 PM
 17 30-JAN-11 10.04.35.688915 PM

You can compare the END_TIME date to the current date to determine if the Segment Advisor is
running on a regular basis.

■ Note In addition to automatically generated segment advice, you have the option of manually executing the
Segment Advisor to generate advice on specific tablespaces, tables, and indexes (see Recipe 1-9 for details).

When the Segment Advisor executes, it uses the Automatic Workload Repository (AWR) for the
source of information for its analysis. For example, the Segment Advisor examines usage and growth
statistics in the AWR to generate segment advice. When the Segment Advisor runs, it generates advice
and stores the output in internal database tables. The advice and recommendations can be viewed via
data dictionary views such as the following:

• DBA_ADVISOR_EXECUTIONS

• DBA_ADVISOR_FINDINGS

• DBA_ADVISOR_OBJECTS

There are three different tools for retrieving the Segment Advisor’s output:

• Executing DBMS_SPACE.ASA_RECOMMENDATIONS

• Manually querying DBA_ADVISOR_* views

• Viewing Enterprise Manager’s graphical screens

In the “Solution” section, we described how to use the DBMS_SPACE.ASA_RECOMMENDATIONS procedure
to retrieve the Segment Advisor advice. The ASA_RECOMMENDATIONS output can be modified via three input
parameters, which are described in Table 1-5. For example, you can instruct the procedure to show
information generated when you have manually executed the Segment Advisor.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

22

Table 1-5. Description of ASA_RECOMMENDATIONS Input Parameters

Parameter Meaning

all_runs TRUE instructs the procedure to return findings from all runs, whereas FALSE instructs
the procedure to return only the latest run.

show_manual TRUE instructs the procedure to return results from manual executions of the
Segment Advisor. FALSE instructs the procedure to return results from the automatic
running of the Segment Advisor.

show_findings Shows only the findings and not the recommendations

You can also directly query the data dictionary views to view the advice of the Segment Advisor.

Here’s a query that displays Segment Advisor advice generated within the last day:

select
 'Task Name : ' || f.task_name || chr(10) ||
 'Start Run Time : ' || TO_CHAR(execution_start, 'dd-mon-yy hh24:mi') || chr (10) ||
 'Segment Name : ' || o.attr2 || chr(10) ||
 'Segment Type : ' || o.type || chr(10) ||
 'Partition Name : ' || o.attr3 || chr(10) ||
 'Message : ' || f.message || chr(10) ||
 'More Info : ' || f.more_info || chr(10) ||
 '--' Advice
FROM dba_advisor_findings f
 ,dba_advisor_objects o
 ,dba_advisor_executions e
WHERE o.task_id = f.task_id
AND o.object_id = f.object_id
AND f.task_id = e.task_id
AND e. execution_start > sysdate - 1
AND e.advisor_name = 'Segment Advisor'
ORDER BY f.task_name;

Here is some sample output:

Task Name : SYS_AUTO_SPCADV_53092205022011
Start Run Time : 05-feb-11 22:09
Segment Name : CWP_USER_PROFILE
Segment Type : TABLE
Partition Name :
Message : Compress object REP_MV.CWP_USER_PROFILE, estimated savings is
 3933208576 bytes.
More Info : Allocated Space:3934257152: Used Space:10664: Reclaimable Spa
ce :3933208576:
--

The prior output indicates that a table segment is a candidate for compression. The allocated, used,
and reclaimable space numbers are displayed to help you determine the space savings.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

23

You can also view Segment Advisor advice from Enterprise Manager. To view the advice, first
navigate to the Advisor Central page. Next navigate to the Segment Advisor page. Then navigate to the
Segment Advisor Recommendations. This page will display any recent Segment Advisor findings and
recommendations.

1-9. Manually Generating Segment Advisor Advice

Problem
You have a table that experiences a large amount of updates. You have noticed that the query
performance against this table has slowed down. You suspect the table may be experiencing poor
performance due to row chaining. Therefore you want to manually confirm with the Segment Advisor
that a table has issues with row chaining.

Solution
You can manually run the Segment Advisor and tell it to specifically analyze all segments in a tablespace
or look at a specific object (such as a single table or index). You can manually generate advice for a
specific segment using the DBMS_ADVISOR package by executing the following steps:

1. Create a task.

2. Assign an object to the task.

3. Set the task parameters.

4. Execute the task.

■ Note The database user executing DBMS_ADVISOR needs the ADVISOR system privilege. This privilege is
administered via the GRANT statement.

The following example executes the DBMS_ADVISOR package from an anonymous block of PL/SQL.
The table being examined is the F_REGS table.

DECLARE
 my_task_id number;
 obj_id number;
 my_task_name varchar2(100);
 my_task_desc varchar2(500);
BEGIN
 my_task_name := 'F_REGS Advice';
 my_task_desc := 'Manual Segment Advisor Run';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

24

-- Step 1

 dbms_advisor.create_task (
 advisor_name => 'Segment Advisor',
 task_id => my_task_id,
 task_name => my_task_name,
 task_desc => my_task_desc);

-- Step 2

 dbms_advisor.create_object (
 task_name => my_task_name,
 object_type => 'TABLE',
 attr1 => 'MV_MAINT',
 attr2 => 'F_REGS',
 attr3 => NULL,
 attr4 => NULL,
 attr5 => NULL,
 object_id => obj_id);

-- Step 3

 dbms_advisor.set_task_parameter(
 task_name => my_task_name,
 parameter => 'recommend_all',
 value => 'TRUE');

-- Step 4

 dbms_advisor.execute_task(my_task_name);
END;
/

Now you can view Segment Advisor advice regarding this table by executing the DBMS_SPACE package
and instructing it to pull information from a manual execution of the Segment Advisor (via the input
parameters—see Table 1-6 for details)—for example:

SELECT
 'Segment Advice --------------------------'|| chr(10) ||
 'TABLESPACE_NAME : ' || tablespace_name || chr(10) ||
 'SEGMENT_OWNER : ' || segment_owner || chr(10) ||
 'SEGMENT_NAME : ' || segment_name || chr(10) ||
 'ALLOCATED_SPACE : ' || allocated_space || chr(10) ||
 'RECLAIMABLE_SPACE: ' || reclaimable_space || chr(10) ||
 'RECOMMENDATIONS : ' || recommendations || chr(10) ||
 'SOLUTION 1 : ' || c1 || chr(10) ||
 'SOLUTION 2 : ' || c2 || chr(10) ||
 'SOLUTION 3 : ' || c3 Advice
FROM
TABLE(dbms_space.asa_recommendations('TRUE', 'TRUE', 'FALSE'));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

25

Here is some sample output:

Segment Advice --------------------------
TABLESPACE_NAME : USERS
SEGMENT_OWNER : MV_MAINT
SEGMENT_NAME : F_REGS
ALLOCATED_SPACE : 20971520
RECLAIMABLE_SPACE: 18209960
RECOMMENDATIONS : Perform re-org on the object F_REGS, estimated savings is 182
09960 bytes.
SOLUTION 1 : Perform Reorg
SOLUTION 2 :
SOLUTION 3 :

You can also retrieve Segment Advisor advice by querying data dictionary views—for example:

SELECT
 'Task Name : ' || f.task_name || chr(10) ||
 'Segment Name : ' || o.attr2 || chr(10) ||
 'Segment Type : ' || o.type || chr(10) ||
 'Partition Name : ' || o.attr3 || chr(10) ||
 'Message : ' || f.message || chr(10) ||
 'More Info : ' || f.more_info TASK_ADVICE
FROM dba_advisor_findings f
 ,dba_advisor_objects o
WHERE o.task_id = f.task_id
AND o.object_id = f.object_id
AND f.task_name like 'F_REGS Advice'
ORDER BY f.task_name;

If the table has a potential issue with row chaining, then the advice output will indicate it as follows:

TASK_ADVICE
--
Task Name : F_REGS Advice
Segment Name : F_REGS
Segment Type : TABLE
Partition Name :
Message : Perform re-org on the object F_REGS, estimated savings is 182
09960 bytes.
More Info : Allocated Space:20971520: Used Space:2761560: Reclaimable Spa
ce :18209960:

How It Works
The DBMS_ADVISOR package is used to manually instruct the Segment Advisor to generate advice for
specific tables. This package contains several procedures that perform operations such as creating and
executing a task. Table 1-6 lists the procedures relevant to the Segment Advisor.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

26

Table 1-6. DBMS_ADVISOR Procedures Applicable for the Segment Advisor

Procedure Name Description

CREATE_TASK Creates the Segment Advisor task; specify “Segment Advisor” for the
ADVISOR_NAME parameter of CREATE_TASK. Query DBA_ADVISOR_DEFINITIONS for a
list of all valid advisors.

CREATE_OBJECT Identifies the target object for the segment advice; Table 1-7 lists valid object
types and parameters.

SET_TASK_PARAMETER Specifies the type of advice you want to receive; Table 1-8 lists valid parameters
and values.

EXECUTE_TASK Executes the Segment Advisor task

DELETE_TASK Deletes a task

CANCEL_TASK Cancels a currently running task

The Segment Advisor can be invoked with various degrees of granularity. For example, you can

generate advice for all objects in a tablespace or advice for a specific table, index, or partition. Table 1-7
lists the object types for which Segment Advisor advice can be obtained via the
DBMS_ADVISOR.CREATE_TASK procedure.

Table 1-7. Valid Object Types for the DBMS_ADVISOR.CREATE_TASK Procedure

Object Type ATTR1 ATTR2 ATTR3 ATTR4

TABLESPACE tablespace name NULL NULL NULL

TABLE user name table name NULL NULL

INDEX user name index name NULL NULL

TABLE PARTITION user name table name partition name NULL

INDEX PARTITION user name index name partition name NULL

TABLE SUBPARTITION user name table name subpartition name NULL

INDEX SUBPARTITION user name index name subpartition name NULL

LOB user name segment name NULL NULL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

27

Object Type ATTR1 ATTR2 ATTR3 ATTR4

LOB PARTITION user name segment name partition name NULL

LOB SUBPARTITION user name segment name subpartition name NULL

You can also specify a maximum amount of time that you want the Segment Advisor to run. This is

controlled via the SET_TASK_PARAMETER procedure. This procedure also controls the type of advice that is
generated. Table 1-8 describes valid inputs for this procedure.

Table 1-8. Input Parameters for the DBMS_ADVISOR.SET_TASK_PARAMETER Procedure

Parameter Description Valid Values

TIME_LIMIT Limit on time (in seconds) for advisor run N number of seconds or UNLIMITED
(default)

RECOMMEND_ALL Generates advice for all types of advice or
just space-related advice

TRUE (default) for all types of advice, or
FALSE to generate only space-related
advice

1-10. Automatically E-mailing Segment Advisor Output

Problem
You realize that the Segment Advisor automatically generates advice and want to automatically e-mail
yourself Segment Advisor output.

Solution
First encapsulate the SQL that displays the Segment Advisor output in a shell script—for example:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
source oracle OS variables
. /var/opt/oracle/oraset $1

BOX=`uname -a | awk '{print$2}'`

sqlplus -s <<EOF
mv_maint/foo
spo $HOME/bin/log/seg.txt

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

28

set lines 80
set pages 100
SELECT
 'Segment Advice --------------------------'|| chr(10) ||
 'TABLESPACE_NAME : ' || tablespace_name || chr(10) ||
 'SEGMENT_OWNER : ' || segment_owner || chr(10) ||
 'SEGMENT_NAME : ' || segment_name || chr(10) ||
 'ALLOCATED_SPACE : ' || allocated_space || chr(10) ||
 'RECLAIMABLE_SPACE: ' || reclaimable_space || chr(10) ||
 'RECOMMENDATIONS : ' || recommendations || chr(10) ||
 'SOLUTION 1 : ' || c1 || chr(10) ||
 'SOLUTION 2 : ' || c2 || chr(10) ||
 'SOLUTION 3 : ' || c3 Advice
FROM
TABLE(dbms_space.asa_recommendations('FALSE', 'FALSE', 'FALSE'));
EOF
cat $HOME/bin/log/seg.txt | mailx -s "Seg. rpt. on DB: $1 $BOX" dkuhn@oracle.com
exit 0

The prior shell script can be regularly executed from a Linux/Unix utility such as cron. Here is a
sample cron entry:

Segment Advisor report
16 11 * * * /orahome/oracle/bin/seg.bsh DWREP

In this way, you automatically receive segment advice and proactively resolve issues before they
become performance problems.

How It Works
The Segment Advisor automatically generates advice on a regular basis. Sometimes it’s handy to
proactively send yourself the recommendations. This allows you to periodically review the output and
implement suggestions that make sense.

The shell script in the “Solution” section contains a line near the top where the OS variables are
established through running an oraset script. This is a custom script that is the equivalent of the oraset
script provided by Oracle. You can use a script to set the OS variables or hard-code the required lines
into the script. Calling a script to set the variables is more flexible and maintainable, as it allows you to
use as input any database name that appears in the oratab file.

1-11. Rebuilding Rows Spanning Multiple Blocks

Problem
You have a table in which individual rows are stored in more than one block. That situation leads to
higher rates of I/O, and causes queries against the table to run slowly. You want to rebuild the spanned
rows such that each row fits into a single block.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

29

For example, you’re running the following query, which displays Segment Advisor advice:

SELECT
 'Task Name : ' || f.task_name || chr(10) ||
 'Segment Name : ' || o.attr2 || chr(10) ||
 'Segment Type : ' || o.type || chr(10) ||
 'Partition Name : ' || o.attr3 || chr(10) ||
 'Message : ' || f.message || chr(10) ||
 'More Info : ' || f.more_info TASK_ADVICE
FROM dba_advisor_findings f
 ,dba_advisor_objects o
WHERE o.task_id = f.task_id
AND o.object_id = f.object_id
ORDER BY f.task_name;

Here is the output for this example:

TASK_ADVICE
--
Task Name : EMP Advice
Segment Name : EMP
Segment Type : TABLE
Partition Name :
Message : The object has chained rows that can be removed by re-org.
More Info : 47 percent chained rows can be removed by re-org.

From the prior output, the EMP table has a large percentage of rows affected by row chaining and is
causing performance issues when retrieving data from the table. You want to eliminate the chained rows
within the table.

Solution
One method for resolving the row chaining within a table is to use the MOVE statement. When you move a
table, Oracle requires an exclusive lock on the table; therefore you should perform this operation when
there are no active transactions associated with the table being moved.

Also, as part of a MOVE operation, all of the rows are assigned a new ROWID. This will invalidate any
indexes that are associated with the table. Therefore, as part of the move operation, you should rebuild
all indexes associated with the table being moved. This example moves the EMP table:

SQL> alter table emp move;

After the move operation completes, then rebuild any indexes associated with the table being
moved. You can verify the status of the indexes by interrogating the DBA/ALL/USER_INDEXES view:

select
 owner
,index_name
,status
from dba_indexes
where table_name='EMP';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

30

Here is some sample output:

OWNER INDEX_NAME STATUS
------------------------------ ------------------------------ --------
MV_MAINT EMP_PK UNUSABLE

Rebuilding the index will make it usable again:

SQL> alter index emp_pk rebuild;

You can now manually generate Segment Advisor advice (see Recipe 1-9) for the segment and run
the query listed in the “Problem” section of this recipe to see if the row chaining has been resolved.

How It Works
A certain amount of space is reserved in the block to accommodate growth within the row. Usually a row
will increase in size due to an UPDATE statement that increases the size of a column value. If there isn’t
enough free room in the block to accommodate the increased size, then Oracle will create a pointer to a
different block that does have enough space and store part of the row in this additional block. When a
single row is stored in two or more blocks, this is called row chaining. This can cause potential
performance issues because Oracle will have to retrieve data from multiple blocks (instead of one) when
retrieving a chained row.

A small number of chained rows won’t have much impact on performance. One rough guideline is
that if more than 15% of a table’s rows are chained, then you should take corrective action (such as
moving the table to re-organize it).

The amount of free space reserved in a block is determined by the table’s storage parameter of
PCTFREE. The default value of PCTFREE is 10, meaning 10% of the block is reserved space to be used for
updates that result in more space usage. If you have a table that has columns that are initially inserted as
null and later updated to contain large values, then consider setting PCTFREE to a higher value, such as
40%. This will help prevent the row chaining.

Conversely, if you have a table that is never updated after rows are inserted, then consider setting
PCTFREE to 0. This will result in more rows per block, which can lead to fewer disk reads (and thus better
performance) when retrieving data.

You can view the setting for PCTFREE by querying the DBA/ALL/USER_TABLES view—for example:

select table_name, pct_free
from user_tables;

The move operation removes each record from the block and re-inserts the record into a new block.
For chained rows, the old chained rows are deleted and rebuilt as one physical row within the block. If
the table being moved has a low setting for PCTFREE, consider resetting this parameter to a higher value
(as part of the move operation)—for example:

SQL> alter table emp move pctfree 40;

Another method for verifying row chaining (besides the Segment Advisor) is to use the ANALYZE
TABLE statement. First you must create a table to hold output of the ANALYZE TABLE statement:

SQL> @?/rdbms/admin/utlchain.sql

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

31

The prior script creates a table named CHAINED_ROWS. Now you can run the ANALYZE statement to
populate the CHAINED_ROWS table:

SQL> analyze table emp list chained rows;

Now query the number of rows from the CHAINED_ROWS table:

SQL> select count(*) from chained_rows where table_name='EMP';

If the issue with the chained rows has been resolved, the prior query will return zero rows. The
advantage of identifying chained rows in this manner is that you can fix the rows that are chained
without impacting the rest of the records in the table by doing the following:

1. Create a temporary holding table to store the chained rows.

2. Delete the chained rows from the original table.

3. Insert the rows from the temporary table into the original table.

Here’s a short example to demonstrate the prior steps. First create a temporary table that contains
the rows in the EMP table that have corresponding records in the CHAINED_ROWS table:

create table temp_emp
as select *
from emp
where rowid in
(select head_rowid from chained_rows where table_name = 'EMP');

Now delete the records from EMP that have corresponding records in CHAINED_ROWS:

delete from emp
where rowid in
(select head_rowid from chained_rows where table_name = 'EMP');

Now insert records in the temporary table into the EMP table:

insert into emp select * from temp_emp;

If you re-analyze the table, there should be no chained rows now. You can drop the temporary table
when you’re finished.

UNDERSTANDING THE ORACLE ROWID

Every row in every table has a physical address. The address of a row is determined from a combination of
the following:

• Datafile number

• Block number

• Location of the row within the block

• Object number

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

32

You can display the address of a row in a table by querying the ROWID pseudo-column—for example:

SQL> select rowid, emp_id from emp;

Here’s some sample output:

ROWID EMP_ID
------------------ ----------
AAAFWXAAFAAAAlWAAA 1

The ROWID pseudo-column value isn’t physically stored in the database. Oracle calculates its value when
you query it. The ROWID contents are displayed as base-64 values that can contain the characters A–Z, a–
z, 0–9, +, and /. You can translate the ROWID value into meaningful information via the DBMS_ROWID
package. For example, to display the file number, block number, and row number in which a row is stored,
issue this statement:

select
 emp_id
,dbms_rowid.rowid_relative_fno(rowid) file_num
,dbms_rowid.rowid_block_number(rowid) block_num
,dbms_rowid.rowid_row_number(rowid) row_num
from emp;

Here’s some sample output:

 EMP_ID FILE_NUM BLOCK_NUM ROW_NUM
---------- ---------- ---------- ----------
 2960 4 144 126
 2961 4 144 127

You can use the ROWID value in the SELECT and WHERE clauses of a SQL statement. In most cases, the
ROWID uniquely identifies a row. However, it’s possible to have rows in different tables that are stored in
the same cluster and so contain rows with the same ROWID.

1-12. Freeing Unused Table Space

Problem
You’ve analyzed the output of the Segment Advisor and have identified a table that has a large amount of
free space. You want to free up the unused space to improve the performance queries that perform full
table scans of the table.

Solution
Do the following to shrink space and re-adjust the high-water mark for a table:

1. Enable row movement for the table.

2. Use the ALTER TABLE...SHRINK SPACE statement to free up unused space.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

33

■ Note The shrink table feature requires that the table’s tablespace use automatic space segment management.
See Recipe 1-2 for details on how to create an ASSM-enabled tablespace.

When you shrink a table, this requires that rows (if any) be moved. This means you must enable row
movement. This example enables row movement for the INV table:

SQL> alter table inv enable row movement;

Next the table shrink operation is executed via an ALTER TABLE statement:

SQL> alter table inv shrink space;

You can also shrink the space associated with any index segments via the CASCADE clause:

SQL> alter table inv shrink space cascade;

How It Works
When you shrink a table, Oracle re-organizes the blocks in a manner that consumes the least amount of
space. Oracle also re-adjusts the table’s high-water mark. This has performance implications for queries
that result in full table scans. In these scenarios, Oracle will inspect every block below the high-water
mark. If you notice that it takes a long time for a query to return results when there aren’t many rows in
the table, this may be an indication that there are many unused blocks (because data was deleted) below
the high-water mark.

You can instruct Oracle to not re-adjust the high-water mark when shrinking a table. This is done via
the COMPACT clause—for example:

SQL> alter table inv shrink space compact;

When you use COMPACT, Oracle defragments the table but doesn’t alter the high-water mark. You will
need to use the ALTER TABLE…SHRINK SPACE statement to reset the high-water mark. You might want to
do this because you’re concerned about the time it takes to defragment and adjust the high-water mark.
This allows you to shrink a table in two shorter steps instead of one longer operation.

1-13. Compressing Data for Direct Path Loading

Problem
You’re working with a decision support system (DSS)-type database and you want to improve the
performance of an associated reporting application. This environment contains large tables that are
loaded once and then frequently subjected to full table scans. You want to compress data as it is loaded
because this will compact the data into fewer database blocks and thus will require less I/O for
subsequent reads from the table. Because fewer blocks need to be read for compressed data, this will
improve data retrieval performance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

34

Solution
Use Oracle’s basic compression feature to compress direct path–loaded data into a heap-organized
table. Basic compression is enabled as follows:

1. Use the COMPRESS clause to enable compression either when creating, altering,
or moving an existing table.

2. Load data via a direct path mechanism such as CREATE TABLE…AS SELECT or
INSERT /*+ APPEND */.

■ Note Prior to Oracle Database 11g R2, basic compression was referred to as DSS compression and enabled
via the COMPRESS FOR DIRECT_LOAD OPERATION clause. This syntax is deprecated in Oracle Database 11g R2 and
higher.

Here’s an example that uses the CREATE TABLE…AS SELECT statement to create a basic compression-
enabled table and direct path–load the data:

create table regs_dss
compress
as select reg_id, reg_name
from regs;

The prior statement creates a table with compressed data in it. Any subsequent direct path–load
operations will also load the data in a compressed format.

■ Tip You can use either the COMPRESS clause or the COMPRESS BASIC clause to enable the basic table
compression feature. The COMPRESS clause and COMPRESS BASIC clause are synonymous.

You can verify that compression has been enabled for a table by querying the appropriate
DBA/ALL/USER_TABLES view. This example assumes that you’re connected to the database as the owner of
the table:

select table_name, compression, compress_for
from user_tables
where table_name='REGS_DSS';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

35

Here is some sample output:

TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
REGS_DSS ENABLED BASIC

The prior output shows that compression has been enabled in the basic mode for this table. If
you’re working with a table has that already been created, then you can alter its basic compression
characteristics with the ALTER TABLE statement—for example:

SQL> alter table regs_dss compress;

When you alter a table to enable basic compression, this does not affect any data currently existing
in the table; rather it only compresses subsequent direct path data load operations.

If you want to enable basic compression for data in an existing table, use the MOVE COMPRESS clause:

SQL> alter table regs_dss move compress;

Keep in mind that when you move a table, all of the associated indexes are invalidated. You’ll have
to rebuild any indexes associated with the moved table.

If you have enabled basic compression for a table, you can disable it via the NOCOMPRESS clause—for
example:

SQL> alter table regs_dss nocompress;

When you alter a table to disable basic compression, this does not uncompress existing data within
the table. Rather this operation instructs Oracle to not compress data for subsequent direct path
operations. If you need to uncompress existing compressed data, then use the MOVE NOCOMPRESS clause:

SQL> alter table regs_dss move nocompress;

How It Works
The basic compression feature is available at no extra cost with the Oracle Enterprise Edition. Any heap-
organized table that has been created or altered to use basic compression will be a candidate for data
loaded in a compressed format for subsequent direct path–load operations. There is some additional
CPU overhead associated with compressing the data, but you may find in many circumstances that this
overhead is offset by performance gains due to less I/O.

From a performance perspective, the main advantage to using basic compression is that once the
data is loaded as compressed, any subsequent I/O operations will use fewer resources because there are
fewer blocks required to read and write data. You will need to test the performance benefits for your
environment. In general, tables that hold large amounts of character data are candidates for basic
compression—especially in scenarios where data is direct path–loaded once, and thereafter selected
from many times.

Keep in mind that Oracle’s basic compression feature has no effect on regular DML statements such
as INSERT, UPDATE, MERGE, and DELETE. If you require compression to occur on all DML statements, then
consider using OLTP compression (see Recipe 1-14 for details).

You can also specify basic compression at the partition and tablespace level. Any table created
within a tablespace created with the COMPRESS clause will have basic compression enabled by default.
Here’s an example of creating a tablespace with the COMPRESS clause:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

36

CREATE TABLESPACE comp_data
 DATAFILE '/ora01/dbfile/O11R2/comp_data01.dbf'
 SIZE 500M
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 512K
 SEGMENT SPACE MANAGEMENT AUTO
 DEFAULT COMPRESS;

You can also alter an existing tablespace to set the default degree of compression:

SQL> alter tablespace comp_data default compress;

Run this query to verify that basic compression for a tablespace is enabled:

select tablespace_name, def_tab_compression, compress_for
from dba_tablespaces
where tablespace_name = 'COMP_DATA';

Here is some sample output:

TABLESPACE_NAME DEF_TAB_ COMPRESS_FOR
------------------------------ -------- ------------
COMP_DATA ENABLED BASIC

■ Tip You cannot drop a column from a table created with basic compression enabled. However, you can mark
a column as unused.

1-14. Compressing Data for All DML

Problem
You’re in an OLTP environment and have noticed that there is a great deal of disk I/O occurring when
reading data from a table. You wonder if you can increase I/O performance by compressing the data
within the table. The idea is that compressed table data will consume less physical storage and thus
require less I/O to read from disk.

Solution
Use the COMPRESS FOR OLTP clause when creating a table to enable data compression when using regular
DML statements to manipulate data. This example creates an OLTP compression–enabled table:

create table regs
(reg_id number
,reg_name varchar2(2000)
) compress for oltp;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

37

■ Note Prior to Oracle Database 11g R2, OLTP table compression was enabled using the COMPRESS FOR ALL
OPERATIONS clause. This syntax is deprecated in Oracle Database 11g R2 and higher.

You can verify that compression has been enabled for a table by querying the appropriate
DBA/ALL/USER_TABLES view. This example assumes that you’re connected to the database as the owner of
the table:

select table_name, compression, compress_for
from user_tables
where table_name='REGS';

Here is some sample output:

TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
REGS ENABLED OLTP

If you’ve already created the table, you can use the ALTER TABLE statement to enable compression on
an existing table—for example:

SQL> alter table regs compress for oltp;

When you alter a table’s compression mode, it doesn’t impact any of the data currently within the
table. Subsequent DML statements will result in data stored in a compressed fashion.

If you want to enable OLTP compression for data in an existing table, use the MOVE COMPRESS FOR
OLTP clause:

SQL> alter table regs move compress for oltp;

Keep in mind that when you move a table, all of the associated indexes are invalidated. You’ll have
to rebuild any indexes associated with the moved table.

If you have enabled OLTP compression for a table, you can disable it via the NOCOMPRESS clause—for
example:

SQL> alter table regs nocompress;

When you alter a table to disable OLTP compression, this does not uncompress existing data within
the table. Rather this operation instructs Oracle to not compress data for subsequent DML operations.

How It Works
OLTP compression requires the Oracle Enterprise Edition and the Advanced Compression Option (extra
cost license). The COMPRESS FOR OLTP clause enables compression for all DML operations. The OLTP
compression doesn’t immediately compress data as it is inserted or updated in a table. Rather the
compression occurs in a batch mode when the degree of change within the block reaches a certain
threshold. When the threshold is reached, all of the uncompressed rows are compressed at the same
time. The threshold at which compression occurs is determined by an internal algorithm (over which
you have no control).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

38

You can also specify OLTP compression at the tablespace level. Any table created in an OLTP
compression–enabled tablespace will by default inherit this compression setting. Here’s an example of
tablespace creation script specifying OLTP compression:

CREATE TABLESPACE comp_data
 DATAFILE '/ora01/dbfile/O11R2/comp_data01.dbf'
 SIZE 10M
 EXTENT MANAGEMENT LOCAL
 UNIFORM SIZE 1M
 SEGMENT SPACE MANAGEMENT AUTO
 DEFAULT COMPRESS FOR OLTP;

You can also alter an existing tablespace to set the default degree of compression:

SQL> alter tablespace comp_data default compress for oltp;

You can verify the default compression characteristics with this query:

select tablespace_name, def_tab_compression, compress_for
from dba_tablespaces
where tablespace_name = 'COMP_DATA';

Here is some sample output:

TABLESPACE_NAME DEF_TAB_ COMPRESS_FOR
------------------------------ -------- ------------
COMP_DATA ENABLED OLTP

1-15. Compressing Data at the Column Level

Problem
You’re using the Oracle Exadata product and you want to efficiently compress data. You have
determined that compressed data will result in much more efficient I/O operations, especially when
reading data from disk. The idea is that compressed data will result in much fewer blocks read for SELECT
statements.

Solution
To enable hybrid columnar compression, when creating a table, use either the COMPRESS FOR QUERY or
the COMPRESS FOR ARCHIVE clause—for example:

create table f_regs(
 reg_id number
,reg_desc varchar2(4000))
compress for query;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

39

You can also specify a degree of compression of either LOW or HIGH:

create table f_regs(
 reg_id number
,reg_desc varchar2(4000))
compress for query high;

The default level of compression for QUERY is HIGH, and the default level of compression for ARCHIVE is
LOW. You can validate the level of compression enabled via this query:

select table_name, compression, compress_for
from user_tables
where table_name='F_REGS';

Here is some sample output:

TABLE_NAME COMPRESS COMPRESS_FOR
------------------------------ -------- ------------
F_REGS ENABLED QUERY HIGH

If you attempt to use hybrid columnar compression in an environment other than Exadata, you’ll
receive the following error:

ERROR at line 1:
ORA-64307: hybrid columnar compression is only supported in tablespaces
residing on Exadata storage

How It Works
Exadata is Oracle’s high-performance database machine. It is designed to deliver high performance for
both data warehouse and OLTP databases. Exadata storage supports hybrid columnar compression and
is available starting with Oracle Database 11g R2.

Hybrid columnar compression compresses the data on a column-by-column basis. Column-level
compression results in higher compression ratios than Oracle basic compression (see Recipe 1-13) or
OLTP compression (see Recipe 1-14). There are four levels of hybrid columnar compression. These levels
are listed here from the lowest level of compression to the highest level:

• COMPRESS FOR QUERY LOW

• COMPRESS FOR QUERY HIGH

• COMPRESS FOR ARCHIVE LOW

• COMPRESS FOR ARCHIVE HIGH

COMPRESS FOR QUERY is appropriate for bulk load operations on heap-organized tables that are
infrequently updated. This type of compression is optimized for query performance and is therefore
more appropriate for DSS and data warehouse databases, whereas COMPRESS FOR ARCHIVE maximizes the
degree of compression and is more appropriate for data that is stored for long periods of time and will
not be updated.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

40

■ Note Refer to the Oracle Exadata Storage Server Software documentation for more information on hybrid
columnar compression.

1-16. Monitoring Table Usage

Problem
You’ve recently inherited a database that contains hundreds of tables. The application is experiencing
performance issues. As part of your overall tuning strategy, you want to obtain a better understanding of
the application by determining which tables are being used by what types of SQL statements. Tables that
aren’t being used can be renamed and later dropped. By removing unused tables, you can free up space,
reduce the clutter, and focus your performance analysis on actively used tables.

Solution
Use Oracle’s standard auditing feature to determine which tables are being used. Auditing is enabled as
follows:

1. Set the AUDIT_TRAIL parameter.

2. Stop and start your database to enable the setting of AUDIT_TRAIL.

3. Use the AUDIT statement to enable auditing of specific database operations.

Oracle’s standard auditing feature is enabled through setting the AUDIT_TRAIL initialization
parameter. When you set the AUDIT_TRAIL parameter to DB, this specifies that Oracle will write audit
records to an internal database table named AUD$. For example, when using an spfile, here’s how to set
the AUDIT_TRAIL parameter:

SQL> alter system set audit_trail=db scope=spfile;

If you are using an init.ora file, open it with a text editor and set the AUDIT_TRAIL value to DB. After
you’ve set the AUDIT_TRAIL parameter, you’ll need to stop and restart your database for it to take effect.

■ Tip When first setting up a database, we recommend that you set the AUDIT_TRAIL parameter to DB. This
way, when you want to enable auditing for a specific action, you can do so without having to stop and restart
(bounce) the database.

Now you can enable auditing for a specific database operation. For example, the following
statement enables auditing on all DML statements on the EMP table owned by INV_MGMT:

SQL> audit select, insert, update, delete on inv_mgmt.emp;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

41

From this point on, any DML access to the EMP table will be recorded in the SYS.AUD$ table. Oracle
provides several auditing views based on the AUD$ table, such as DBA_AUDIT_TRAIL or DBA_AUDIT_OBJECT.
You can query these views to report on auditing actions—for example:

select
 username
 ,obj_name
 ,to_char(timestamp,'dd-mon-yy hh24:mi') event_time
 ,substr(ses_actions,4,1) del
 ,substr(ses_actions,7,1) ins
 ,substr(ses_actions,10,1) sel
 ,substr(ses_actions,11,1) upd
from dba_audit_object;

Here is some sample output:

USERNAME OBJ_NAME EVENT_TIME DEL INS SEL UPD
------------------------------ ---------- --------------------- --- --- --- ---
INV_MGMT EMP 05-feb-11 15:08 - S - S
INV_MGMT EMP 05-feb-11 15:10 - - S -
INV_MGMT EMP 05-feb-11 15:10 S - - -

In the prior SQL statement, notice the use of the SUBSTR function to reference the SES_ACTIONS
column of the DBA_AUDIT_OBJECT view. That column contains a 16-character string in which each
character means that a certain operation has occurred. The 16 characters represent the following
operations in this order: ALTER, AUDIT, COMMENT, DELETE, GRANT, INDEX, INSERT, LOCK, RENAME, SELECT, UPDATE,
REFERENCES, and EXECUTE. Positions 14, 15, and 16 are reserved by Oracle for future use. The character of S
represents success, F represents failure, and B represents both success and failure.

To turn off auditing on an object, use the NOAUDIT statement:

SQL> noaudit select, insert, update, delete on inv_mgmt.emp;

■ Tip If you need to view the SQL_TEXT or SQL_BIND columns of the AUD$ table, then set the AUDIT_TRAIL
initialization parameter to DB_EXTENDED.

How It Works
Sometimes it’s handy when troubleshooting disk space or performance issues to know which tables in
the database are actually being used by the application. If you’ve inherited a database that contains a
large number of tables, it may not be obvious which objects are being accessed. Enabling auditing allows
you to identify which types of SQL statements are accessing a table of interest.

Once you have identified tables that are not being used, you can simply rename the tables and see if
this breaks the application or if any users complain. If there are no complaints, then after some time you
can consider dropping the tables. Make sure you take a good backup of your database with both RMAN
and Data Pump before you drop any tables you might have to later recover.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ OPTIMIZING TABLE PERFORMANCE

42

If you simply need to know whether a table is being inserted, updated, or deleted from, you can use
the DBA/ALL/USER_TAB_MODIFICATIONS view to report on that type of activity. This view has columns, such
as INSERTS, UPDATES, DELETES, and TRUNCATED, that will provide information as to how data in the table is
being modified—for example:

select table_name, inserts, updates, deletes, truncated
from user_tab_modifications;

In normal conditions, this view is not instantly updated by Oracle. If you need to immediately view
table modifications, then use the DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO procedure to update the
view:

SQL> exec DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO();

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 2

43

Choosing and Optimizing Indexes

An index is a database object used primarily to improve the performance of SQL queries. The function of
a database index is similar to an index in the back of a book. A book index associates a topic with a page
number. When you’re locating information in a book, it’s usually much faster to inspect the index first,
find the topic of interest, and identify associated page numbers. With this information, you can navigate
directly to specific page numbers in the book. In this situation, the number of pages you need to inspect
is minimal.

If there were no index, you would have to inspect every page of the book to find information. This
results in a great deal of page turning, especially with large books. This is similar to an Oracle query that
does not use an index and therefore has to scan every used block within a table. For large tables, this
results in a great deal of I/O.

The book index’s usefulness is directly correlated with the uniqueness of a topic within the book.
For example, take this book; it would do no good to create an index on the topic of “performance”
because every page in this book deals with performance. However, creating an index on the topic of
“bitmap indexes” would be effective because there are only a few pages within the book that are
applicable to this feature.

Keep in mind that the index isn’t free. It consumes space in the back of the book, and if the material
in the book is ever updated (like a second edition), every modification (insert, update, delete) potentially
requires a corresponding change to the index. It’s important to keep in mind that indexes consume
space and require resources when updates occur.

Also, the person who creates the index for the book must consider which topics will be frequently
looked up. Topics that are selective and frequently accessed should be included in the book index. If an
index in the back of the book is never looked up by a reader, then it unnecessarily wastes space.

Much like the process of creating an index in the back of the book, there are many factors that must
be considered when creating an Oracle index. Oracle provides a wide assortment of indexing features
and options. These objects are manually created by the DBA or a developer. Therefore, you need to be
aware of the various features and how to utilize them. If you choose the wrong type of index or use a
feature incorrectly, there may be detrimental performance implications. Listed next are aspects to
consider before you create an index:

• Type of index

• Table column(s) to include

• Whether to use a single column or a combination of columns

• Special features such as parallelism, turning off logging, compression, invisible
indexes, and so on

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

44

• Uniqueness

• Naming conventions

• Tablespace placement

• Initial sizing requirements and growth

• Impact on performance of SELECT statements (improvement)

• Impact on performance of INSERT, UPDATE, and DELETE statements

• Global or local index, if the underlying table is partitioned

When you create an index, you should give some thought to every aspect mentioned in the previous
list. One of the first decisions you need to make is the type of index and the columns to include. Oracle
provides a robust variety of index types. For most scenarios, you can use the default B-tree (balanced
tree) index. Other commonly used types are concatenated, bitmap, and function-based indexes. Table 2-
1 describes the types of indexes available with Oracle.

Table 2-1. Oracle Index Type Descriptions

Index Type Usage

B-tree Default, balanced tree index, good for high-cardinality (high degree of distinct
values) columns

B-tree cluster Used with clustered tables

Hash cluster Used with hash clusters

Function-based Good for columns that have SQL functions applied to them

Indexed virtual column Good for columns that have SQL functions applied to them; viable alternative
to using a function-based index

Reverse-key Useful to balance I/O in an index that has many sequential inserts

Key-compressed Useful for concatenated indexes where the leading column is often repeated;
compresses leaf block entries

Bitmap Useful in data warehouse environments with low-cardinality columns; these
indexes aren’t appropriate for online transaction processing (OLTP) databases
where rows are heavily updated.

Bitmap join Useful in data warehouse environments for queries that join fact and
dimension tables

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

45

Index Type Usage

Global partitioned Global index across all partitions in a partitioned table

Local partitioned Local index based on individual partitions in a partitioned table

Domain Specific for an application or cartridge

This chapter focuses on the most commonly used indexes and features. Hash cluster indexes,

partitioned indexes, and domain indexes are not covered in this book. If you need more information
regarding index types or features not covered in this chapter or book, see Oracle’s SQL Reference Guide
at http://otn.oracle.com.

The first recipe in this chapter deals with the mechanics of B-tree indexes. It’s critical that you
understand how this database object works. Even if you’ve been around Oracle for a while, we feel it’s
useful to work through the various scenarios outlined in this first recipe to ensure that you know how the
optimizer uses this type of index. This will lay the foundation for solving many different types of
performance problems (especially SQL tuning).

2-1. Understanding B-tree Indexes

Problem
You want to create an index. You understand that the default type of index in Oracle is the B-tree, but
you don’t quite understand how an index is physically implemented. You want to fully comprehend the
B-tree index internals so as to make intelligent performance decisions when building database
applications.

Solution
An example with a good diagram will help illustrate the mechanics of a B-tree index. Even if you’ve been
working with B-tree indexes for quite some time, a good example may illuminate technical aspects of
using an index. To get started, suppose you have a table created as follows:

create table cust(
 cust_id number
,last_name varchar2(30)
,first_name varchar2(30));

You determine that several SQL queries will frequently use LAST_NAME in the WHERE clause. This
prompts you to create an index:

SQL> create index cust_idx1 on cust(last_name);

Several hundred rows are now inserted into the table (not all of the rows are shown here):

insert into cust values(7, 'ACER','SCOTT');
insert into cust values(5, 'STARK','JIM');
insert into cust values(3, 'GREY','BOB');

www.it-ebooks.info

http://otn.oracle.com
http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

46

insert into cust values(11,'KHAN','BRAD');
.....
insert into cust values(274, 'ACER','SID');

After the rows are inserted, we ensure that the table statistics are up to date so as to provide the
query optimizer sufficient information to make good choices on how to retrieve the data:

SQL> exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT', -
 tabname=>'CUST',cascade=>true);

As rows are inserted into the table, Oracle will allocate extents that consist of physical database
blocks. Oracle will also allocate blocks for the index. For each record inserted into the table, Oracle will
also create an entry in the index that consists of the ROWID and column value (the value in LAST_NAME in
this example). The ROWID for each index entry points to the datafile and block that the table column value
is stored in. Figure 2-1 shows a graphical representation of how data is stored in the table and the
corresponding B-tree index. For this example, datafiles 10 and 15 contain table data stored in associated
blocks and datafile 22 stores the index blocks.

Figure 2-1. Physical layout of a table and B-tree index

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

47

There are two dotted lines in Figure 2-1. These lines depict how the ROWID (in the index structure)
points to the physical location in the table for the column values of ACER. These particular values will be
used in the scenarios in this solution.

When selecting data from a table and its corresponding index, there are three basic scenarios:

• All table data required by the SQL query is contained in the index structure.
Therefore only the index blocks need to be accessed. The blocks from the table are
never read.

• All of the information required by the query is not contained in the index blocks.
Therefore the query optimizer chooses to access both the index blocks and the
table blocks to retrieve the data needed to satisfy the results of the query.

• The query optimizer chooses not to access the index. Therefore only the table
blocks are accessed.

The prior situations are covered in the next three subsections.

Scenario 1: All Data Lies in the Index Blocks
There are two scenarios that will be shown in this section:

• Index range scan: This occurs when the optimizer determines it is efficient to use
the index structure to retrieve multiple rows required by the query. Index range
scans are used extensively in a wide variety of situations.

• Index fast full scan: This occurs when the optimizer determines that most of the
rows in the table will need to be retrieved. However, all of the information
required is stored in the index. Since the index structure is usually smaller than the
table structure, the optimizer determines that a full scan of the index is more
efficient. This scenario is common for queries that count values.

First the index range scan is demonstrated. For this example, suppose this query is issued that
selects from the table:

SQL> select last_name from cust where last_name='ACER';

Before reading on, look at Figure 2-1 and try to answer this question: “What are the minimal
number of blocks Oracle will need to read to return the data for this query?” In other words, what is the
most efficient way to access the physical blocks in order to satisfy the results of this query? The optimizer
could choose to read through every block in the table structure. However, that would result in a great
deal of I/O, and thus it is not the most optimal way to retrieve the data.

For this example, the most efficient way to retrieve the data is to use the index structure. To return
the rows that contain the value of ACER in the LAST_NAME column, Oracle will need to read three blocks:
block 20, block 30, and block 39. We can verify that this is occurring by using Oracle’s Autotrace utility:

SQL> set autotrace on;
SQL> select last_name from cust where last_name='ACER';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

48

Here is a partial snippet of the output:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 101 | 808 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| CUST_IDX1 | 101 | 808 | 1 (0)| 00:00:01 |
--

The prior output shows that Oracle needed to use only the CUST_IDX1 index to retrieve the data to
satisfy the result set of the query. The table data blocks were not accessed; only the index blocks were
required. This is a particularly efficient indexing strategy for the given query. Listed next are the statistics
displayed by Autotrace for this example:

Statistics
--
 1 recursive calls
 0 db block gets
 3 consistent gets
 0 physical reads

The consistent gets value indicates that three blocks were read from memory (db block gets plus
consistent gets equals the total blocks read from memory). Since the index blocks were already in
memory, no physical reads were required to return the result set of this query.

Next an example that results in an index fast full scan is demonstrated. Consider this query:

SQL> select count(last_name) from cust;

Using SET AUTOTRACE ON, an execution plan is generated. Here is the corresponding output:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	8	3 (0)	00:00:01
1	SORT AGGREGATE		1	8		
2	INDEX FAST FULL SCAN	CUST_IDX1	1509	12072	3 (0)	00:00:01

The prior output shows that only the index structure was used to determine the count within the
table. In this situation, the optimizer determined that a full scan of the index was more efficient than a
full scan of the table.

Scenario 2: All Information Is Not Contained in the Index
Now consider this situation: suppose we need additional information from the CUST table. This query
additionally selects the FIRST_NAME column:

SQL> select last_name, first_name from cust where last_name = 'ACER';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

49

Using SET AUTOTRACE ON and executing the prior query results in the following execution plan:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		101	1414	3 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	CUST	101	1414	3 (0)	00:00:01
* 2	INDEX RANGE SCAN	CUST_IDX1	101		1 (0)	00:00:01

The prior output indicates that the CUST_IDX1 index was accessed via an INDEX RANGE SCAN. The
INDEX RANGE SCAN identifies the index blocks required to satisfy the results of this query. Additionally the
table is read by TABLE ACCESS BY INDEX ROWID. The access to the table by the index’s ROWID means that
Oracle uses the ROWID (stored in the index) to locate the data contained within the table blocks. In Figure
2-1, this is indicated by the dotted lines that map the ROWID to the appropriate table blocks that contain
the value of ACER in the LAST_NAME column.

Again, looking at Figure 2-1, how many table and index blocks need to be read in this scenario? The
index requires that blocks 20, 30, and 39 must be read. Since FIRST_NAME is not included in the index,
Oracle must read the table blocks to retrieve these values. Oracle knows the ROWID of the table blocks and
directly reads blocks 11 and 2500 to retrieve that data. That makes a total of five blocks. Here is a partial
snippet of the statistics generated by Autotrace that confirms the number of blocks read is five:

Statistics
--
 1 recursive calls
 0 db block gets
 5 consistent gets
 0 physical reads

Scenario 3: Only the Table Blocks Are Accessed
In some situations, even if there is an index, Oracle will determine that it’s more efficient to use only the
table blocks. When Oracle inspects every row within a table, this is known a full table scan. For example,
take this query:

SQL> select * from cust;

Here are the corresponding execution plan and statistics:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1509 | 24144 | 12 (0)| 00:00:01 |
| 1 | TABLE ACCESS FULL| CUST | 1509 | 24144 | 12 (0)| 00:00:01 |
--
Statistics
--
 0 recursive calls
 0 db block gets
 119 consistent gets
 0 physical reads

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

50

The prior output shows that a total of 119 blocks were inspected. Oracle searched every row in the
table to bring back the results required to satisfy the query. In this situation, all blocks of the table must
be read, and there is no way for Oracle to use the index to speed up the retrieval of the data.

■ Note For the examples in this recipe, your results may vary slightly, depending on how many rows you initially
insert into the table. We used approximately 1,500 rows for this example.

How It Works
The B-tree index is the default index type in Oracle. For most OLTP-type applications, this index type is
sufficient. This index type is known as B-tree because the ROWID and associated column values are stored
within blocks in a balanced tree-like structure (see Figure 2-1). The B stands for balanced.

B-tree indexes are efficient because, when properly used, they result in a query retrieving data far
faster than it would without the index. If the index structure itself contains the required column values to
satisfy the result of the query, then the table data blocks need not be accessed. Understanding these
mechanics will guide your indexing decision-making process. For example, this will help you decide
which columns to index and whether a concatenated index might be more efficient for certain queries
and less optimal for others. These topics are covered in detail in subsequent recipes in this chapter.

ESTIMATING THE SPACE AN INDEX WILL REQUIRE

Before you create an index, you can estimate how much space it will take via the
DBMS_SPACE.CREATE_INDEX_COST procedure—for example:

SQL> set serverout on
SQL> exec dbms_stats.gather_table_stats(user,'CUST');
SQL> variable used_bytes number
SQL> variable alloc_bytes number
SQL> exec dbms_space.create_index_cost('create index cust_idx2 on cust(first_name)', -
 :used_bytes, :alloc_bytes);
SQL> print :used_bytes

Here is some sample output for this example:

USED_BYTES

 363690

SQL> print :alloc_bytes

Here is some sample output for this example:

ALLOC_BYTES

 2097152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

51

The used_bytes variable gives you an estimate of how much room is required for the index data. The
alloc_bytes variable provides an estimate of how much space will be allocated within the tablespace.

2-2. Deciding Which Columns to Index

Problem
A database you manage contains hundreds of tables. Each table typically contains a dozen or more
columns. You wonder which columns should be indexed.

Solution
Listed next are general guidelines for deciding which columns to index.

• Define a primary key constraint for each table that results in an index
automatically being created on the columns specified in the primary key (see
Recipe 2-3).

• Create unique key constraints on non-null column values that are required to be
unique (different from the primary key columns). This results in an index
automatically being created on the columns specified in unique key constraints
(see Recipe 2-4).

• Explicitly create indexes on foreign key columns (see Recipe 2-5).

• Create indexes on columns used often as predicates in the WHERE clause of
frequently executed SQL queries.

After you have decided to create indexes, we recommend that you adhere to index creation
standards that facilitate the ease of maintenance. Specifically, follow these guidelines when creating an
index:

• Use the default B-tree index unless you have a solid reason to use a different
index type.

• Create a separate tablespace for the indexes. This allows you to more easily
manage indexes separately from tables for tasks such as backup and recovery.

• Let the index inherit its storage properties from the tablespace. This allows you to
specify the storage properties when you create the tablespace and not have to
manage storage properties for individual indexes.

• If you have a variety of storage requirements for indexes, then consider creating
separate tablespaces for each type of index—for example, INDEX_LARGE,
INDEX_MEDIUM, and INDEX_SMALL tablespaces, each defined with storage
characteristics appropriate for the size of the index.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

52

Listed next is a sample script that encapsulates the foregoing recommendations from the prior two
bulleted lists:

CREATE TABLE cust(
 cust_id NUMBER
,last_name VARCHAR2(30)
,first_name VARCHAR2(30));
--
ALTER TABLE cust ADD CONSTRAINT cust_pk PRIMARY KEY (cust_id)
USING INDEX TABLESPACE reporting_index;
--
ALTER TABLE cust ADD CONSTRAINT cust_uk1 UNIQUE (last_name, first_name)
USING INDEX TABLESPACE reporting_index;
--
CREATE TABLE address(
 address_id NUMBER,
 cust_id NUMBER
,street VARCHAR2(30)
,city VARCHAR2(30)
,state VARCHAR2(30))
TABLESPACE reporting_data;
--
ALTER TABLE address ADD CONSTRAINT addr_fk1
FOREIGN KEY (cust_id) REFERENCES cust(cust_id);
--
CREATE INDEX addr_fk1 ON address(cust_id)
TABLESPACE reporting_index;

In the prior script, two tables are created. The parent table is CUST and its primary key is CUST_ID. The
child table is ADDRESS and its primary key is ADDRESS_ID. The CUST_ID column exists in ADDRESS as a foreign
key mapping back to the CUST_ID column in the CUST table.

How It Works
You should add an index only when you’re certain it will improve performance. Misusing indexes can
have serious negative performance effects. Indexes created of the wrong type or on the wrong columns
do nothing but consume space and processing resources. As a DBA, you must have a strategy to ensure
that indexes enhance performance and don’t negatively impact applications.

Table 2-2 encapsulates many of the index management concepts covered in this chapter. These
recommendations aren’t written in stone: adapt and modify them as needed for your environment.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

53

Table 2-2. Index Creation and Maintenance Guidelines

Guideline Reasoning

Add indexes judiciously. Test first to determine
quantifiable performance gains.

Indexes consume disk space and processing
resources. Don’t add indexes unnecessarily.

Use the correct type of index. Correct index usage maximizes performance. See
Table 2-1 for more details.

Use consistent naming standards. This makes maintenance and troubleshooting
easier.

Monitor your indexes, and drop indexes that
aren’t used. See Recipe 2-15 for details on
monitoring indexes.

Doing this frees up physical space and improves
the performance of Data Manipulation Language
(DML) statements.

Don’t rebuild indexes unless you have a solid
reason to do so. See Recipe 2-17 for details on
rebuilding an index.

Rebuilding an index is generally unnecessary
unless the index is corrupt or you want to change a
physical characteristic (such as the tablespace)
without dropping the index.

Before dropping an index, consider marking it as
unusable or invisible.

This allows you to better determine if there are any
performance issues before you drop the index.
These options let you rebuild or re-enable the
index without requiring the Data Definition
Language (DDL) index creation statement.

Consider creating concatenated indexes that
result in only the index structure being required to
return the result set.

Avoids having to scan any table blocks; when
queries are able to use the index only, this results
in very efficient execution plans.

Consider creating indexes on columns used in the
ORDER BY, GROUP BY, UNION, or DISTINCT clauses.

This may result in more efficient queries that
frequently use these SQL constructs.

Refer to these guidelines as you create and manage indexes in your databases. These

recommendations are intended to help you correctly use index technology.

INDEXES WITH NO SEGMENTS

You can instruct Oracle to create an index that will never be used and won’t have any extents allocated to
it via the NOSEGMENT clause:

SQL> create index cust_idx1 on cust(first_name) nosegment;

Even though this index will never be used, you can instruct Oracle to determine if the index might be used
by the optimizer via the _USE_NOSEGMENT_INDEXES initialization parameter—for example:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

54

SQL> alter session set "_use_nosegment_indexes"=true;
SQL> set autotrace trace explain;
SQL> select first_name from cust where first_name = 'JIM';

Here’s a sample execution plan showing the optimizer would use the index (assuming that you dropped
and re-created it normally without the NOSEGMENT clause):

 Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

 0 | SELECT STATEMENT | | 1 | 17 | 1 (0)| 00:00:01 |
* 1 | INDEX RANGE SCAN| CUST_IDX1 | 1 | 17 | 1 (0)| 00:00:01 |

That begs the question, why would you ever create an index with NOSEGMENT? If you have a very large
index that you want to create without allocating space, to determine if the index would be used by the
optimizer, creating an index with NOSEGMENT allows you to test that scenario. If you determine that the
index would be useful, you can drop the index and re-create it without the NOSEGMENT clause.

2-3. Creating a Primary Key Index

Problem
You want to enforce that the primary key columns are unique within a table. Furthermore many of the
columns in the primary key are frequently used within the WHERE clause of several queries. You want to
ensure that indexes are created on primary key columns.

Solution
When you define a primary key constraint for a table, Oracle will automatically create an associated
index for you. There are several methods available for creating a primary key constraint. Our preferred
approach is to use the ALTER TABLE...ADD CONSTRAINT statement. This will create the index and the
constraint at the same time. This example creates a primary key constraint named CUST_PK and also
instructs Oracle to create the corresponding index (also named CUST_PK) in the USERS tablespace:

alter table cust add constraint cust_pk primary key (cust_id)
using index tablespace users;

The following queries and output provide details about the constraint and index that Oracle created.
The first query displays the constraint information:

select
 constraint_name
,constraint_type
from user_constraints
where table_name = 'CUST';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

55

CONSTRAINT_NAME C
------------------------------ -
CUST_PK P

This query displays the index information:

select
 index_name
,tablespace_name
,index_type
,uniqueness
from user_indexes
where table_name = 'CUST';

INDEX_NAME TABLESPACE_NAME INDEX_TYPE UNIQUENESS
--------------- --------------- --------------- ---------------
CUST_PK USERS NORMAL UNIQUE

How It Works
The solution for this recipe shows the method that we prefer to create primary key constraints and the
corresponding index. In most situations, this approach is acceptable. However, you should be aware that
there are several other methods for creating the primary key constraint and index. These methods are
listed here:

• Create an index first, and then use ALTER TABLE...ADD CONSTRAINT.

• Specify the constraint inline (with the column) in the CREATE TABLE statement.

• Specify the constraint out of line (from the column) within the CREATE TABLE
statement.

These techniques are described in the next several subsections.

Create Index and Constraint Separately
You have the option of first creating an index and then altering the table to apply the primary key
constraint. Here’s an example:

SQL> create index cust_pk on cust(cust_id);
SQL> alter table cust add constraint cust_pk primary key(cust_id);

The advantage to this approach is that you can drop or disable the primary key constraint
independently of the index. If you work with large data volumes, you may require this sort of flexibility.
This approach allows you to disable/re-enable a constraint without having to later rebuild the index.

Create Constraint Inline
You can directly create an index inline (with the column) in the CREATE TABLE statement. This approach
is simple but doesn’t allow for multiple column primary keys and doesn’t name the constraint:

SQL> create table cust(cust_id number primary key);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

56

If you don’t explicitly name the constraint (as in the prior statement), Oracle automatically
generates a name like SYS_C123456. If you want to explicitly provide a name, you can do so as follows:

create table cust(cust_id number constraint cust_pk primary key
using index tablespace users);

The advantage of this approach is that it’s very simple. If you’re experimenting in a development or
test environment, this approach is quick and effective.

Create Constraint Out of Line
You can also define the primary key constraint out of line (from the column) within the CREATE TABLE
statement:

create table cust(cust_id number
,constraint cust_pk primary key (cust_id)
using index tablespace users);

The out-of-line approach has one advantage over the inline approach in that you can specify
multiple columns for the primary key.

All of the prior techniques for creating a primary key constraint and corresponding index are valid.
It’s often a matter of DBA or developer preference as to which technique is used.

2-4. Creating a Unique Index

Problem
You have a column (or combination of columns) that contains values that should always be unique. You
want to create an index on this column (or combination of columns) that enforces the uniqueness and
also provides efficient access to the table when using the unique column in the WHERE clause of a query.

■ Note If you want to create a unique constraint on the primary key column(s), then you should explicitly create
a primary key constraint (see Recipe 2-3 for details). One difference between a primary key and a unique key is
that you can have only one primary key definition per table, whereas you can have multiple unique keys. Also,
unique key constraints allow for null values, whereas primary key constraints do not.

Solution
This solution focuses on using the ALTER TABLE...ADD CONSTRAINT statement. When you create a unique
key constraint, Oracle will automatically create an index for you. This is our recommended approach for
creating unique key constraints and indexes. This example creates a unique constraint named CUST_UX1
on the combination of the LAST_NAME and FIRST_NAME columns of the CUST table:

alter table cust add constraint cust_ux1 unique (last_name, first_name)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

57

using index tablespace users;

The prior statement creates the unique constraint, and additionally Oracle automatically creates an
associated index. The following query displays the constraint that was created successfully:

select
 constraint_name
,constraint_type
from user_constraints
where table_name = 'CUST';

Here is a snippet of the output:

CONSTRAINT_NAME C
------------------------------ -
CUST_UX1 U

This query shows the index that was automatically created along with the constraint:

select
 index_name
,tablespace_name
,index_type
,uniqueness
from user_indexes
where table_name = 'CUST';

Here is some sample output:

INDEX_NAME TABLESPACE INDEX_TYPE UNIQUENESS
-------------------- ---------- ---------- ---------
CUST_UX1 USERS NORMAL UNIQUE

How It Works
Defining a unique constraint ensures that when you insert or update column values, then any
combination of non-null values are unique. Besides the approach we displayed in the “Solution”
section, there are several additional techniques for creating unique constraints:

• Use the CREATE TABLE statement.

• Create a regular index, and then use ALTER TABLE to add a constraint.

• Create a unique index and don’t add the constraint.

These techniques are described in the next few subsections.

Use CREATE TABLE
Listed next is an example of using the CREATE TABLE statement to include a unique constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

58

create table cust(
 cust_id number
,last_name varchar2(30)
,first_name varchar2(30)
,constraint cust_ux1 unique(last_name, first_name)
 using index tablespace users);

The advantage of this approach is that it’s simple and encapsulates the constraint and index
creation within one statement.

Create Index First, Then Add Constraint
You have the option of first creating an index and then adding the constraint as a separate statement—
for example:

SQL> create unique index cust_uidx1 on cust(last_name, first_name) tablespace users;
SQL> alter table cust add constraint cust_uidx1 unique (last_name, first_name);

The advantage of creating the index separate from the constraint is that you can drop or disable the
constraint without dropping the underlying index. When working with large indexes, you may want to
consider this approach. If you need to disable the constraint for any reason and then re-enable it later,
you can do so without dropping the index (which may take a long time for large indexes).

Creating Only a Unique Index
You can also create just a unique index without adding the unique constraint—for example:

SQL> create unique index cust_uidx1 on cust(last_name, first_name) tablespace users;

When you create only a unique index explicitly (as in the prior statement), Oracle creates a unique
index but doesn’t add an entry for a constraint in DBA/ALL/USER_CONSTRAINTS. Why does this matter?
Consider this scenario:

SQL> insert into cust values (1, 'STARK', 'JIM');
SQL> insert into cust values (1, 'STARK', 'JIM');

Here’s the corresponding error message that is thrown:

ERROR at line 1:
ORA-00001: unique constraint (MV_MAINT.CUST_UIDX1) violated

If you’re asked to troubleshoot this issue, the first place you look is in DBA_CONSTRAINTS for a
constraint named CUST_UIDX1. However, there is no information:

select
 constraint_name
from dba_constraints
where constraint_name='CUST_UIDX1';
no rows selected

The “no rows selected” message can be confusing: the error message thrown when you insert into
the table indicates that a unique constraint has been violated, yet there is no information in the
constraint-related data-dictionary views. In this situation, you have to look at DBA_INDEXES to view the
details of the unique index that has been created—for example:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

59

select index_name, uniqueness
from dba_indexes where index_name='CUST_UIDX1';

INDEX_NAME UNIQUENESS
------------------------------ ----------
CUST_UIDX1 UNIQUE

2-5. Indexing Foreign Key Columns

Problem
A large number of the queries in your application use foreign key columns as predicates in the WHERE
clause. Therefore, for performance reasons, you want to ensure that you have all foreign key columns
indexed.

Solution
Unlike primary key constraints, Oracle does not automatically create indexes on foreign key columns.
For example, say you have a requirement that every record in the ADDRESS table be assigned a
corresponding CUST_ID column that exists in the CUST table. To enforce this relationship, you create a
foreign key constraint on the ADDRESS table as follows:

alter table address add constraint addr_fk1
foreign key (cust_id) references cust(cust_id);

■ Note A foreign key column must reference a column in the parent table that has a primary key or unique key
constraint defined on it. Otherwise you’ll receive the error “ORA-02270: no matching unique or primary key for this
column-list.”

You realize the foreign key column is used extensively when joining the CUST and ADDRESS tables and
that an index on the foreign key column will dramatically increase performance. You have to manually
create an index in this situation. For example, a regular B-tree index is created on the foreign key column
of CUST_ID in the ADDRESS table:

SQL> create index addr_fk1 on address(cust_id);

You don’t have to name the index the same as the foreign key name (as we did in the prior lines of
code). It’s a personal preference as to whether you do that. We feel it’s easier to maintain environments
when the constraint and corresponding index have the same name.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

60

How It Works
Foreign keys exist to ensure that when inserting into a child table, a corresponding parent table record
exists. This is the mechanism to guarantee that data conforms to parent/child business relationship
rules. From a performance perspective, it’s usually a good idea to create an index on foreign key
columns. This is because parent/child tables are frequently joined on the foreign key column(s) in the
child table to the primary key column(s) in the parent table—for example:

select
 a.last_name, a.first_name, b.state
from cust a
 ,address b
where a.cust_id = b.cust_id;

In most scenarios, the Oracle query optimizer will choose to use the index on the foreign key
column to identify the child records that are required to satisfy the results of the query. If no index exists,
Oracle has to perform a full table scan on the child table.

If you’ve inherited a database, then it’s prudent to check if columns with foreign key constraints
defined on them have a corresponding index. The following query displays indexes associated with
foreign key constraints:

select
 a.constraint_name cons_name
 ,a.table_name tab_name
 ,b.column_name cons_column
 ,nvl(c.column_name,'***No Index***') ind_column
from user_constraints a
 join
 user_cons_columns b on a.constraint_name = b.constraint_name
 left outer join
 user_ind_columns c on b.column_name = c.column_name
 and b.table_name = c.table_name
where constraint_type = 'R'
order by 2,1;

If there is no index on the foreign key column, the ***No Index*** message is displayed. For
example, suppose the index in the “Solution” section was accidentally dropped and then the prior query
was run. Here is some sample output:

CONS_NAME TAB_NAME CONS_COLUMN IND_COLUMN
------------------ ----------------------- ------------------------- --------------------
ADDR_FK1 ADDRESS CUST_ID ***No Index***

2-6. Deciding When to Use a Concatenated Index

Problem
You have a combination of columns (from the same table) that are often used in the WHERE clause of
several SQL queries. For example, you use LAST_NAME in combination with FIRST_NAME to identify a
customer:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

61

select last_name, first_name
from cust
where last_name = 'SMITH'
and first_name = 'STEVE';

You wonder if it would be more efficient to create a single concatenated index on the combination
of LAST_NAME and FIRST_NAME columns or if performance would be better if two indexes were created
separately on LAST_NAME and FIRST_NAME.

Solution
When frequently accessing two or more columns in conjunction in the WHERE clause, a concatenated
index is often more selective than two single indexes. For this example, here’s the table creation script:

create table cust(
 cust_id number primary key
,last_name varchar2(30)
,first_name varchar2(30));

Here’s an example of a concatenated index created on LAST_NAME and FIRST_NAME:

SQL> create index cust_idx1 on cust(last_name, first_name);

To determine whether the concatenated index is used, several rows are inserted (only a subset of the
rows is shown here):

SQL> insert into cust values(1,'SMITH','JOHN');
SQL> insert into cust values(2,'JONES','DAVE');
..........
SQL> insert into cust values(3,'FORD','SUE');

Next, statistics are generated for the table and index:

SQL> exec dbms_stats.gather_table_stats(ownname=>'MV_MAINT',-
 tabname=>'CUST',cascade=>true);

Now Autotrace is turned on so that the execution plan is displayed when a query is run:

SQL> set autotrace on;

Here’s the query to execute:

select last_name, first_name
from cust
where last_name = 'SMITH'
and first_name = 'JOHN';

Listed next is an explain plan that shows the optimizer is using the index:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 13 | 143 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| CUST_IDX1 | 13 | 143 | 1 (0)| 00:00:01 |
--

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

62

The prior output indicates that an INDEX RANGE SCAN was used to access the CUST_IDX1 index. Notice
that all of the information required to satisfy the results of this query was contained within the index.
The table data was not required. Oracle accessed only the index.

One other item to consider: suppose you have this query that additionally selects the CUST_ID
column:

select cust_id, last_name, first_name
from cust
where last_name = 'SMITH'
and first_name = 'JOHN';

If you frequently access CUST_ID in combination with LAST_NAME and FIRST_NAME, consider adding
CUST_ID to the concatenated index. This will provide all of the information that the query needs in the
index. Oracle will be able to retrieve the required data from the index blocks and thus not have to access
the table blocks.

How It Works
Oracle allows you to create an index that contains more than one column. Multicolumn indexes are
known as concatenated indexes. These indexes are especially effective when you often use multiple
columns in the WHERE clause when accessing a table. Here are some factors to consider when using
concatenated indexes:

• If columns are often used together in the WHERE clause, consider creating a
concatenated index.

• If a column is also used (in other queries) by itself in the WHERE clause, place that
column at the leading edge of the index (first column defined).

• Keep in mind that Oracle can still use a lagging edge index (not the first column
defined) if the lagging column appears by itself in the WHERE clause (see the next
few paragraphs here for details).

In older versions of Oracle (circa v8), the optimizer would use a concatenated index only if the
leading edge column(s) appeared in the WHERE clause. In modern versions, the optimizer uses a
concatenated index even if the leading edge column(s) aren’t present in the WHERE clause. This ability to
use an index without reference to leading edge columns is known as the skip-scan feature. For example,
say you have this query that uses the FIRST_NAME column (which is a lagging column in the concatenated
index created in the “Solution” section of this recipe):

SQL> select last_name from cust where first_name='DAVE';

Here is the corresponding explain plan showing that the skip-scan feature is in play:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 38 | 418 | 1 (0)| 00:00:01 |
|* 1 | INDEX SKIP SCAN | CUST_IDX1 | 38 | 418 | 1 (0)| 00:00:01 |
--

A concatenated index that is used for skip-scanning is more efficient than a full table scan. However,
if you’re consistently using only a lagging edge column of a concatenated index, then consider creating a
single-column index on the lagging column.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

63

2-7. Reducing Index Size Through Compression

Problem
You want to create an index that efficiently handles cases in which many rows have the same values in
one or more indexed columns. For example, suppose you have a table defined as follows:

create table cust(
 cust_id number
,last_name varchar2(30)
,first_name varchar2(30)
,middle_name varchar2(30));

Furthermore, you inspect the data inserted into the prior table with this query:

SQL> select last_name, first_name, middle_name from cust;

You notice that there is a great deal of duplication in the LAST_NAME and FIRST_NAME columns:

 LEE JOHN Q
 LEE JOHN B
 LEE JOHN A
 LEE JOE D
 SMITH BOB A
 SMITH BOB C
 SMITH BOB D
 SMITH JOHN J
 SMITH JOHN A
 SMITH MIKE K
 SMITH MIKE R
 SMITH MIKE S

You want to create an index that compresses the values so as to compact entries into the blocks.
When the index is accessed, the compression will result in fewer block reads and thus improve
performance. Specifically you want to create a key-compressed index on the LAST_NAME and FIRST_NAME
columns of this table.

Solution
Use the COMPRESS N clause to create a compressed index:

SQL> create index cust_cidx1 on cust(last_name, first_name) compress 2;

The prior line of code instructs Oracle to create a compressed index on two columns (LAST_NAME and
FIRST_NAME). For this example, if we determined that there was a high degree of duplication only in the
first column, we could instruct the COMPRESS N clause to compress only the first column (LAST_NAME) by
specifying an integer of 1:

SQL> create index cust_cidx1 on cust(last_name, first_name) compress 1;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

64

How It Works
Index compression is useful for indexes that contain multiple columns where the leading index column
value is often repeated. Compressed indexes have the following advantages:

• Reduced storage

• More rows stored in leaf blocks, which can result in less I/O when accessing a
compressed index

The degree of compression will vary by the amount of duplication in the index columns specified for
compression. You can verify the degree of compression and the number of leaf blocks used by running
the following two queries before and after creating an index with compression enabled:

SQL> select sum(bytes) from user_extents where segment_name='&&ind_name';
SQL> select index_name, leaf_blocks from user_indexes where index_name='&&ind_name';

You can verify the index compression is in use and the corresponding prefix length as follows:

select index_name, compression, prefix_length
from user_indexes
where index_name = 'CUST_CIDX1';

Here’s some sample output indicating that compression is enabled for the index with a prefix length
of 2:

INDEX_NAME COMPRESS PREFIX_LENGTH
------------------------------ -------- -------------
CUST_CIDX1 ENABLED 2

You can modify the prefix length by rebuilding the index. The following code changes the prefix
length to 1:

SQL> alter index cust_cidx1 rebuild compress 1;

You can enable or disable compression for an existing index by rebuilding it. This example rebuilds
the index with no compression:

SQL> alter index cust_cidx1 rebuild nocompress;

■ Note You cannot create a key-compressed index on a bitmap index.

2-8. Implementing a Function-Based Index

Problem
A query is running slow. You examine the WHERE clause and notice that a SQL UPPER function has been
applied to a column. The UPPER function blocks the use of the existing index on that column. You want to
create a function-based index to support the query. Here’s an example of such a query:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

65

SELECT first_name
FROM cust
WHERE UPPER(first_name) = 'DAVE';

You inspect USER_INDEXES and discover that an index exists on the FIRST_NAME column:

select index_name, column_name
from user_ind_columns
where table_name = 'CUST';

INDEX_NAME COLUMN_NAME
-------------------- --------------------
CUST_IDX1 FIRST_NAME

You generate an explain plan via SET AUTOTRACE TRACE EXPLAIN and notice that with the UPPER
function applied to the column, the index is not used:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 17 | 2 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| CUST | 1 | 17 | 2 (0)| 00:00:01 |
--

You need to create an index that Oracle will use in this situation.

Solution
There are two ways to resolve this issue:

• Create a function-based index.

• If using Oracle Database 11g or higher, create an indexed virtual column (see
Recipe 2-9 for details).

This solution focuses on using a function-based index. You create a function-based index by
referencing the SQL function and column in the index creation statement. For this example, a function-
based index is created on UPPER(name):

SQL> create index cust_fidx1 on cust(UPPER(first_name));

To verify if the index is used, the Autotrace facility is turned on:

SQL> set autotrace trace explain;

Now the query is executed:

SELECT first_name
FROM cust
WHERE UPPER(first_name) = 'DAVE';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

66

Here is the resulting execution plan showing that the function-based index is used:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	34	1 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	CUST	1	34	1 (0)	00:00:01
* 2	INDEX RANGE SCAN	CUST_FIDX1	1		1 (0)	00:00:01
--

■ Note You can’t modify a column that has a function-based index applied to it. You’ll have to drop the index,
modify the column, and then re-create the index.

How It Works
Function-based indexes are created with functions or expressions in their definitions. Function-based
indexes allow index lookups on columns referenced by SQL functions in the WHERE clause of a query. The
index can be as simple as the example in the “Solution” section of this recipe, or it can be based on
complex logic stored in a PL/SQL function.

■ Note Any user-created SQL functions must be declared deterministic before they can be used in a function-
based index. Deterministic means that for a given set of inputs, the function always returns the same results. You
must use the keyword DETERMINISTIC when creating a user-defined function that you want to use in a function-
based index.

If you want to see the definition of a function-based index, select from the
DBA/ALL/USER_IND_EXPRESSIONS view to display the SQL associated with the index. If you’re using
SQL*Plus, be sure to issue a SET LONG command first—for example:

SQL> SET LONG 500
SQL> select index_name, column_expression from user_ind_expressions;

The SET LONG command in this example tells SQL*Plus to display up to 500 characters from the
COLUMN_EXPRESSION column, which is of type LONG.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

67

2-9. Indexing a Virtual Column

Problem
You’re currently using a function-based index but need better performance. You want to replace the
function-based index with a virtual column and place an index on the virtual column.

■ Note The virtual column feature requires Oracle Database 11g or higher.

Solution
Using a virtual column in combination with an index provides you with an alternative method for
achieving performance gains when using SQL functions on columns in the WHERE clause. For example,
suppose you have this query:

SELECT first_name
FROM cust
WHERE UPPER(first_name) = 'DAVE';

Normally, the optimizer will ignore any indexes on the column FIRST_NAME because of the SQL
function applied to the column. There are two ways to improve performance in this situation:

• Create a function-based index (see Recipe 2-8 for details).

• Use a virtual column in combination with an index.

This solution focuses on the latter bullet. First a virtual column is added to the table that
encapsulates the SQL function:

SQL> alter table cust add(up_name generated always as (UPPER(first_name)) virtual);

Next an index is created on the virtual column:

SQL> create index cust_vidx1 on cust(up_name);

This creates a very efficient mechanism to retrieve data when referencing a column with a SQL
function.

How It Works
You might be asking this question: “Which performs better, a function-based index or an indexed virtual
column?” In our testing, we were able to create several scenarios where the virtual column performed
better than the function-based index. Results may vary depending on your data.

The purpose of this recipe is not to convince you to immediately start replacing all function-based
indexes in your system with virtual columns; rather we want you to be aware of an alternative method
for solving a common performance issue.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

68

A virtual column is not free. If you have an existing table, you have to create and maintain the DDL
required to create the virtual column, whereas a function-based index can be added, modified, and
dropped independently from the table.

Several caveats are associated with virtual columns:

• You can define a virtual column only on a regular heap-organized table. You can’t
define a virtual column on an index-organized table, an external table, a
temporary table, object tables, or cluster tables.

• Virtual columns can’t reference other virtual columns.

• Virtual columns can reference columns only from the table in which the virtual
column is defined.

• The output of a virtual column must be a scalar value (a single value, not a set of
values).

To view the definition of a virtual column, use the DBMS_METADATA package to view the DDL
associated with the table. If you’re selecting from SQL*Plus, you need to set the LONG variable to a value
large enough to show all data returned:

SQL> set long 10000;
SQL> select dbms_metadata.get_ddl('TABLE','CUST') from dual;

Here’s a partial snippet of the output showing the virtual column details:

"UP_NAME" VARCHAR2(30) GENERATED ALWAYS AS (UPPER("FIRST_NAME"))
VIRTUAL VISIBLE) SEGMENT CREATION IMMEDIATE

You can also view the definition of the virtual column by querying the
DBA/ALL/USER_IND_EXPRESSIONS view. If you’re using SQL*Plus, be sure to issue a SET LONG command
first—for example:

SQL> SET LONG 500
SQL> select index_name, column_expression from user_ind_expressions;

The SET LONG command in this example tells SQL*Plus to display up to 500 characters from the
COLUMN_EXPRESSION column, which is of type LONG.

2-10. Avoiding Concentrated I/O for Index

Problem
You use a sequence to populate the primary key of a table and realize that this can cause contention on
the leading edge of the index because the index values are nearly similar. This leads to multiple inserts
into the same block, which causes contention. You want to spread out the inserts into the index so that
the inserts more evenly distribute values across the index structure. You want to use a reverse-key index
to accomplish this.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

69

Solution
Use the REVERSE clause to create a reverse-key index:

SQL> create index inv_idx1 on inv(inv_id) reverse;

You can verify that an index is reverse-key by running the following query:

SQL> select index_name, index_type from user_indexes;

Here’s some sample output showing that the INV_IDX1 index is reverse-key:

INDEX_NAME INDEX_TYPE
------------------------------ ---------------------------
INV_IDX1 NORMAL/REV
USERS_IDX1 NORMAL

■ Note You can’t specify REVERSE for a bitmap index or an index-organized table.

How It Works
Reverse-key indexes are similar to B-tree indexes except that the bytes of the index key are reversed
when an index entry is created. For example, if the index values are 100, 101, and 102, the reverse-key
index values are 001, 101, and 201:

Index value Reverse key value
------------- --------------------
100 001
101 101
102 201

Reverse-key indexes can perform better in scenarios where you need a way to evenly distribute
index data that would otherwise have similar values clustered together. Thus, when using a reverse-key
index, you avoid having I/O concentrated in one physical disk location within the index during large
inserts of sequential values. The downside to this type of index is that it can’t be used for index range
scans, which therefore limits its usefulness.

You can rebuild an existing index to be reverse-key by using the REBUILD REVERSE clause—for
example:

SQL> alter index f_regs_idx1 rebuild reverse;

Similarly, if you want to make an index that is reverse-key into a normally ordered index, then use
the REBUILD NOREVERSE clause:

SQL> alter index f_regs_idx1 rebuild noreverse;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

70

2-11. Adding an Index Without Impacting Existing
Applications

Problem
You know from experience that sometimes when an index is added to a third-party application, this can
cause performance issues and also can be a violation of the support agreement with the vendor. You
want to implement an index in such a way that the application won’t ever use the index.

Solution
Often, third-party vendors don’t support customers adding their own indexes to an application.
However, there may be a scenario in which you’re certain you can increase a query’s performance
without impacting other queries in the application. You can create the index as invisible and then
explicitly instruct a query to use the index via a hint—for example:

SQL> create index inv_idx1 on inv(inv_id) invisible;

Next, ensure that the OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter is set to TRUE (the
default is FALSE). This instructs the optimizer to consider invisible indexes:

SQL> alter system set optimizer_use_invisible_indexes=true;

Now, use a hint to tell the optimizer that the index exists:

SQL> select /*+ index (inv INV_IDX1) */ inv_id from inv where inv_id=1;

You can verify that the index is being used by setting AUTOTRACE TRACE EXPLAIN and running the
SELECT statement:

SQL> set autotrace trace explain;
SQL> select /*+ index (inv INV_IDX1) */ inv_id from inv where inv_id=1;

Here’s some sample output indicating that the optimizer chose to use the invisible index:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 13 | 1 (0)| 00:00:01 |
|* 1 | INDEX RANGE SCAN| INV_IDX1 | 1 | 13 | 1 (0)| 00:00:01 |

Keep in mind that an invisible index means only that the optimizer can’t see the index. Just like any
other index, an invisible index consumes space and resources when executing DML statements.

How It Works
In Oracle Database 11g and higher, you have the option of making an index invisible to the optimizer.
Oracle still maintains invisible indexes but doesn’t make them available for use by the optimizer. If you

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

71

want the optimizer to use an invisible index, you can do so with a SQL hint. Invisible indexes have a
couple of interesting uses:

• You can add an invisible index to a third-party application without affecting
existing code or support agreements.

• Altering an index to invisible before dropping it allows you to quickly recover if
you later determine that the index is required.

The first bulleted item was discussed in the “Solution” section of this recipe. The second scenario is
discussed in this section. For example, suppose you’ve identified an index that isn’t being used and are
considering dropping it. In earlier releases of Oracle, you could mark the index as UNUSABLE and then
later drop indexes that you were certain weren’t being used. If you later determined that you needed an
unusable index, the only way to re-enable the index was to rebuild it. For large indexes, this could take a
long time and consume considerable database resources.

Making an index invisible has the advantage that it tells the optimizer only to not use the index. The
invisible index is still maintained as the underlying table has records inserted, updated, or deleted. If you
decide that you later need the index, there is no need to rebuild it. You simply have to mark it as visible
again—for example:

SQL> alter index inv_idx1 visible;

You can verify the visibility of an index via this query:

SQL> select index_name, status, visibility from user_indexes;

Here’s some sample output:

INDEX_NAME STATUS VISIBILITY
------------------------------ -------- ----------
INV_IDX1 VALID VISIBLE

OLD SCHOOL: INSTRUCTING THE OPTIMIZER NOT TO USE AN INDEX

In the olden days, sometimes the rule-based optimizer (deprecated) would choose to use an index that
would significantly decrease performance. In these situations, DBAs and developers would manually
instruct the optimizer not to use an index on a numeric-based column as follows:

SQL> select cust_id from cust where cust_id+0 = 12345;

In the prior statement, the +0 adds nothing to the logic of the SQL statement (and therefore has no impact
on the result set). In this scenario, the optimizer will automatically not use an index on a numeric column
that has been modified with an arithmetic expression.

Similarly with character-based columns, indexes will be ignored for columns that have characters
concatenated to them—for example:

SQL> select last_name from cust where last_name || '' = 'SMITH';

In the prior statement, the ||‘’ adds nothing to the logic of the SQL, but results in the optimizer not using an
index on the LAST_NAME column (if one exists).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

72

2-12. Creating a Bitmap Index in Support of a Star Schema

Problem
You have a data warehouse that contains a star schema. The star schema consists of a large fact table
and several dimension (lookup) tables. The primary key columns of the dimension tables map to foreign
key columns in the fact table. You would like to create bitmap indexes on all of the foreign key columns
in the fact table.

Solution
You use the BITMAP keyword to create a bitmap index. The next line of code creates a bitmap index on the
CUST_ID column of the F_SALES table:

SQL> create bitmap index f_sales_cust_fk1 on f_sales(cust_id);

The type of index is verified with the following query:

SQL> select index_name, index_type from user_indexes where index_name='F_SALES_CUST_FK1';

INDEX_NAME INDEX_TYPE
------------------------------ ---------------------------
F_SALES_CUST_FK1 BITMAP

How It Works
A bitmap index stores the ROWID of a row and a corresponding bitmap. You can think of the bitmap as a
combination of ones and zeros. A one indicates the presence of a value, and a zero indicates that the
value doesn’t exist. Bitmap indexes are ideal for low-cardinality columns (few distinct values) and where
the application is not frequently updating the table. Bitmap indexes are commonly used in data
warehouse environments where you have star schema design.

A typical star schema structure consists of a large fact table and many small dimension (lookup)
tables. In these scenarios, it’s common to create bitmap indexes on fact table–foreign key columns. The
fact tables are typically loaded on a daily basis and (usually) aren’t subsequently updated or deleted.

You shouldn’t use bitmap indexes on OLTP databases with high INSERT/UPDATE/DELETE activities,
due to locking issues. Locking issues arise because the structure of the bitmap index results in
potentially many rows being locked during DML operations, which results in locking problems for high-
transaction OLTP systems.

■ Note Bitmap indexes and bitmap join indexes are available only with the Oracle Enterprise Edition of the
database.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

73

2-13. Creating a Bitmap Join Index

Problem
You’re working in a data warehouse environment. You have a fairly large dimension table that is often
joined to an extremely large fact table. You wonder if there’s a way to create a bitmap index in such a
way that it can eliminate the need for the optimizer to access the dimension table blocks to satisfy the
results of a query.

Solution
Here’s the basic syntax for creating a bitmap join index:

create bitmap index <index_name>
on <fact_table> (<dimension_table.dimension_column>)
from <fact_table>, <dimension_table>
where <fact_table>.<foreign_key_column> = <dimension_table>.<primary_key_column>;

Bitmap join indexes are appropriate in situations where you’re joining two tables using the foreign
key column(s) in one table that relate to primary key column(s) in another table. For example, suppose
you typically retrieve the CUST_NAME from the D_CUSTOMERS table while joining to a large F_SHIPMENTS fact
table. This example creates a bitmap join index between the F_SHIPMENTS and D_CUSTOMERS tables:

create bitmap index f_shipments_bm_idx1
on f_shipments(d_customers.cust_name)
from f_shipments, d_customers
where f_shipments.d_cust_id = d_customers.d_cust_id;

Now, consider a query such as this:

select
 d.cust_name
from f_shipments f, d_customers d
where f.d_cust_id = d.d_cust_id
and d.cust_name = 'Sun';

The optimizer can choose to use the bitmap join index and thus avoid the expense of having to join
the tables.

How It Works
Bitmap join indexes store the results of a join between two tables in an index. Bitmap indexes are
beneficial because they avoid joining tables to retrieve results. The syntax for a bitmap join index differs
from a regular bitmap index in that it contains FROM and WHERE clauses.

Bitmap join indexes are usually suitable only for data warehouse environments where you have
tables that get loaded and then are not updated. When updating tables that have bitmap join indexes
declared, this potentially results in several rows being locked. Therefore this type of an index is not
suitable for an OLTP database.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

74

2-14. Creating an Index-Organized Table

Problem
You want to create a table that is the intersection of a many-to-many relationship between two tables.
The intersection table will consist of two columns. Each column is a foreign key that maps back to a
corresponding primary key in a parent table.

Solution
Index-organized tables (IOTs) are efficient objects when the table data is typically accessed through
querying on the primary key. Use the ORGANIZATION INDEX clause to create an IOT:

create table cust_assoc
(cust_id number
,user_group_id number
,create_dtt timestamp(5)
,update_dtt timestamp(5)
,constraint cust_assoc_pk primary key(cust_id, user_group_id)
)
organization index
including create_dtt
pctthreshold 30
tablespace nsestar_index
overflow
tablespace dim_index;

Notice that DBA/ALL/USER_TABLES includes an entry for the table name used when creating an IOT.
The following two queries show how Oracle records the information regarding the IOT in the data
dictionary:

select table_name, iot_name
from user_tables
where iot_name = 'CUST_ASSOC';

Here is some sample output:

TABLE_NAME IOT_NAME
------------------------------ ------------------------------
SYS_IOT_OVER_184185 CUST_ASSOC

Listed next is another slightly different query with its output:

select table_name, iot_name
from user_tables
where table_name = 'CUST_ASSOC';

Here is some sample output:

TABLE_NAME IOT_NAME
------------------------------ ------------------------------
CUST_ASSOC

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

75

Additionally, DBA/ALL/USER_INDEXES contains a record with the name of the primary key constraint
specified. The INDEX_TYPE column contains a value of IOT - TOP for IOTs:

select index_name, index_type
from user_indexes
where table_name = 'CUST_ASSOC';

Here is some sample output:

INDEX_NAME INDEX_TYPE
------------------------------ ---------------------------
CUST_ASSOC_PK IOT - TOP

How It Works
An IOT stores the entire contents of the table’s row in a B-tree index structure. IOTs provide fast access
for queries that have exact matches and/or range searches on the primary key.

All columns specified up to and including the column specified in the INCLUDING clause are stored in
the same block as the CUST_ASSOC_PK primary key column. In other words, the INCLUDING clause specifies
the last column to keep in the table segment. Columns listed after the column specified in the INCLUDING
clause are stored in the overflow data segment. In the previous example, the UPDATE_DTT column is stored
in the overflow segment.

PCTTHRESHOLD specifies the percentage of space reserved in the index block for the IOT row. This
value can be from 1 to 50, and defaults to 50 if no value is specified. There must be enough space in the
index block to store the primary key. The OVERFLOW clause details which tablespace should be used to
store overflow data segments.

2-15. Monitoring Index Usage

Problem
You maintain a large database that contains thousands of indexes. As part of your proactive
maintenance, you want to determine if any indexes are not being used. You realize that unused indexes
have a detrimental impact on performance, because every time a row is inserted, updated, and deleted,
the corresponding index has to be maintained. This consumes CPU resources and disk space. If an index
isn’t being used, it should be dropped.

Solution
Use the ALTER INDEX...MONITORING USAGE statement to enable basic index monitoring. The following
example enables index monitoring on an index named F_REGS_IDX1:

SQL> alter index f_regs_idx1 monitoring usage;

The first time the index is accessed, Oracle records this; you can view whether an index has been
accessed via the V$OBJECT_USAGE view. To report which indexes are being monitored and have ever been
used, run this query:

SQL> select index_name, table_name, monitoring, used from v$object_usage;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

76

If the index has ever been used in a SELECT statement, then the USED column will contain the YES
value. Here is some sample output from the prior query:

INDEX_NAME TABLE_NAME MON USED
------------------------------ ------------------------------ --- ----
F_REGS_IDX1 F_REGS YES YES

Most likely, you won’t monitor only one index. Rather, you’ll want to monitor all indexes for a user.
In this situation, use SQL to generate SQL to create a script you can run to turn on monitoring for all
indexes. Here’s such a script:

set pagesize 0 head off linesize 132
spool enable_mon.sql
select
 'alter index ' || index_name || ' monitoring usage;'
from user_indexes;
spool off;

To disable monitoring on an index, use the NOMONITORING USAGE clause—for example:

SQL> alter index f_regs_idx1 nomonitoring usage;

How It Works
The main advantage to monitoring index usage is to identify indexes not being used. This allows you to
identify indexes that can be dropped. This will free up disk space and improve the performance of DML
statements.

The V$OBJECT_USAGE view shows information only for the currently connected user. You can verify
this behavior by inspecting the TEXT column of DBA_VIEWS for the V$OBJECT_USAGE definition:

SQL> select text from dba_views where view_name = 'V$OBJECT_USAGE';

Notice the following line in the output:

where io.owner# = userenv('SCHEMAID')

That line instructs the view to display information only for the currently connected user. If you’re
logged in as a DBA privileged user and want to view the status of all indexes that have monitoring
enabled (regardless of the user), execute this query:

select io.name, t.name,
 decode(bitand(i.flags, 65536), 0, 'NO', 'YES'),
 decode(bitand(ou.flags, 1), 0, 'NO', 'YES'),
 ou.start_monitoring,
 ou.end_monitoring
from sys.obj$ io
 ,sys.obj$ t
 ,sys.ind$ i
 ,sys.object_usage ou
where i.obj# = ou.obj#
and io.obj# = ou.obj#
and t.obj# = i.bo#;

The prior query removes the line from the query that restricts output to display information only for
the currently logged-in user. This provides you with a convenient way to view all monitored indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

77

2-16. Maximizing Index Creation Speed

Problem
You’re creating an index based on a table that contains millions of rows. You want to create the index as
fast as possible.

Solution
This solution describes two techniques for increasing the speed of index creation:

• Turning off redo generation

• Increasing the degree of parallelism

You can use the prior two features independently of each other, or they can be used in conjunction.

Turning Off Redo Generation
You can optionally create an index with the NOLOGGING clause. Doing so has these implications:

• The redo isn’t generated that would be required to recover the index in the event
of a media failure.

• Subsequent direct-path operations also won’t generate the redo required to
recover the index information in the event of a media failure.

Here’s an example of creating an index with the NOLOGGING clause:

create index inv_idx1 on inv(inv_id, inv_id2)
nologging
tablespace inv_mgmt_index;

You can run this query to determine whether an index has been created with NOLOGGING:

SQL> select index_name, logging from user_indexes;

Increasing the Degree of Parallelism
In large database environments where you’re attempting to create an index on a table that is populated
with many rows, you may be able to reduce the time it takes to create the index by using the PARALLEL
clause. For example, this sets the degree of parallelism to 2 when creating the index:

create index inv_idx1 on inv(inv_id)
parallel 2
tablespace inv_mgmt_data;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

78

You can verify the degree of parallelism on an index via this query:

SQL> select index_name, degreel from user_indexes;

■ Note If you don’t specify a degree of parallelism, Oracle selects a degree based on the number of CPUs on the
box times the value of PARALLEL_THREADS_PER_CPU.

How It Works
The main advantage of NOLOGGING is that when you create the index, a minimal amount of redo
information is generated, which can have significant performance implications when creating a large
index. The disadvantage is that if you experience a media failure soon after the index is created (or have
records inserted via a direct-path operation), and subsequently have a failure that causes you to restore
from a backup (taken prior to the index creation), then you may see this error when the index is
accessed:

ORA-01578: ORACLE data block corrupted (file # 4, block # 11407)
ORA-01110: data file 4: '/ora01/dbfile/O11R2/inv_mgmt_index01.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

This error indicates that the index is logically corrupt. In this scenario, you must re-create or rebuild
the index before it’s usable. In most scenarios, it’s acceptable to use the NOLOGGING clause when creating
an index, because the index can be re-created or rebuilt without affecting the table on which the index is
based.

In addition to NOLOGGING, you can use the PARALLEL clause to increase the speed of an index creation.
For large indexes, this can significantly decrease the time required to create an index.

Keep in mind that you can use NOLOGGING in combination with PARALLEL. This next example rebuilds
an index in parallel while generating a minimal amount of redo:

SQL> alter index inv_idx1 rebuild parallel nologging;

2-17. Reclaiming Unused Index Space

Problem
You have an index consuming space in a segment, but without actually using that space. For example,
you’re running the following query to display the Segment Advisor’s advice:

SELECT
 'Task Name : ' || f.task_name || CHR(10) ||
 'Start Run Time : ' || TO_CHAR(execution_start, 'dd-mon-yy hh24:mi') || chr (10) ||
 'Segment Name : ' || o.attr2 || CHR(10) ||
 'Segment Type : ' || o.type || CHR(10) ||
 'Partition Name : ' || o.attr3 || CHR(10) ||
 'Message : ' || f.message || CHR(10) ||
 'More Info : ' || f.more_info || CHR(10) ||

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

79

 '--' Advice
FROM dba_advisor_findings f
 ,dba_advisor_objects o
 ,dba_advisor_executions e
WHERE o.task_id = f.task_id
AND o.object_id = f.object_id
AND f.task_id = e.task_id
AND e. execution_start > sysdate - 1
AND e.advisor_name = 'Segment Advisor'
ORDER BY f.task_name;

The following output is displayed:

ADVICE
--
Task Name : F_REGS Advice
Start Run Time : 19-feb-11 09:32
Segment Name : F_REGS_IDX1
Segment Type : INDEX
Partition Name :
Message : Perform shrink, estimated savings is 84392870 bytes.
More Info : Allocated Space:166723584: Used Space:82330714: Reclaimable S
pace :84392870:
--

You want to shrink the index to free up the unused space.

Solution
There are a couple of effective methods for freeing up unused space associated with an index:

• Rebuilding the index

• Shrinking the index

Before you perform either of these operations, first check USER_SEGMENTS to verify that the amount of
space used corresponds with the Segment Advisor’s advice. In this example, the segment name is
F_REGS_IDX1:

SQL> select bytes from user_segments where segment_name = 'F_REGS_IDX1';

BYTES

 166723584

This example uses the ALTER INDEX...REBUILD statement to re-organize and compact the space used
by an index:

SQL> alter index f_regs_idx1 rebuild;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

80

Alternatively, use the ALTER INDEX...SHRINK SPACE statement to free up unused space in an index—
for example:

SQL> alter index f_regs_idx1 shrink space;

Index altered.

Now query USER_SEGMENTS again to verify that the space has been de-allocated. Here is the output for
this example:

 BYTES

 524288

The space consumed by the index has considerably decreased.

How It Works
Usually rebuilding an index is the fastest and most effective way to reclaim unused space consumed by
an index. Therefore this is the approach we recommend for reclaiming unused index space. Freeing up
space is desirable because it ensures that you use only the amount of space required by an object. It also
has the performance benefit that Oracle has fewer blocks to manage and sort through when performing
read operations.

Besides freeing up space, you may want to consider rebuilding an index for these additional
reasons:

• The index has become corrupt.

• You want to modify storage characteristics (such as changing the tablespace).

• An index that was previously marked as unusable now needs to be rebuilt to make
it usable again.

Keep in mind that Oracle attempts to acquire a lock on the table and rebuild the index online. If
there are any active transactions that haven’t committed, then Oracle won’t be able to obtain a lock, and
the following error will be thrown:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

In this scenario, you can either wait until the there is little activity in the database or try setting the
DDL_LOCK_TIMEOUT parameter:

SQL> alter session set ddl_lock_timeout=15;

The DDL_LOCK_TIMEOUT initialization parameter is available in Oracle Database 11g or higher. It
instructs Oracle to repeatedly attempt to obtain a lock for the specified amount of time.

If no tablespace is specified, Oracle rebuilds the index in the tablespace in which the index currently
exists. Specify a tablespace if you want the index rebuilt in a different tablespace:

SQL> alter index inv_idx1 rebuild tablespace inv_index;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ CHOOSING AND OPTIMIZING INDEXES

81

■ Tip If you’re working with a large index, you may want to consider using features such as NOLOGGING and/or
PARALLEL (see Recipe 2-16 for details).

If you use the ALTER INDEX...SHRINK SPACE operation to free up unused index space, keep in mind
that this feature requires that the target object must be created within a tablespace with automatic
segment space management enabled. If you attempt to shrink a table or index that has been created in a
tablespace using manual segment space management, you’ll receive this error:

ORA-10635: Invalid segment or tablespace type

As we’ve noted elsewhere in this chapter, we recommend that you use the ASSM feature whenever
possible. This allows you to take advantage of all the Oracle segment management features.

The ALTER INDEX...SHRINK SPACE statement has a few nuances to be aware of. For example, you can
instruct Oracle to attempt only to merge the contents of index blocks (and not free up space) via the
COMPACT clause:

SQL> alter index f_regs_idx1 shrink space compact;

The prior operation is equivalent to the ALTER INDEX...COALESCE statement. Here’s an example of
using COALESCE:

SQL> alter index f_regs_idx1 coalesce;

If you want to maximize the space compacted, either rebuild the index or use the SHRINK SPACE
clause as shown in the “Solution” section of this recipe. It’s somewhat counterintuitive that the COMPACT
space doesn’t actually initiate a greater degree of realized free space. The COMPACT clause instructs Oracle
to only merge index blocks where possible and not to maximize the amount of space being freed up.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 3

83

Optimizing Instance Memory

Optimizing the memory you allocate to an Oracle database is one of the most critical tasks you need to
perform as a DBA. Over the years, Oracle DBAs were used to spending vast amounts of their time
analyzing memory usage by the database and trying to come up with the best possible allocation of
memory. In Oracle Database 11g, the burden of allocating Oracle’s memory is shifted almost completely
to the database itself. This chapter shows you how to take advantage of Oracle’s automatic memory
management feature, so you can leave the database to optimize memory usage, while you focus on more
important matters.

This chapter starts off by explaining how to set up automatic memory management for a database.
The chapter also shows you how to set minimum values for certain components of memory even under
automatic memory management. It also includes recipes that explain how to create multiple buffer
pools, how to monitor Oracle’s usage of memory, and how to use the Oracle Enterprise Manager’s
Database Control (or Grid Control) tool to get advice from Oracle regarding the optimal sizing of
memory allocation. You’ll also learn how to optimize the use of the Program Global Area (PGA), a key
Oracle memory component, especially in data warehouse environments.

In Oracle Database 11g, Oracle has introduced an exciting new result caching feature. Oracle can
now cache the results of both SQL queries and PL/SQL functions in the shared pool component of
Oracle’s memory. We discuss that server result cache in this chapter. In addition, you’ll also find a recipe
that explains how to take advantage of Oracle’s client-side result caching feature. Finally, we show how
to use the exciting new Oracle feature called the Oracle Database Smart Flash Cache.

3-1. Automating Memory Management

Problem
You want to automate memory management in your Oracle database. You have both OLTP and batch
jobs running in this database. You want to take advantage of the automatic memory management
feature built into Oracle Database 11g.

Solution
Here are the steps to implement automatic memory management in your database, if you’ve already set
either the SGA_TARGET or the PGA_AGGREGATE_TARGET parameters (or both). We assume that we are going to
allocate 2,000 MB to the MEMORY_MAX_TARGET parameter and 1,000 MB to the MEMORY_TARGET parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

84

1. Connect to the database with the SYSDBA privilege.

2. Assuming you’re using the SPFILE, first set a value for the MEMORY_MAX_TARGET
parameter:

SQL> alter system set memory_max_target=2G scope=spfile;
System altered.

You must specify the SCOPE parameter in the alter system command, because MEMORY_MAX_TARGET
isn’t a dynamic parameter, which means you can’t change it on the fly while the instance is running.

3. Note that if you’ve started the instance with a traditional init.ora parameter
file instead of the SPFILE, you must add the following to your init.ora file:

memory_max_target = 2000M
memory_target = 1000M

4. Bounce the database.

5. Turn off the SGA_TARGET and the PGA_AGGREGATE_TARGET parameters by issuing
the following ALTER SYSTEM commands:

SQL> alter system set sga_target = 0;
SQL> alter system set pga_aggregate_target = 0;

6. Turn on automatic memory management by setting the MEMORY_TARGET
parameter:

SQL> alter system set memory_target = 1000M;

From this point on, the database runs under the automatic memory management mode, with it
shrinking and growing the individual allocations to the various components of Oracle memory
according to the requirements of the ongoing workload. You can change the value of the MEMORY_TARGET
parameter dynamically anytime, as long as you don’t exceed the value you set for the MEMORY_MAX_TARGET
parameter.

■ Tip The term “target” in parameters such as memory_target and pga_memory_target means just that—
Oracle will try to stay under the target level, but there’s no guarantee that it’ll never go beyond that. It may exceed
the target allocation on occasion, if necessary.

You don’t have to set the SGA_TARGET and PGA_AGGREGATE_TARGET parameters to 0 in order to use
automatic memory management. In Recipe 3-3, we show how to set minimum values for these
parameters even when you choose to implement automatic memory management. That recipe assumes
you’re implementing automatic memory management, but that for some reason, you need to specify
your own minimum values for components such as the SGA and the PGA.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

85

How It Works
In earlier releases of the Oracle database, DBAs used to set values for the various SGA components, or
would specify values for the SGA and the PGA. Starting with the Oracle Database 11g release, Oracle
enables you to completely automate the entire instance memory allocation, by just setting a single
initialization parameter, MEMORY_TARGET, under what’s known as automatic memory management. In this
Recipe, we show you how to set up the automatic memory management feature in your database.

If you’re creating a new Oracle database with the help of the Database Configuration Assistant
(DBCA), you’re given a choice among automatic memory management, shared memory management,
and manual memory management. Select the automatic memory management option, and specify the
values for two automatic memory-related parameters: MEMORY_TARGET and MEMORY_MAX_TARGET. The first
parameter sets the current value of the memory allocation to the database, and the second parameter
sets the limit to which you can raise the first parameter if necessary.

Oracle’s memory structures consist of two distinct memory areas. The system global area (SGA)
contains the data and control information and is shared by all server and background processes. The
SGA holds the data blocks retrieved from disk by Oracle. The program global area (PGA) contains data
and control information for a server process. Each server process is allocated its own chunk of the PGA.
Managing Oracle’s memory allocation involves careful calibration of the needs of the database. Some
database instances need more memory for certain components of the memory. For example, a data
warehouse will need more PGA memory in order to perform huge sorts that are common in such an
environment. Also, during the course of a day, the memory needs of the instance might vary; during
business hours, for example, the instance might be processing more online transaction processing
(OLTP) work, whereas after business hours, it might be running huge batch jobs that involve data
warehouse processing, jobs that typically need higher PGA allocations per each process.

In prior versions of the Oracle database, DBAs had to carefully decide the optimal allocation of
memory to the individual components of the memory one allocated to the database. Technically, you
can still manually set the values of the individual components of the SGA as well as set a value for the
PGA, or partially automate the process by setting parameters such as SGA_TARGET and
PGA_AGGREGATE_TARGET. Although Oracle still allows you to manually configure the various components of
memory, automatic memory management is the recommended approach to managing Oracle’s
memory allocation. Once you specify a certain amount of memory by setting the MEMORY_TARGET and
MEMORY_MAX_TARGET parameters, Oracle automatically tunes the actual memory allocation, by
redistributing memory between the SGA and the PGA.

■ Tip When you create a database with the Database Configuration Assistant (DBCA), automatic memory
management is the default.

Oracle Database 11g lets you automate all the memory allocations for an instance, including shared
memory and the PGA memory, if you choose to implement automatic memory management by setting
the MEMORY_TARGET and MEMORY_MAX_TARGET parameters. Under an automatic memory management
regime, Oracle automatically tunes the total SGA size, the SGA component sizes, the instance PGA size,
and the individual PGA size. This dynamic memory tuning by the Oracle instance optimizes database
performance, as memory allocations are changed automatically by Oracle to match changing database
workloads. Automatic memory management means that once you set the MEMORY_TARGET parameter, you
can simply ignore the following parameters by not setting them at all:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

86

• SGA_TARGET

• PGA_AGGREGATE_TARGET

• DB_CACHE_SIZE

• SHARED_POOL_SIZE

• LARGE_POOL_SIZE

• JAVA_POOL_SIZE

If you’re moving from a system where you were using the SGA_TARGET and PGA_AGGREGATE_TARGET
parameters, you can follow the procedures shown in the “Solution” section of this recipe to move to the
newer automatic memory management mode of managing Oracle’s memory allocation. Note that while
setting the MEMORY_TARGET parameter is mandatory for implementing automatic memory management,
the MEMORY_MAX_TARGET parameter isn’t—if you don’t set this parameter, Oracle sets its value internally to
that of the MEMORY_TARGET parameter. Also, the MEMORY_MAX_TARGET parameter acts as the upper bound for
the MEMORY_TARGET parameter. Oracle has different minimum permissible settings for the MEMORY_TARGET
parameter, depending on the operating system. If you try to set this parameter below its minimum
allowable value, the database will issue an error. Some of the memory components can’t shrink quickly
and some components must have a minimum size for the database to function properly. Therefore,
Oracle won’t let you set too low a value for the MEMORY_TARGET parameter. The following example
shows this:

SQL> alter system set memory_target=360m scope=both;
alter system set memory_target=360m scope=both
*
ERROR at line 1:
ORA-02097: parameter cannot be modified because specified value is invalid
ORA-00838: Specified value of MEMORY_TARGET is too small, needs to be at least
544M

SQL> alter system set memory_target=544m scope=both;

alter system set memory_target=544m scope=both
*
ERROR at line 1:
ORA-02097: parameter cannot be modified because specified value is invalid
ORA-00838: Specified value of MEMORY_TARGET is too small, needs to be at least
624M

SQL> alter system set memory_target=624m scope=both;

System altered.

SQL>

You’ll notice that Oracle issued an error when we tried to set a very low value for the MEMORY_TARGET
parameter. Note that Oracle took iterations to decide to let you know the minimum allowable level for
the MEMORY_TARGET parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

87

How does one go about setting the value of the MEMORY_MAX_TARGET parameter? It’s simple—you just
pick a value that’s high enough to accommodate not only the current workloads, but also the future
needs of the database. Since the MEMORY_TARGET parameter is dynamic, you can alter it on the fly and if
necessary, re-allocate memory among multiple instances running on a server. Just be sure that you set
the value of the MEMORY_MAX_TARGET parameter to a size that’s at least equal to the combined value of the
present settings of the SGA_TARGET and the PGA_AGGREGATE_TARGET parameters (if you're migrating from
the 10g release). Always make sure to check with your system administrator, so you don’t allocate too
high an amount of memory for your Oracle instance, which could result in problems such as paging and
swapping at the operating system level, which will affect not only your Oracle database, but also
everything else that’s running on that server.

3-2. Managing Multiple Buffer Pools

Problem
You’re using automatic memory management, but have decided to allocate a minimum value for the
buffer pool component. You’d like to configure the buffer pool so it retains frequently accessed
segments, which may run the risk of being aged out of the buffer pool.

Solution
You can use multiple buffer pools instead of Oracle’s single default buffer pool, to ensure that frequently
used segments stay cached in the buffer pool without being recycled out of the buffer pool. In order to
implement multiple buffer pools in your database, you need to do two things: create two separate buffer
pools—the KEEP buffer pool and the RECYCLE buffer pool. Once you do this, you must specify the
BUFFER_POOL keyword in the STORAGE clause when you create a segment. For example, if you want a
segment to be cached (or pinned) in the buffer pool, you must specify the KEEP buffer pool.

■ Note Neither the KEEP nor the RECYCLE pool is part of the default BUFFER CACHE. Both of these pools are
outside the default buffer cache.

Here’s how you create the two types of buffer pools.
In the SPFILE or the init.ora file, specify the two parameters and the sizes you want to assign to

each of the pools:

db_keep_cache_size=1000m
db_recycle_cache_size=100m

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

88

Here’s how you specify the default buffer pool for a segment:

SQL> alter table employees
 storage (buffer_pool=keep);

Table altered.
SQL>

How It Works
Configuring a KEEP buffer pool is an ideal solution in situations where your database contains tables that
are referenced numerous times. You can store such frequently accessed segments in the KEEP buffer
cache. By doing this, you not only isolate those segments to a specific part of the buffer pool, but also
ensure that your physical I/O is minimized as well. How large the KEEP buffer pool ought to be depends
on the total size of the objects you want to assign to the pool. You can get a rough idea by summing up
the size of all candidate objects for this pool, or you can check the value of the DBA_TABLES view (BLOCKS
column) to figure this out.

While we’re on this topic, we’d like to point out the counterpart to the KEEP buffer pool—the RECYCLE
buffer pool. Normally, the Oracle database uses a least recently used algorithm to decide which objects it
should jettison from the buffer cache, when it needs more free space. If your database accesses very
large objects once or so every day, you can keep these objects from occupying a big chunk of your buffer
cache, and instead make those objects age right out of the buffer cache after they’ve been accessed. You
can configure such behavior by allowing candidate objects to use the RECYCLED buffer pool either when
you create those objects, or even later on, by setting the appropriate storage parameters, as shown in the
following examples (note that you must first set the DB_RECYCLE_CACHE_SIZE initialization parameter, as
shown in the “Solution” section of this recipe.

You can execute the following query to figure out how many blocks for each segment are currently
in the buffer cache:

SQL> select o.object_name, count(*) number_of_blocks
 from dba_objects o, v$bh v
 where o.data_object_id = v.objd
 and o.owner !='SYS'
 group by o.object_name
 order by count(*);

When your database accesses large segments and retrieves data to process a query, it may
sometimes age out other segments from the buffer pool prematurely. If you need these prematurely
aged-out segments later on, it requires additional I/O. What exactly constitutes a large table or index
segment is subject to your interpretation. It’s probably safe to think of the size of the object you’re
concerned with by considering its size relative to the total memory you have allocated to the buffer
cache. Oracle figures that if a single segment takes up more than 10% of (non-sequential) physical reads,
it’s a large segment, for the purpose of deciding if it needs to use the KEEP or RECYCLE buffer pools. So, a
handful of such large segments can occupy a significant proportion of the buffer cache and hurt the
performance of the database.

If you have other segments that the database accesses, let’s say, every other second, they won’t age
out of the buffer pool since they are constantly in use. However, there may be other segments that will
be adversely affected by the few large segments the database has read into its buffer cache. It’s in such
situations that your database can benefit most by devoting the RECYCLE pool for the large segments. Of
course, if you want to absolutely, positively ensure that key segments never age out at all, then you can
create the KEEP buffer cache and assign these objects to this pool.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

89

3-3. Setting Minimum Values for Memory

Problem
You’re using automatic memory management, but you think that the database sometimes doesn’t
allocate enough memory for the PGA_AGGREGATE_TARGET component.

Solution
Although automatic memory management is supposed to do what it says—automate memory
allocation—there are times when you realize that Oracle isn’t allocating certain memory components
optimally. You can set a minimum value for any of the main Oracle memory components—buffer cache,
shared pool, large pool, Java pool, and the PGA memory. For example, even after specifying automatic
memory management, you can specify a target for the instance PGA with the following command,
without having to restart the database:

SQL> alter system set pga_aggregate_target=1000m;

Oracle will, from this point forward, never decrease the PGA memory allocation to less than the
value you’ve set—this value implicitly sets a minimum value for the memory parameter. The database
will continue to automatically allocate memory to the various components of the SGA, but first it
subtracts the memory you’ve allocated explicitly to the PGA—in this case, 1,000 MB, from the
MEMORY_TARGET parameter’s value. What remains is what the database will allocate to the instance’s SGA.

How It Works
Ever since Oracle introduced the SGA_TARGET (to automate shared memory management) in Oracle
Database 10g and the MEMORY_TARGET parameter (to automate shared memory and PGA memory
management) in Oracle Database 11g, some DBAs have complained that these parameters sometimes
weren’t appropriately sizing some of the components of Oracle memory, such as the buffer cache.

There’s some evidence that under automatic memory management, the database could lag behind
an event that requires a sudden increase in the allocation to either one of the individual components of
the SGA or to the PGA. For example, you may have a spurt of activity in the database that requires a
quick adjustment to the shared pool component of memory—the database may get to the optimal
shared pool size allocation level only after it notices the events that require the higher memory. As a
result, the database may undergo a temporary performance hit. Several DBAs have, as a result, found
that automatic memory management will work fine, as long as you set a minimum value for, say, the
buffer cache or the PGA or both, by specifying explicit values for the SGA_TARGET and the
PGA_AGGREGATE_TARGET initialization parameters, instead of leaving them at their default value of zero.
The database will still use automatic memory management, but will now use the specific values you set
for any of the memory components as minimum values. Having said this, in our experience, automatic
memory management works as advertised most of the time; however, your mileage may vary, depending
on any special time-based workload changes in a specific database. At times like this, it’s perfectly all
right to set minimum values that represent your own understanding of your processing requirements,
instead of blindly depending on Oracle’s automatic memory algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

90

3-4. Monitoring Memory Resizing Operations

Problem
You’ve implemented automatic memory management in your database and would like to monitor how
the database is currently allocating the various dynamically tuned memory components.

Solution
Under an automatic memory management mode, you can view the current allocations of memory in
any instance by querying the V$MEMORY_DYNAMIC_COMPONENTS view. Querying this view provides vital
information to help you tune the MEMORY_TARGET parameter. Here’s how you execute a query against this
view:

SQL> select * from v$memory_target_advice order by memory_size;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION
----------- ------------------ ------------ ------------------- ----------
 468 .75 43598 1.0061 0
 624 1 43334 1 0
 780 1.25 43334 1 0
 936 1.5 43330 .9999 0
 1092 1.75 43330 .9999 0
 1248 2 43330 .9999 0

6 rows selected.

SQL>

Your current memory allocation is shown by the row with the MEMORY_SIZE_FACTOR value of 1 (624
MB in our case). The MEMORY_SIZE_FACTOR column shows alternate sizes of the MEMORY_TARGET parameter
as a multiple of the current MEMORY_TARGET parameter value. The ESTD_DB_TIME column shows the time
Oracle estimates it will need to complete the current workload with a specific MEMORY_TARGET value. Thus,
the query results show you how much faster the database can process its work by varying the value of the
MEMORY_TARGET parameter.

How It Works
Use the V$MEMORY_TARGET_ADVICE view to get a quick idea about how optimal your MEMORY_TARGET
allocation is. You need to run a query based on this view after a representative workload has been
processed by the database, to get useful results. If the view reports that there are no gains to be had by
increasing the MEMORY_TARGET setting, you don’t have to throw away precious system memory by
allocating more memory to the database instance. Oftentimes, the query may report that potential
performance, as indicated by the ESTD_DB_TIME column of the V$MEMORY_TARGET_ADVICE view, doesn’t
decrease at a MEMORY_SIZE_FACTOR value that’s less than 1. You can safely reduce the setting of the
MEMORY_TARGET parameter in such cases.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

91

You can also use the V$MEMORY_RESIZE_OPS view to view how the instance resized various memory
components over a past interval of 800 completed memory resizing operations. You’ll see that the
database automatically increases or shrinks the values of the SGA_TARGET and PGA_AGGREGATE_TARGET
parameters based on the workload it encounters. The following query shows how to use the
V$MEMORY_RESIZE_OPS view to understand Oracle’s dynamic allocation of instance memory:

SQL> select component,oper_type,oper_mode,parameter, final_size,target_size
 from v$memory_resize_ops

COMPONENT OPER_TYPE OPER_MODE PARAMETER FINAL_SIZE TARGET_SIZE
--------------------- ----------- --------- --------------- ------------ ------------

DEFAULT buffer cache GROW DEFERRED db_cache_size 180355072 180355072
shared pool GROW DEFERRED shared_pool_size 264241152 264241152
…
20 rows selected.
SQL>

The OPER_TYPE column can take two values - GROW or SHRINK, depending on whether the database
grows or shrinks individual memory components as the database workload fluctuates over time. It’s
this ability to respond to these changes by automatically provisioning the necessary memory to the
various memory components that makes this “automatic” memory management. The DBA will do well
by monitoring this view over time, to ensure that automatic memory management works well for his or
her databases.

3-5. Optimizing Memory Usage

Problem
You’ve set up automatic memory management in your databases and would like to optimize memory
usage with the help of Oracle’s memory advisors.

Solution
Regardless of whether you set up automatic memory management (AMM) or automatic shared memory
management (ASMM), or even a manual memory management scheme, you can use Oracle’s Memory
Advisors to guide your memory tuning efforts. In this example, we show how to use Oracle Enterprise
Manager Database Control to easily tune memory usage. Here are the steps:

1. Go to the Database Home page in Database Control. Click Advisor Central at
the bottom of the page.

2. In the Memory Advisors page that appears, click Advice next to the Total
Memory Size box under Automatic Memory Management.

The Memory Size Advice graph appears in a separate window, as shown in Figure 3-1. In this graph,
the improvement in DB time is plotted against the total memory that you’ve currently set for the
MEMORY_TARGET parameter. The higher the value of improvement in DB time, the better off will be the
performance. The graph shows how performance (improvement in DB time) will vary as you change the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

92

MEMORY_TARGET parameter value. The total memory you allocate can’t be more than the maximum
allowed memory for this instance, which is indicated by the dotted straight line in the graph.

Figure 3-1. The Memory Size Advice graph in Database Control

How It Works
When you implement automatic memory management, Oracle automatically adjusts memory between
the various components of total memory—the SGA and the PGA—during the course of the instance,
depending on the workload characteristics of the instance. Instead of running queries using various
views to figure out if your current memory allocation is optimal, you can follow a couple of easy steps to
figure things out quickly. You can review the Automatic Database Diagnostic Monitor(ADDM) reports to
see if they contain any comments or recommendations about inadequate memory. ADDM recommends

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

93

that you add more memory to the MEMORY_TARGET parameter, if it considers that the current memory
allocation is insufficient for optimal performance.

If the ADDM reports recommend that you increase the size of the MEMORY_TARGET parameter, the
next question is by how much you should increase the memory allocation. Oracle’s built-in Memory
Advisors come in handy for just this purpose. Even in the absence of a recommendation by the ADDM,
you can play with the Memory Advisors to get an idea of how an increase or decrease in the
MEMORY_TARGET parameter will impact performance.

You can also choose to optimize your PGA memory allocation from the same Memory Advisors page
by clicking PGA at the top of the page. In the case of the PGA, in the PGA Target Advice page, the graphs
plots the PGA cache hit percentage against the PGA target size. Ideally, you’d want the PGA cache ratio
somewhere upward of around 70%. The PGA Target Advice page will help you determine approximately
what value you should assign to the PGA_AGGREGATE_TARGET parameter to achieve your performance
goals.

3-6. Tuning PGA Memory Allocation

Problem
You’ve decided to set a specific minimum memory size for the PGA_AGGREGATE_TARGET parameter,
although you’re using Oracle’s automatic memory management to allocate memory. You’d like to know
the best way to figure out the optimal PGA memory allocation.

Solution
There are no hard and fast rules for allocating the size of the PGA_AGGREGATE_TARGET parameter. Having
said that, if you’re operating a data warehouse, you’re more likely to need much larger amounts of
memory set apart for the PGA component of Oracle’s memory allocation. You can follow these basic
steps to allocate PGA memory levels:

1. Use a starting allocation more or less by guessing how much memory you
might need for the PGA.

2. Let the database run for an entire cycle or two of representative workload. You
can then access various Oracle views to figure out if your first stab at the PGA
estimation was on target.

How It Works
Although automatic memory management is designed to optimally allocate memory between the two
major components of Oracle memory—the SGA and the PGA—it’s certainly not uncommon for many
DBAs to decide to set their own values for both the SGA and the PGA, either as part of the alternative
mode of memory management, automatic shared memory management, wherein you set the
SGA_TARGET and the PGA_AGGREGATE_TARGET parameters explicitly to manage memory, or even under the
newer automatic memory management system. Unlike the SGA_TARGET parameter, where cache hit ratios
could mislead you as to the efficacy of the instance, you’ll find that an analysis of the hit ratios for the
PGA_AGGREGATE_TARGET parameter are not only valid, but also highly useful in configuring the appropriate
sizes for this parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

94

The Oracle database uses PGA memory to perform operations such as sorting and hashing. The
memory you allocate to the PGA component is used by various SQL work areas running in the database
(along with other users of the PGA memory such as PL/SQL and Java programs). Ideally, you’d want all
work areas to have an optimal PGA memory allocation. When memory allocation is ideal, a work area
performs the entire operation in memory. For example, if a SQL operation involves sorting operations,
under optimal PGA allocation, all of the sorting is done within the PGA memory allocated to that
process. If the PGA memory allocation isn’t optimal, the work areas make one or more passes over the
data—this means they have to perform the operations on disk, involving time consuming I/O. The more
passes the database is forced to make, the more I/O and the longer it takes to process the work.

Oracle computes the PGA cache hit percentage with the following formula:

Bytes Processed * 100 /(Bytes processed + Extra Bytes Processed)

Bytes Processed is the total number of bytes processed by all the PGA memory using SQL operations
since the instance started. You should seek to get this ratio as close to 100 as possible—if your PGA cache
hit percentage is something like 33.37%, it’s definitely time to increase PGA memory allocation by raising
the value you’ve set for the PGA_AGGREGATE_TARGET parameter. Fortunately, the PGA_AGGREGATE_TARGET
parameter is dynamic, so you can adjust this on the fly without a database restart, to address a sudden
slowdown in database performance due to heavy sorting and hashing activity.

You can issue the following simple query to find out the PGA cache hit percentage as well as a
number of PGA performance-related values.

SQL>select * from v$pgastat;
NAME VALUE UNIT
-------------------------------- ------------- ----------
aggregate PGA target parameter 570425344 bytes
aggregate PGA auto target 481397760 bytes
total PGA inuse 35661824 bytes
total PGA allocated 70365184 bytes
maximum PGA allocated 195681280 bytes
over allocation count 0 bytes processed
extra bytes read/written 0 bytes
cache hit percentage 100 percent
SQL>

Since we’re using our test database here, the cache hit percentage is a full 100%, but don’t expect
that in a real-life database, especially if it is processing a lot of data warehouse–type operations!

You can also use the V$SQL_WORKAREA_HISTOGRAM view to find out how much of its work the database
is performing in an optimal fashion. If a work area performs its work optimally, that is, entirely within
PGA memory, it’s counted as part of the OPTIMAL_COUNT column. If it makes one or more passes, it will go
under the ONEPASS_COUNT or the MULTIPASS_COUNT columns. Here’s a query that shows how to do this:

SQL> select optimal_count, round(optimal_count*100/total, 2) optimal_perc,
 2 onepass_count, round(onepass_count*100/total, 2) onepass_perc,
 3 multipass_count, round(multipass_count*100/total, 2) multipass_perc
 4 from
 5 (select decode(sum(total_executions), 0, 1, sum(total_executions)) total,
 6 sum(OPTIMAL_EXECUTIONS) optimal_count,
 7 sum(ONEPASS_EXECUTIONS) onepass_count,
 8 sum(MULTIPASSES_EXECUTIONS) multipass_count
 9 from v$sql_workarea_histogram
 10* where low_optimal_size > (64*1024))
SQL> /

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

95

OPTI_COUNT OPTI_PERC ONEPASS_CT ONEPASS_PERC MULTIPASS_CT MULTIPASS_PERC
----------- ----------- ----------- ------------- ------------- ---------------
8069 100 0 0 0 0

One pass is slower than none at all, but a multi-pass operation is a sure sign of trouble in your
database, especially if it involves large work areas. You’ll most likely find that your database has slowed
to a crawl and is unable to scale efficiently when the database is forced to make even a moderate amount
of multi-pass executions that involve large work areas, such as those that are sized 256 MB to 2 GB. To
make sure that you don’t have any huge work areas running in the multi-pass mode, issue the following
query:

SQl> select low_optimal_size/1024 low,
 (high_optimal_size+1)/1024 high,
 optimal_executions, onepass_executions, multipasses_executions
 from v$sql_workarea_histogram
 where total_executions !=0;

You can also execute simple queries involving views such as V$SYSSTAT and V$SESSTAT as shown
here, to find out exactly how many work areas the database has executed with an optimal memory size
(in the PGA), one-pass memory size, and multi-pass memory sizes.

SQL>select name profile, cnt, decode(total, 0, 0, round(cnt*100/total)) percentage
 from (SELECT name, value cnt, (sum(value) over ()) total
 from V$SYSSTAT
 where name like 'workarea exec%');

Remember that this query shows the total number of work areas executed under each of the three
different execution modes (optimal, one-pass, and multi-pass), since the database was started. To get
the same information for a specific period of time, you can use queries involving Automatic Session
History (ASH).

You can also view the contents of the Automatic Workload Repository (AWR) for information
regarding how the database used its PGA memory for any interval you choose. If you regularly create
these reports and save them, you can have a historical record of how well the PGA allocation has been
over a period of time. You can also view the ADDM report for a specific time period to evaluate what
proportion of work the database is executing in each of the three modes of execution we discussed
earlier. In a data warehouse environment, where the database processes huge sorts and hashes, the
optimal allocation of the PGA memory is one of the most critical tasks a DBA can perform.

3-7. Configuring the Server Query Cache

Problem
You’d like to set up the server query cache that’s part of Oracle’s memory allocation.

Solution
You can control the behavior of the server query cache by setting three initialization parameters:
RESULT_CACHE_MAX_SIZE, RESULT_CACHE_MAX_RESULT, and RESULT_CACHE_REMOTE_EXPIRATION. For example,
you can use the following set of values for the three server result cache-related initialization parameters:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

96

RESULT_CACHE_MAX_SIZE=500M /* Megabytes
RESULT_CACHE_MAX_RESULT=20 /* Percentage
RESULT_CACHE_REMOTE_EXPIRATION=3600 /* Minutes

You can disable the server result cache by setting the RESULT_CACHE_MAX_SIZE parameter to 0 (any
non-zero value for this parameter enables the cache).

If you set the RESULT_CACHE_MODE initialization parameter to FORCE, the database caches all query
results unless you specify the /*+ NO_RESULT_CACHE */ hint to exclude a query's results from the cache.
The default (and the recommended) value of this parameter is MANUAL, meaning that the database caches
query results only if you use the appropriate query hint or table annotation (explained later).You can set
this parameter at the system level or at the session level, as shown here:

SQL> alter session set result_cache_mode=force;

You can remove cached results from the server result cache by using the FLUSH procedure from the
DBMS_RESULT_CACHE package, as shown here:

SQL> execute dbms_result_cache.flush

How It Works
The server result cache offers a great way to store results of frequently executed SQL queries and PL/SQL
functions. This feature is easy to configure with the help of the three initialization parameters we
described in the “Solution” section. However, remember that Oracle doesn’t guarantee that a specific
query or PL/SQL function result will be cached no matter what.

In some ways, you can compare the Oracle result cache feature to other Oracle result storing
mechanisms such as a shared PL/SQL collection, as well as a materialized view. Note, however, that
whereas Oracle stores a PL/SQL collection in private PGA areas, it stores the result cache in the shared
pool as one of the shared pool components. As you know, the shared pool is part of the SGA.
Materialized views are stored on disk, whereas a result cache is in the much faster random access
memory. Thus, you can expect far superior performance when you utilize the result cache for storing
result sets, as opposed to storing pre-computed results in a materialized view. Best of all, the result
cache offers the Oracle DBA a completely hands-off mode of storing frequently accessed result sets—you
don’t need to create any objects, as in the case of materialized views, index them, or refresh them. Oracle
takes care of everything for you.

The server query cache is part of the shared pool component of the SGA. You can use this cache to
store both SQL query results as well as PL/SQL function results. Oracle can cache SQL results in the SQL
result cache and PL/SQL function results in the PL/SQL function result cache. You usually use the server
query cache to make the database cache queries that are frequently executed but need to access a large
number of rows per execution. You configure the server query cache by setting the following
initialization parameters in your database.

• RESULT_CACHE_MAX_SIZE: This sets the memory allocated to the server result cache.

• RESULT_CACHE_MAX_RESULT: This is the maximum amount of memory a single result
in the cache can use, in percentage terms. The default is 5% of the server result
cache.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

97

• RESULT_CACHE_REMOTE_EXPIRATION: By default, any result that involves remote
objects is not cached. Thus, the default setting of the
RESULT_CACHE_REMOTE_EXPIRATION parameter is 0. You can, however, enable the
caching of results involving remote objects by setting an explicit value for the
RESULT_CACHE_REMOTE_EXPIRATION parameter.

Setting the three initialization parameters for the server result cache merely enables the cache. To
actually use the cache for your SQL query results, or for PL/SQL function results, you have to either
enable the cache database-wide, or for specific queries, as the following recipes explain.

Once the database stores a result in the server result cache, it retains it there until you either remove
it manually with the DBMS_RESULT_CACHE.FLUSH procedure, or until the cache reaches its maximum size
set by the RESULT_CACHE_MAX_SIZE parameter. The database will remove the oldest results from the cache
when it needs to make room for newer results when it exhausts the capacity of the server result cache.

3-8. Managing the Server Result Cache

Problem
You’ve enabled the server result cache, but you aren’t sure if queries are taking advantage of it. You also
would like to find out how well the server result cache is functioning.

Solution
You can check the status of the server result cache by using the DBMS_RESULT_CACHE package. For
example, use the following query to check whether the cache is enabled:

SQL> select dbms_result_cache.status() from dual;

DBMS_RESULT_CACHE.STATUS()

ENABLED
SQL>

You can view a query’s explain plan to check whether a query is indeed using the SQL query cache,
after you enable that query for caching, as shown in the following example. The explain plan for the
query shows that the query is indeed making use of the SQL query cache component of the result cache.

SQL> select /*+ RESULT_CACHE */ department_id, AVG(salary)
 from hr.employees
 group by department_id;
.
.
.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

98

--
| Id | Operation | Name |Rows
--
| 0 | SELECT STATEMENT | | 11
| 1 | RESULT CACHE | 8fpza04gtwsfr6n595au15yj4y |
| 2 | HASH GROUP BY | | 11
| 3 | TABLE ACCESS FULL| EMPLOYEES | 107
--

You can use the MEMORY_REPORT procedure of the DBMS_RESULT_CACHE package to view how Oracle is
allocating memory to the result cache, as shown here:

SQL> SET SERVEROUTPUT ON
SQL> execute dbms_result_cache.memory_report

R e s u l t C a c h e M e m o r y R e p o r t
[Parameters]
Block Size = 1024 bytes
Maximum Cache Size = 950272 bytes (928 blocks)
Maximum Result Size = 47104 bytes (46 blocks)
[Memory]
Total Memory = 46340 bytes [0.048% of the Shared Pool]
... Fixed Memory = 10696 bytes [0.011% of the Shared Pool]
... State Object Pool = 2852 bytes [0.003% of the Shared Pool]
... Cache Memory = 32792 bytes (32 blocks) [0.034% of the Shared Pool]
....... Unused Memory = 30 blocks
....... Used Memory = 2 blocks
........... Dependencies = 1 blocks
........... Results = 1 blocks
............... SQL = 1 blocks

PL/SQL procedure successfully completed.
SQL>

You can monitor the server result cache statistics by executing the following query:

SQL> select name, value from V$RESULT_CACHE_STATISTICS;

NAME VALUE
-------------------- ----------
Block Size (Bytes) 1024
Block Count Maximum 3136
Block Count Current 32
Result Size Maximum (Blocks) 156
Create Count Success 2
Create Count Failure 0
Find Count 0
Invalidation Count 0
Delete Count Invalid 0
Delete Count Valid 0
SQL>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

99

The Create Count Success column shows the number of queries that the database has cached in the
server result cache, and the Invalidation Count column shows the number of times the database has
invalidated a cached result.

How It Works
You can monitor and manage the server result cache with the DBMS_RESULT_CACHE package provided by
Oracle. This package lets you manage both components of the server result cache, the SQL result cache
and the PL/SQL function result cache. You can use the DBMS_RESULT_CACHE package to manage the server
result cache memory allocation, as well as to bypass and re-enable the cache (when recompiling PL/SQL
packages, for example), flush the cache, and to view statistics relating to the server query cache memory
usage.

The server result cache is part of Oracle’s shared pool component of the SGA. Depending on the
memory management system in use, Oracle allocates a certain proportion of memory to the server result
cache upon starting the database. Here are the rules that Oracle uses for deciding what percentage of the
shared pool it allocates to the server result cache:

• If you’re using automatic memory management by setting the MEMORY_TARGET
parameter, Oracle allocates 0.25% of the MEMORY_TARGET parameter’s value to the
server result cache.

• If you’re using automatic shared memory management with the SGA_TARGET
parameter, the allocation is 0.5% of the SGA_TARGET parameter.

• If you’re using manual memory management by setting the SHARED_POOL_SIZE
parameter, the allocation is 1% of the SHARED_POOL_SIZE parameter.

In an Oracle RAC environment, you can size the server cache differently on each instance, just as
you do with the MEMORY_TARGET and other instance-related parameters. Similarly, when you disable the
server result cache by setting the RESULT_CACHE_MAX_SIZE to 0, you must do so on all the instances of the
cluster.

The server result cache can potentially reduce your CPU overhead by avoiding recomputation of
results, where data may have to be fetched repeatedly from the buffer cache, which results in a higher
number of logical I/Os. When you opt to cache the results in the cache instead of pre-computing them
and storing them in materialized views, you can also potentially reduce the database disk I/O as well.
Just remember that the primary purpose of the result cache isn’t to store just any results in memory—it’s
mainly designed to help with the performance of queries that involve static or mostly static data. Thus, a
data warehouse or decision support system is likely to derive the greatest benefit from this new
performance feature.

3-9. Caching SQL Query Results

Problem
You’ve configured the server result cache in your database. You would now like to configure a set of
queries whose result you would like to be cached in the server result cache.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

100

Solution
Set the RESULT_CACHE_MODE initialization parameter to the appropriate value for making queries eligible
for caching in the server result cache. You can set the RESULT_CACHE_MODE to the value FORCE, to force all
SQL results to be cached by the database. Oracle recommends that you set the RESULT_CACHE_MODE
parameter value to MANUAL, which happens to be the default setting. The RESULT_CACHE_MODE parameter is
dynamic, so you can set this parameter with the ALTER SYSTEM (or the ALTER SESSION) command.

When you set the RESULT_CACHE_MODE parameter to the value MANUAL, the database caches the results
of only specific queries—queries that you enable for caching by using either a query hint or a table
annotation. The following example shows how to use the query hint method to specify a query’s results
to be cached in the server result cache.

SQL> select /*+ RESULT_CACHE */ prod_id, sum(amount_sold)
 from sales
 group by prod_id
 order by prod_id;

The query hint /*+RESULT_CACHE */ tells the database to cache the results of the previous query. You
can turn off the result caching for this query by using the /+ NO_RESULT_CACHE */ hint, as shown in the
following example.

SQL> select /*+ NO_RESULT_CACHE */ prod_id, SUM(amount_sold)
 from sales
 group by prod_id
 order by prod_id;

When you run this query, the server won’t cache the results of this query any longer, because you’ve
specified the MANUAL setting for the RESULT_CACHE_MODE initialization parameter.

The alternative way to specify the caching of a query’s results is to use the table annotation method.
Under this method, you specify the RESULT_CACHE attribute when you create a table or alter it. You can
annotate a CREATE TABLE or ALTER TABLE statement with the RESULT_CACHE attribute in two different
modes: DEFAULT or FORCE, as shown in the following examples:

SQL> create table stores (...) RESULT_CACHE (MODE DEFAULT);
SQL> alter table stores RESULT_CACHE (MODE FORCE);

We explain the implications of setting the RESULT_CACHE_MODE initialization parameter to FORCE in the
“How it Works” section.

How It Works
If you set the value of the RESULT_CACHE_MODE parameter to FORCE, Oracle executes all subsequent queries
only once. Upon subsequent executions of those queries, the database retrieves the results from the
cache. Obviously, you don’t want to store the results of each and every SQL statement, because of the
performance implications, as well as the fact that the server result cache may run out of room. Thus
Oracle recommends that you specify the MANUAL setting for the RESULT_CACHE_MODE parameter.

If you can set the result caching behavior with the use of SQL hints, why use table annotations?
Table annotations are an easy way to specify caching without having to modify the application queries
directly by adding the SQL hints. It’s easier to simply issue an ALTER TABLE statement for a set of tables,
to enable the caching of several queries that use that set of tables. Note that when you annotate a table,
those annotations apply to the entire query, but not for fragments of that query.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

101

If you annotate a table and specify a SQL hint for query caching, which method will Oracle choose to
determine whether to cache a query’s results? Query hints are given precedence by the database over
table annotations. However, the relationship between SQL hints and table annotations is complex, and
whether the database caches a query’s results also depends on the specific value of the table annotation,
as summarized in the following discussion.

Table Annotations and Query Hints
As mentioned earlier, you can use both SQL hints and table annotations to specify which query results
you want the result cache to store, with hints overriding annotations. Use either the ALTER TABLE or the
CREATE TABLE statements to annotate tables with the result cache mode. Here’s the syntax for a CREATE or
ALTER TABLE statement when annotating a table or a set of tables:

CREATE|ALTER TABLE [<schema>.]<table> ... [RESULT_CACHE (MODE {FORCE|DEFAULT})]

Note the following important points about table annotations:

• The mode value DEFAULT is, of course, the default value, and this merely removes
any table annotations you may have set and doesn’t permit caching of results that
involve this table.

• If you set at least one table to the DEFAULT mode, any query involving that table
won’t be allowed to store its results in the cache.

• If you set all the tables in a query to the FORCE mode, Oracle will always consider
that query for caching—unless you turn off the caching with the NO_RESULT_CACHE
hint within the query.

• If you set at least one table in a query to DEFAULT by annotating a CREATE TABLE
statement, as shown here, Oracle caches results of this query only if you’ve either
set the RESULT_CACHE_MODE parameter to FORCE or specified the RESULT_CACHE hint.

SQL> CREATE TABLE sales (id number) RESULT_CACHE (MODE DEFAULT);

Note that the previous statement is equivalent to the following statement, because the default value
of the attribute RESULT_CACHE is DEFAULT.

SQL> CREATE TABLE sales (id number);

You can check that the database created the table SALES with the RESULT_CACHE attribute set to the
value DEFAULT:

SQL> select table_name, result_cache from user_tables where table_name ='SALES';

TABLE_NAME RESULT_
------------------------------ -------
SALES DEFAULT

SQL>

If you specify the table creation statement with the RESULT_CACHE(MODE FORCE) option, this will
prevail over the MANUAL setting of the RESULT_CACHE_MODE initialization parameter that you’ve set at the
session level. The following example illustrates how this works.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

102

1. First alter the table STORES to specify the RESULT_CACHE attribute with the MODE
FORCE option:

SQL> alter table stores result_cache (mode force);

2. Then ensure that you’ve set the RESULT_CACHE_MODE initialization parameter to
the value MANUAL.

3. Then execute the following query:

SQL> select prod_id, sum(amount_sold)
 from stores
 group by prod_id
 having prod_id=999;

On subsequent executions, the database will retrieve the results for the preceding query from the
server result cache. The reason this is so is that when you specify the RESULT_CACHE (MODE FORCE)
annotation, it overrides the MANUAL setting for the RESULT_CACHE_MODE parameter. Remember that when
you set this parameter to the MANUAL mode, Oracle will cache query results only if you specify a query hint
or annotation. The query shown here doesn’t involve the use of a hint, but its results are cached because
the RESULT_CACHE (MODE FORCE) annotation makes the database behave the same way as it does when
the RESULT_CACHE_MODE parameter is set to FORCE—it caches the query results of all eligible queries.

Query hints, however, ultimately trump the RESULT_CACHE (MODE FORCE) annotation, as shown in the
following example.

First alter the table STORES to specify the RESULT_CACHE attribute with the MODE FORCE option:

SQL> alter table stores result_cache (mode force);

Ensure that you’ve set the RESULT_CACHE_MODE initialization parameter to the value MANUAL.
Execute the following query:

SQL>select /*+ no_result_cache */ *
 from stores
 order by time_id desc;

In this example, even though you’ve annotated the STORES table to allow caching with the MODE
FORCE option, the /*+ no_result_cache */ hint overrides the annotation and prevents the caching of the
results of any query that involves the STORES table.

Requirements for Using the Result Cache
There are a few read consistency requirements that a query must satisfy, in order for the database to use
the result cache:

• In cases involving a snapshot, if a read-consistent snapshot builds a result, it must
retrieve the latest committed state of the data, or the query must use a flashback
query to point to a specific point in time.

• Whenever a session transaction is actively referencing the tables or views in a
query, the database won’t cache the results from this query for read consistency
purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

103

In addition to the read consistency requirements for result caching, the following objects or
functions, when present in a query, make that query ineligible for caching:

• CURRVAL and NEXTVAL pseudo columns

• The CURRENT_DATE, CURRENT_TIMESTAMP, USERENV_CONTEXT, SYS_CONTEXT (with non-
constant variables), SYSDATE, and SYS_TIMESTAMP

• Temporary tables

• Tables owned by SYS and SYSTEM

3-10. Caching Client Result Sets

Problem
You use a lot of OCI applications that involve repetitive queries. You would like to explore how you can
cache the result sets on the client.

Solution
You can enable client-side query caching of SQL query results by enabling the client result cache. The
client result cache works similarly to the server result cache in many ways, but is separate from the
server cache. You set the client result cache by setting the following initialization parameters:

• CLIENT_RESULT_CACHE_SIZE: To enable the client result cache, set this parameter to
32 KB or higher, up to a maximum of 2 GB. By default, this parameter is set to zero,
meaning the client query cache is disabled. Unlike in the case of the server result
cache, the CLIENT_RESULT_CACHE_SIZE parameter value sets the maximum size of
result set cache per process, not for the entire instance. Since this parameter isn’t
a dynamic one, a reset requires that you bounce the instance. You have to
determine the size of this parameter based on the potential number of results
that’ll be cached, as well as the average size of the result set, which depends both
on the size of the rows and the number of rows in the result set.

■ Tip Oracle cautions you not to set the CLIENT_RESULT_CACHE_SIZE during database creation, due to
potential errors.

• CLIENT_RESULT_CACHE_LAG: This parameter lets you specify the maximum amount
of time the client result cache can fall behind a change that affects the result set
values. By default, the value of this parameter is set to 3,000 milliseconds, so you
can omit this parameter if this time interval is adequate for you. Changes in this
parameter also need a restart of the database, because it’s a static parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

104

■ Note You can use the client query cache with all OCI applications and drivers built using OCI.

In addition, you must specify the value of the initialization parameter COMPATIBLE at 11.0.0 or higher
to enable the client result cache. If you want to cache views on the client side, the value of the COMPATIBLE
parameter must be 11.2.0.0 or higher.

In addition to the initialization parameters you must set on the database server, Oracle lets you also
include an optional client-side configuration file to specify values that override the values of the client
query cache–related parameters in the initialization file. If you specify any of these parameters, the value
of that parameter will override the value of the corresponding parameter in the server initialization file.
You can specify one or more of the following parameters in the optional client configuration file, which
you can include in the sqlnet.ora file on the client:

OCI_RESULT_CACHE_MAX_SIZE: Maximum size (in bytes) for the query cache for
each individual process

OCI_RESULT_CACHE_MAX_RSET_SIZE: Maximum size of a result set in bytes in any
process

OCI_RESULT_CACHE_MAX_RSET_ROWS: Maximum size of the result set in terms of
rows, in any process

You can’t set any query cache lag–related parameters in the client-side file. Once you set the
appropriate initialization parameters and the optional client-side configuration file, you must enable
and disable queries for caching with either the /*+ result_cache +/ (and the /*+ no_result_cache +/)
hint, or table annotations. Once you do this, the database will attempt to cache all eligible queries in the
client query cache.

How It Works
You can deploy client-side query result caching to speed up the responses of queries that your database
frequently executes in an OCI application. The database keeps the result set data consistent with any
database changes, including session changes. You can potentially see a huge performance improvement
for repetitive queries because the database retrieves the results from the local OCI client process rather
than having to re-access the server via the network and re-execute the same query there and fetch those
results. When an OCI application issues an OCIStmtExecute() or OCIStmtFetch() call, Oracle processes
those calls locally on the client, if the query results are already cached in the client query cache.

The big advantage of using a client-side query cache is that it conserves your server memory usage
and helps you scale up your applications to serve more processes. The client query cache is organized on
a per-process basis rather than a per-session basis. Multiple client sessions can share the same cached
result sets, all of which can concurrently access the same result sets through multiple threads and
multiple statements. The cache automatically invalidates the cached result sets if an OCI process finds
significant database changes on the database server. Once a result set is invalidated, the query will be
executed again and a fresh result set is stored in the cache.

■ Tip Oracle recommends that you use client-side caching only for read-only or mostly read-only queries.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

105

You can optionally set the RESULT_CACHE_MODE parameter (see Recipe 3-7) to control caching
behavior, but by default, this parameter is set to the value MANUAL, so you can leave it alone. You really
don’t want to set this parameter to its alternative value FORCE, which compels the database to cache the
results of every eligible SQL query—obviously, the cache will run out of room before too long! You can
then specify either the appropriate query hint at the SQL level or table annotations at the table level to
control the client-side result caching. What if you’ve already set up server-side result caching through
the server query cache? No matter. You can still enable client result caching. Just remember that by
default, client-side caching is disabled and server-side result caching is enabled.

When implementing client query caching, it’s important that an OCIStmtExecute() call is made so a
statement handle can match a cached result. The very first OCIStmtExecute() call for an OCI statement
handle goes to the server regardless of the existence of a cached result set. Subsequent OCIStmtExecute()
calls will use the cached results if there’s a match. Similarly, only the first OCIStmtFetch() call fetches
rows until it gets the “Data Not Found” error—subsequent fetch calls don’t need to fetch the data until
they get this error, if the call matches the cached result set. Oracle recommends that your OCI
applications either cache OCI statements or use statement caching for OCI statement handles, so they
can return OCI statements that have already been executed. The cached set allows multiple accesses
from OCI statement handles from single or multiple sessions.

As with the server-side cache, you can set the RESULT_CACHE_MODE parameter to FORCE to specify
query caching for all queries. Oracle recommends you set this parameter to the alternative value of
MANUAL and use SQL hints (/*+ result_cache */) in the SQL code the application passes to the
OCIStmtPrepare(), and OCIStmtPrepare2() calls. You can also use table annotations, as explained in
Recipe 3-7, to specify caching when you create or alter a table. All queries that include that table will
follow the caching specifications subsequently.

You can query the V$CLIENT_RESULT_CACHE_STATS view for details such as the number of cached
result sets, number of cached result sets invalidated, and the number of cache misses. The statistic
Create Count Success, for example, shows the number of cached result sets the database didn’t validate
before caching all rows of the result set. The statistic Create Count Failure shows the number of the
cached result sets that didn’t fetch all rows in the result set.

3-11. Caching PL/SQL Function Results

Problem
You’ve set up a server query cache in your database and would like to implement the caching of certain
PL/SQL function results.

Solution
Oracle’s server query cache (Recipe 3-7) helps you cache both normal SQL query results as well as
PL/SQL function results. By using the server result cache, you can instruct the database to cache the
results of PL/SQL functions in the SGA. Other sessions can use these cached results, just as they can use
cached query results with the query result cache. Once you’ve configured the server query cache by
setting the appropriate initialization parameters (please see Recipe 3-7), you are ready to make use of
this feature.

You must specify the RESULT_CACHE clause inside a function to make the database cache the
function’s results in the PL/SQL function result cache. When a session invokes a function after you
enable caching, it first checks to see if the cache holds results for the function with identical parameter

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

106

values. If so, it fetches the cached results and doesn’t have to execute the function body. Note that if you
declare a function first, you must also specify the RESULT_CACHE clause in the function declaration, in
addition to specifying the clause within the function itself.

Listing 3-1 shows how to cache a PL/SQL function’s results.

Listing 3-1. Creating a PL/SQL Function with the /*+result_cache*/ Hint

SQL> create or replace package store_pkg is
 type store_sales_record is record (
 store_name stores.store_name%TYPE,
 mgr_name employees.last_name%type,
 store_size PLS_INTEGER
);
 function get_store_info (store_id PLS_INTEGER)
 RETURN store_info_record
 RESULT_CACHE;
 END store_pkg;
 /
Create or replace package body store_pkg is
 FUNCTION get_store_sales (store_id PLS_INTEGER)
 RETURN store_sales_record
 RESULT_CACHE RELIES_ON (stores, employees)
 IS
 rec store_sales_record;
 BEGIN
 SELECT store_name INTO rec.store_name
 FROM stores
 WHERE store_id = store_id;
 SELECT e.last_name INTO rec.mgr_name
 FROM stores d, employees e
 WHERE d.store_id = store_id
 AND d.manager_id = e.employee_id;
 SELECT COUNT(*) INTO rec.store_size
 FROM EMPLOYEES
 WHERE store_id = store_id;
 RETURN rec;
 END get_store_sales;
END store_pkg;
/

Let’s say you invoke the function with the following values:

SQL> execute store_pkg.get_store_sales(999)

The first execution will cache the PL/SQL function’s results in the server result cache. Any future
executions of this function with the same parameters (999) won’t require the database to re-execute this
function—it merely fetches the results from the server result cache.

Note that in addition to specifying the RESULT_CACHE clause in the function declaration, you can
optionally specify the RESULT_CACHE RELIES ON clause in the function body, as we did in this example. In
this case, specifying the RESULT_CACHE_RELIES_ON clause means that the result cache relies on the tables
STORES and EMPLOYEES. What this means is that whenever these tables change, the database invalidates all
the cached results for the get_store_info function.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

107

How It Works
The PL/SQL function result cache uses the same server-side result cache as the query result cache, and
you set the size of the cache using the RESULT_CACHE_MAX_SIZE and RESULT_CACHE_MAX_RESULT
initialization parameters, with the first parameter fixing the maximum SGA memory that the cache can
use, and the latter fixing the maximum percentage of the cache a single result can use. Unlike the query
result cache, the PL/SQL function cache may quickly gather numerous results for caching, because the
cache will store multiple values for the same function, based on the parameter values. If there’s space
pressure within the cache, older cached function results are removed to make room for new results.

Oracle recommends that you employ the PL/SQL function result cache to cache the results of
functions that execute frequently but rely on static or mostly static data. The reason for specifying the
static data requirement is simple: Oracle automatically invalidates cache results of any function whose
underlying views or tables undergo committed changes. When this happens, the invocation of the
function will result in a fresh execution.

Whenever you introduce a modified version of a package on which a result cache function depends
(such as in Listing 3-1), the database is supposed to automatically flush that function’s cached results
from the PL/SQL function cache. In our example, when you hot-patch (recompile) the package
store_pkg, Oracle technically must flush the cached results associated with the get_store_info function.
However, sometimes the database may fail to automatically flush these results. In order to ensure that
the cached results of the function are removed, follow these steps whenever you recompile a PL/SQL
unit such as a package that includes a cache-enabled function.

1. Place the result cache in the bypass mode.

SQL> execute DBMS_RESULT_CACHE.bypass(true);

2. Clear the cache with the flush procedure.

SQL> execute DBMS_RESULT_CACHE.flush;

3. Recompile the package that contains the cache-enabled function.

SQL> alter package store_pkg compile;

4. Re-enable the result cache with the bypass procedure.

SQL> execute DBMS_RESULT_CACHE.bypass(false);

■ Tip If you’re using both the SQL query cache and PL/SQL function result cache simultaneously, remember
that both caches are actually part of the same server query cache. In cases such as this, ensure that you’ve sized
the RESULT_CACHE_SIZE parameter high enough to hold cached results from both SQL queries and PL/SQL
functions.

If you’re operating in an Oracle RAC environment, you must run the cache enabling and disabling
steps on each RAC instance.

Of course, when you bypass the cache temporarily in this manner, during that time the cache is
bypassed, the database will execute the function, instead of seeking to retrieve its results from the cache.
The database will also bypass the result cache on its own for a function if a session is in the process of
performing a DML statement on a table or view that the function depends on. This automatic bypassing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

108

of the result cache by the database ensures that users won’t see uncommitted changes of another
session in their own session, thus ensuring read consistency.

You can use the V$RESULT_CACHE_STATISTICS, V$RESULT_CACHE_MEMORY, V$RESULT_CACHE_OBJECTS, and
V$RESULT_CACHE_DEPENDENCY views to monitor the usage of the server result cache, which includes both
the SQL result cache as well as the PL/SQL function result cache.

Important Considerations
While a PL/SQL function cache gets you results much faster than repetitive execution of a function,
PL/SQL collections (arrays)–based processing could be even faster because the PL/SQL runtime engine
gets the results from the collection cache based in the PGA rather than the SGA. However, since this
requires additional PGA memory for each session, you’ll have problems with the collections approach as
the number of sessions grows large. The PL/SQL function is easily shareable by all concurrent sessions,
whereas you can set up collections for sharing only through additional coding.

You must be alert to the possibility that if your database undergoes frequent DML changes, the
PL/SQL function cache may not be ideal for you—it’s mostly meant for data that never changes, or does
so only infrequently. Even if you set the RESULT_CACHE_REMOTE_EXPIRATION parameter to a high value, any
DML changes will force the database to invalidate the cached PL/SQL function cache result sets.

Oracle will invalidate result cache output when it becomes out of date, so when a DML statement
modifies the rows of a table that is part of a PL/SQL function that you’ve enabled for the function cache,
the database invalidates the cached results of that function. This could happen if the specific rows that
were modified aren’t part of the PL/SQL function result set. Again, remember that this limitation could
be “bypassed” by using the PL/SQL function cache in databases that are predominantly read-only.

Restrictions on the PL/SQL Function Cache
In order for its results to be cached, a fuction must satisfy the following requirements:

• The function doesn’t use an OUT or an IN OUT parameter.

• An IN parameter of a function has one of these types: BLOB, CLOB, NCLOB, REF
CURSOR, Collection Object, and Record.

• The function isn’t a pipelined table function.

• The function isn’t part of an anonymous block.

• The function isn't part of any module that uses invoker’s rights as opposed to
definer’s rights.

• The function’s return type doesn’t include the following types: BLOB, CLOB, NCLOB,
REF CURSOR, Object, Record, or a PL/SQL collection that contains one of the
preceding unsupported return types.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

109

3-12. Configuring the Oracle Database Smart Flash Cache

Problem
Your AWR (Automatic Workload Repository) report indicates that you need a much larger buffer cache.
You also notice that the shared pool is sized correctly, and so you can’t set a higher minimum level for
the buffer cache by reducing the shared pool memory allocation. In addition, you’re limited in the
amount of additional memory you can allocate to Oracle.

Solution
Depending on your operating system, you can use the new Oracle Database Smart Flash Cache feature,
in cases where the database indicates that it needs a much larger amount of memory for the buffer
cache. Right now, the Flash Cache feature is limited to Solaris and Oracle Linux operating systems.

Set the following parameters to turn the Flash Cache feature on:

• DB_FLASH_CACHE_FILE: This parameter sets the pathname and the file name for the
flash cache. The file name you specify will hold the flash cache. You must use a
flash device for the flash cache file, and it could be located in the operating system
file system, a raw disk, or an Oracle ASM disk group—for example:

DB_FLASH_CACHE_FILE= "/dev/sdc"
DB_FLASH_CACHE_FILE = "/export/home/oracle/file_raw" /* raw file
DB_FLASH_CACHE_FILE = "+dg1/file_asm" /* using ASM storage

• DB_FLASH_CACHE_SIZE: This parameter sets the size of the flash cache storage.
Here's an example:

DB_FLASH_CACHE_SIZE = 8GB

You can toggle between a system with a flash cache and one without, by using the alter system
command as shown here:

SQL> alter system set db_flash_cache_size = 0; /* disables the flash cache
SQL> alter system set db_flash_cache_size = 8G; /* reenables the flash cache

Note that although you can successfully enable and disable the flash cache dynamically as shown
here, Oracle doesn’t support this method.

■ Note If you’re using Oracle RAC, in order to utilize the Flash Cache feature, you must enable it on all the nodes
of the cluster.

How It Works
Oracle Database Smart Flash Cache, a feature of the Oracle Database 11.2 release, is included as part of
the enterprise edition of the database server. Flash Cache takes advantage of the I/O speed of flash-

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

110

based devices, which perform much better than disk-based storage. For example, small disk-based reads
offer a 4-millisecond response, whereas a flash-based device takes only 0.4 milliseconds to perform the
same read.

Note that Flash Cache is really a read-only cache—when clean (unmodified) data blocks are evicted
from the buffer cache due to space pressure, those blocks are then moved to the flash cache. If they’re
required later on, the database will move transferred data blocks back to the SGA from the flash cache.
It’s not always realistic to assume that you and the Oracle database will have access to unlimited
memory. What if you can allocate only a maximum of 12 GB for your Oracle SGA, but it turns out that if
you have 50 GB of memory, the database will run a whole lot faster? Oracle Database Smart Flash Cache
is designed for those types of situations.

Oracle recommends that you size the flash cache to a value that’s a multiple of your buffer cache
size. There’s no hard and fast rule here: use a trial and error method by just setting it to anywhere
between one and ten times the size of the buffer cache size and calibrate the results. Oracle also suggests
that if you encounter the db file sequential read wait event as a top wait event and if you have sufficient
CPU capacity, you should consider using the flash cache.

Once you enable the flash cache, Oracle moves data blocks from the buffer cache to the flash cache
(the file you’ve created) and saves metadata about the blocks in the database buffer cache. Depending
on the number of blocks moved into the flash cache, you may want to bump up the size of the
MEMORY_TARGET parameter so the accumulated metadata doesn’t impact the amount of memory left for
the other components.

Oracle offers two devices for flash cache storage—Sun Storage F5100 Flash Array and the Sun Flash
Accelerator F20 PCIe Card. Since you can specify only a single flash device, you will need a volume
manager. It turns out that Oracle ASM is the best volume manager for these devices, based on Oracle’s
tests.

If you’re using the flash cache in an Oracle RAC environment, you must create a separate flash
cache file path for each of the instances, and you will also need to create a separate ASM disk group for
each instance’s flash cache.

Oracle testing of the Database Smart Flash Cache feature shows that it’s ideally suited for workloads
that are I/O bound. If you have a very heavy amount of concurrent read-only transactions, the disk
system could be saturated after some point. Oracle Database Smart Flash Cache increases such a
system’s throughput by processing more IOPS (I/O per second). Oracle’s testing results of this feature
also show that response times increased by five times when Smart Flash Cache was introduced to deal
with workloads facing significant performance deterioration due to maxing out of their disk I/O
throughput. As of the writing of this book, Oracle makes these claims only for workloads that are
exclusively or mostly read-only operations. While Oracle is still in the process of testing the flash cache
for write-intensive workloads, note that even for read-only operations, the reduced load on your disk
system due to using the flash cache will mean that you’ll have more I/O bandwidth to handle your
writes.

3-13. Tuning the Redo Log Buffer

Problem
You’d like to know how to tune the redo log buffer, as you’ve reviewed several AWR reports that pointed
out that the redo log buffer setting for your production database is too small.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

111

Solution
You configure the size of the redo log buffer by setting the value of the initialization parameter
LOG_BUFFER. This parameter is static, so any changes to it require a restart of the database. You set the
parameter in your init.ora file as follows:

log_buffer=4096000

You can also change the size of the log buffer, with the following ALTER SYSTEM statement:

SQL> alter system set log_buffer=4096000 scope=spfile;

System altered
SQL>

The default value of the LOG_BUFFER parameter is way too small for many databases. Oracle states
that you don’t normally need to set a value larger than 1 MB for this parameter. However, you shouldn’t
hesitate to raise it to a much larger amount, if it’s warranted by circumstances.

How It Works
When the Oracle server processes change data blocks in the buffer cache, those changes are written to
the redo logs in the form of redo log entries, before they are written to disk. The redo log entries enable
the database to redo or reconstruct the database changes by using various operations such as INSERT,
UPDATE, and DELETE, as well as DDL operations. The Oracle redo logs are thus critical for any database
recovery, because it’s these redo log entries that enable the database to apply all the changes made to
the database from a point in time in the past. The changed data doesn’t directly go to the redo logs,
however; Oracle first writes the changes to a memory area called the redo log buffer. It’s the value of this
memory buffer that you can configure with the LOG_BUFFER parameter. The Oracle log writer (LGWR)
process writes the redo log buffer entries to the active redo log file (or group of files). LGWR flushes the
contents of the buffer to disk whenever the buffer is one-third full, or if the database writer requests the
LGWR to write to the redo log file. Also, upon each COMMIT or ROLLBACK by a server process, the LGWR
process writes the contents of the buffer to the redo log file on disk.

The redo log buffer is a re-usable cache, so as entries are written out to the redo log file, user
processes copy new entries into the redo log buffer. While the LGWR usually works fast enough so
there’s space in the buffer, a larger buffer will always have more room for new entries. Since there’s no
cost whatsoever to increasing the LOG_BUFFER size, feel free to set it to higher than the suggested
maximum of 1 MB for this parameter.

If your database is processing large updates, the LGWR has to frequently flush the redo log buffer to
the redo log files even in the absence of a COMMIT statement, so as to keep the buffer no more than a third
full. Raising the size of the redo log buffer is an acceptable solution in this situation, and allows the
LGWR to catch up with the heavy amount of entries into the redo log buffer. This also offsets a slow I/O
system in some ways, if you think the performance of the LGWR process is not fast enough. There are a
couple of ways in which you keep the pressure on the redo log buffer down: you can batch COMMIT
operations for all batch jobs and also specify the NOLOGGING option where possible, say during regular
data loads. When you specify the NOLOGGING option during a data load, Oracle doesn’t need to use the
redo log files, and hence it also bypasses the redo log buffer as well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ OPTIMIZING INSTANCE MEMORY

112

It’s fairly easy to tune the size of the LOG_BUFFER parameter. Just execute the following statement to
get the current “redo log space request ratio”:

SQL> select round(t.value/s.value,5) "Redo Log Space Request Ratio"
 from v$sysstat s, v$sysstat t
 where s.name = 'redo log space requests'
 and t.name = 'redo entries'

The redo log space request ratio is simply the ratio of total redo log space requests to redo entries.
You can also query the V$SYSSTAT view to find the value of the statistic redo buffer allocation retries.
This statistic shows the number of times processes waited for space in the redo log buffer:

SQL> select name,value from V$SYSSTAT
 where name= 'redo buffer allocation retries';

Execute this SQL query multiple times over a period of time. If the value of the “redo buffer allocation
retries” statistic is rising steadily over this period, it indicates that the redo log buffer is under space
pressure and as a result, processes are waiting to write their redo log entries to the redo log buffer. You
must increase the size of the redo log buffer if you continue to see this.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 4

113

Monitoring System Performance

Monitoring system and database performance is a complex task, and there can be many aspects to
managing performance, including memory, disk, CPU, database objects, and database user sessions—
just for starters. This chapter zeroes in on using Oracle’s Automatic Workload Repository (AWR) to
gather data about the activities occurring within your database, and help convert that raw data into
useful information to help gauge performance within your database for a specific period of time.
Usually, when there are performance issues occurring within a database, it’s easy to know when the
performance problems are occurring because database activity is “slow” during that given time frame.
Knowing this time frame is the starting point to perform the analysis using the AWR information.

The AWR is created automatically when you create your Oracle database, and automatically gathers
statistics on the activities occurring within your database. Some of this data is real-time or very near real-
time, and some of the data represents historical statistics on these activities. The most current data on
active sessions is stored in the Active Session History (ASH) component of the performance statistics
repository. The more historical snapshots of data are generally known as the AWR snapshots.

The AWR process captures hourly snapshots by default from Oracle’s dynamic performance views,
and stores them within the AWR. This gives the DBA the ability to view database activity over any period
of time, whether it is a single-hour time frame, up to all activity that is stored within the AWR. For
instance, if you have a period of time where your database is performing poorly, you can generate an
AWR report that will give statistics on the database activity for only that specific period of time.

The ASH component of the AWR is really meant to give the DBA a more real-time look at session
information that is not captured within the AWR snapshots. The session information stored within the
ASH repository is data that is sampled every second from the dynamic performance views.

Oracle has had similar information within the database for many years with its predecessors
UTLBSTAT/UTLESTAT and Statspack, but the report data hasn’t been generated or saved automatically
until AWR came along with Oracle 10g. This information can now help monitor your database
performance much more easily, whether it be analyzing real-time data on activities currently going on
within your database, or historical information that could be days, weeks, or even months old,
depending on the configuration of the AWR within your database.

4-1. Implementing Automatic Workload Repository (AWR)

Problem
You want to store historical database performance statistics on your database for tuning purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

114

Solution
By implementing and using the Automatic Workload Repository (AWR) within your database, Oracle will
store interval-based historical statistics in your database for future reference. This information can be
used to see what was going on within your database within a given period of time. By default, the AWR
should be enabled within your database. The key initialization parameter to validate is the
STATISTICS_LEVEL parameter:

SQL> show parameter statistics_level

NAME TYPE VALUE
------------------------------------ -------- ------------------------------
statistics_level string TYPICAL

This parameter can be set to BASIC, TYPICAL (which is the default), and ALL. As long as the parameter
is set to TYPICAL or ALL, statistics will be gathered for the AWR. If the parameter is set to BASIC, you simply
need to modify the parameter in order to start gathering AWR statistics for your database:

alter system set statistics_level=TYPICAL scope=both;

How It Works
The predecessor of AWR, which is Statspack, requires manual setup and configuration to enable the
statistics gathering. As stated, there generally is no setup required, unless the STATISTICS_LEVEL
parameter has been changed to the BASIC setting. By default, an AWR snapshot is taken every hour on
your database, and is stored, by default, for eight days. These are configurable settings that can be
modified, if desired. See Recipe 4-2 for information on modifying the default settings of the AWR
snapshots.

In addition to simply seeing the value of the STATISTICS_LEVEL parameter, you can also view the
V$STATISTICS_LEVEL view to see this information, which has information on the STATISTICS_LEVEL
setting, as well as all other relevant statistical components within your database:

SELECT statistics_name, activation_level, system_status
FROM v$statistics_level;

STATISTICS_NAME ACTIVAT SYSTEM_S
-- ------- --------
Buffer Cache Advice TYPICAL ENABLED
MTTR Advice TYPICAL ENABLED
Timed Statistics TYPICAL ENABLED
Timed OS Statistics ALL DISABLED
Segment Level Statistics TYPICAL ENABLED
PGA Advice TYPICAL ENABLED
Plan Execution Statistics ALL DISABLED
Shared Pool Advice TYPICAL ENABLED
Modification Monitoring TYPICAL ENABLED
Longops Statistics TYPICAL ENABLED
Bind Data Capture TYPICAL ENABLED
Ultrafast Latch Statistics TYPICAL ENABLED
Threshold-based Alerts TYPICAL ENABLED
Global Cache Statistics TYPICAL ENABLED
Active Session History TYPICAL ENABLED

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

115

Undo Advisor, Alerts and Fast Ramp up TYPICAL ENABLED
Streams Pool Advice TYPICAL ENABLED
Time Model Events TYPICAL ENABLED
Plan Execution Sampling TYPICAL ENABLED
Automated Maintenance Tasks TYPICAL ENABLED
SQL Monitoring TYPICAL ENABLED
Adaptive Thresholds Enabled TYPICAL ENABLED
V$IOSTAT_* statistics TYPICAL ENABLED
Session Wait Stack TYPICAL ENABLED

24 rows selected.

The type of information that is stored in the AWR includes the following:

• Statistics regarding object access and usage

• Time model statistics

• System statistics

• Session statistics

• SQL statements

The information gathered is then grouped and formatted by category. Some of the categories found
on the report include the following:

• Instance efficiency

• Top 5 timed events

• Memory and CPU statistics

• Wait information

• SQL statement information

• Miscellaneous operating system and database statistics

• Database file and tablespace usage information

■ Note To use AWR functionality, the following must apply. First, you must be licensed for the Oracle
Diagnostics Pack, otherwise you need to use Statspack. Second, the CONTROL_MANAGEMENT_PACK_ACCESS
parameter must be set to DIAGNOSTIC+TUNING or DIAGNOSTIC.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

116

4-2. Modifying the Statistics Interval and Retention Periods

Problem
You need to set an interval or retention period for your AWR snapshots to values other than the default.

Solution
By using the DBMS_WORKLOAD_REPOSITORY PL/SQL package, you can modify the default snapshot settings
for your database. In order to first validate your current retention and interval settings for your AWR
snapshots, run the following query:

SQL> column awr_snapshot_retention_period format a40
SQL> SELECT EXTRACT(day from retention) || ':' ||
 EXTRACT(hour from retention) || ':' ||
 EXTRACT (minute from retention) awr_snapshot_retention_period,
 EXTRACT (day from snap_interval) *24*60+
 EXTRACT (hour from snap_interval) *60+
 EXTRACT (minute from snap_interval) awr_snapshot_interval
FROM dba_hist_wr_control;

AWR_SNAPSHOT_RETENTION_PERIOD AWR_SNAPSHOT_INTERVAL
------------------------------ ---------------------
8:13:45 60

The retention period output just shown is in day:hour:minute format. So, our current retention
period is 8 days, 13 hours, and 45 minutes. The interval, or how often the AWR snapshots will be
gathered, is 60 minutes in the foregoing example. To then modify the retention period and interval
settings, you can use the MODIFY_SNAPSHOT_SETTINGS procedure of the DBMS_WORKLOAD_REPOSITORY
package. To change these settings for your database, issue a command such as the following example,
which modifies the retention period to 30 days (specified by number of minutes), and the snapshot
interval at which snapshots are taken to 30 minutes. Of course, you can choose to simply set one
parameter or the other, and do not have to change both settings. The following example shows both
parameters simply for demonstration purposes:

SQL> exec DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(retention=>43200, interval=>30);

PL/SQL procedure successfully completed.

You can then simply rerun the query from the DBA_HIST_WR_CONTROL data dictionary view in order to
validate that your change is now in effect:

SQL> /

AWR_SNAPSHOT_RETENTION_PERIOD AWR_SNAPSHOT_INTERVAL
-- ---------------------
30:0:0 30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

117

How It Works
It is generally a good idea to modify the default settings for your database, as eight days of retention is
often not enough when diagnosing possible database issues or performing database tuning activities on
your database. If you have been notified of a problem for a monthly process, for example, the last time
frame that denoted an ordinary and successful execution of the process would no longer be available,
unless snapshots were stored for the given interval. Because of this, it is a good idea to store a minimum
of 45 days of snapshots, if at all possible, or even longer if storage is not an issue on your database. If you
want your snapshots to be stored for an unlimited amount of time, you can specify a zero value, which
tells Oracle to keep the snapshot information indefinitely (actually, for 40,150 days, or 110 years). See the
following example:

SQL> exec DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(retention=>0);

PL/SQL procedure successfully completed.

SQL> /

AWR_SNAPSHOT_RETENTION_PERIOD AWR_SNAPSHOT_INTERVAL
-- ---------------------
40150:0:0 30

The default snapshot interval of one hour is usually granular enough for most databases, as when
there are more frequent or closer to real-time needs, you can use the Active Session History (ASH)
information. By increasing the default snapshot interval to greater than one hour, it can actually make it
more difficult to diagnose performance issues, as statistics for the increased window may make it harder
to distinguish and identify performance issues for a given time period.

4-3. Generating an AWR Report Manually

Problem
You want to generate an AWR report, and know the time frame on which to gather information.

Solution
In order to generate an AWR report, run the awrrpt.sql script found under the $ORACLE_HOME/
rdbms/admin directory. In this example, we needed to enter information for the following:

• Report type (text or html)

• Number of days you want displayed from which to choose snapshots

• The starting snapshot number for the period on which you want to generate a
report

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

118

• The ending snapshot number for the period on which you want to generate a
report

• The name of the report (enter a name if you do not want the default report name
and location)

The lines in bold type here denote points where user input is required:

$ sqlplus / as sysdba @awrrpt

Current Instance
~~~~~~~~~~~~~~~~ 
   DB Id    DB Name      Inst Num Instance 
----------- ------------ -------- ------------ 
 2334201269 ORCL               1 ORCL 
 
Specify the Report Type 
~~~~~~~~~~~~~~~~~~~~~~~ 
Would you like an HTML report, or a plain text report?
Enter 'html' for an HTML report, or 'text' for plain text
Defaults to 'html'
Enter value for report_type: text

Type Specified: text

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
   DB Id     Inst Num DB Name      Instance     Host 
------------ -------- ------------ ------------ ------------ 
* 2334201269        1 ORCL         ORCL         ora                                           
 
Using 2334201269 for database Id 
Using          1 for instance number 
 
Specify the number of days of snapshots to choose from 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Enter value for num_days: 7
Listing the last 7 days of Completed Snapshots

 Snap
Instance DB Name Snap Id Snap Started Level
------------ ------------ --------- ------------------ -----
ORCL ORCL 257 28 May 2011 00:00 2

 258 28 May 2011 13:39 2
 259 28 May 2011 15:00 2
 260 28 May 2011 16:00 2
 261 28 May 2011 17:00 2
 262 28 May 2011 18:00 2
 263 28 May 2011 19:00 2
 264 28 May 2011 20:00 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

119

 265 28 May 2011 21:00 2
 266 28 May 2011 22:00 2
 267 28 May 2011 23:00 2
 268 29 May 2011 00:00 2

 269 29 May 2011 11:52 2
 270 29 May 2011 13:00 2
 271 29 May 2011 14:00 2
 272 29 May 2011 15:00 2
 273 29 May 2011 16:00 2
 274 29 May 2011 17:00 2

 275 30 May 2011 17:00 2
 276 30 May 2011 18:00 2
 277 30 May 2011 19:00 2
 278 30 May 2011 20:00 2

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Enter value for begin_snap: 258 
Begin Snapshot Id specified: 258 
 
Enter value for end_snap: 268 
End   Snapshot Id specified: 268 
 
Specify the Report Name 
~~~~~~~~~~~~~~~~~~~~~~~ 
The default report file name is awrrpt_1_258_268.txt. To use this name,
press <return> to continue, otherwise enter an alternative.

Enter value for report_name: /tmp/awrrpt_1_258_268.txt

Using the report name /tmp/awrrpt_1_258_268.txt

< Output of report is shown across the screen >

End of Report
Report written to /tmp/awrrpt_1_258_268.txt

How It Works
In the foregoing example, note that between some of the snapshots listed there is a blank line. Since we
are getting information based on the dynamic performance views of the data dictionary, you cannot
specify a snapshot period that spans bounces of the database instance, as all statistics in the dynamic
performance views are lost when a database instance is shut down. Therefore, choose a snapshot period
only for the life of an instance; otherwise you can experience the following error:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

120

Enter value for begin_snap: 274
Begin Snapshot Id specified: 274

Enter value for end_snap: 275
End Snapshot Id specified: 275

declare
*
ERROR at line 1:
ORA-20200: The instance was shutdown between snapshots 274 and 275
ORA-06512: at line 42

Although it is recommended to use the awrrpt.sql script to generate the desired AWR report, you
can manually use the AWR_REPORT_TEXT or AWR_REPORT_HTML functions within the
DBMS_WORKLOAD_REPOSITORY package to generate an AWR report, if needed. You need to also have your
database’s DBID and instance number handy as well when running either of these functions. See the
following for an example:

SELECT dbms_workload_repository.awr_report_text
 (l_dbid=>2334201269,l_inst_num=>1,l_bid=>258,l_eid=>268)
FROM dual;

4-4. Generating an AWR Report via Enterprise Manager

Problem
You want to generate an AWR report from within Enterprise Manager.

Solution
Within Enterprise Manager, depending on your version, the manner in which to generate an AWR report
may differ. There is also generally more than one way to generate an AWR report. In Figure 4-1, this
particular screen shows that you enter the beginning and ending snapshot ranges, and after you click the
Generate Report button, an AWR HTML report will immediately be displayed within your browser
window. A sample screen of the resulting AWR report is shown in Figure 4-2.

Figure 4-1. Generating an AWR report within Enterprise Manager

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

121

Figure 4-2. HTML AWR report

How It Works
The AWR report via Enterprise Manager can be generated if you have Database Control configured, or if
you are using Grid Control. You need to be licensed for the Oracle Diagnostics Pack in order to be able to
use this feature.

4-5. Generating an AWR Report for a Single SQL Statement

Problem
You want to see statistics for a single SQL statement, and do not want all other associated statistics
generated from an AWR report.

Solution
You can run the awrsqrpt.sql script, which is very similar to awrrpt.sql. You will be prompted for all of
the same information, except you will have an additional prompt for a specific SQL ID value—for
example:

Specify the SQL Id
~~~~~~~~~~~~~~~~~~ 
Enter value for sql_id: 5z1b3z8rhutn6
SQL ID specified:  5z1b3z8rhutn6 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

122 

The resulting report zeroes in on information specifically for your SQL statement, including CPU 
Time, Disk Reads, and Buffer Gets. It also gives a detailed execution plan for review. See the following 
snippet from the report: 

Stat Name                                Statement   Per Execution % Snap 
---------------------------------------- ---------- -------------- ------- 
Elapsed Time (ms)                           210,421      105,210.3     9.4 
CPU Time (ms)                                22,285       11,142.3     1.6 
Executions                                        2            N/A     N/A 
Buffer Gets                               1,942,525      971,262.5    12.5 
Disk Reads                                1,940,578      970,289.0    14.0 
Parse Calls                                       9            4.5     0.0 
Rows                                              0            0.0     N/A 
User I/O Wait Time (ms)                     195,394            N/A     N/A 
Cluster Wait Time (ms)                            0            N/A     N/A 
Application Wait Time (ms)                        0            N/A     N/A 
Concurrency Wait Time (ms)                        0            N/A     N/A 
Invalidations                                     0            N/A     N/A 
Version Count                                     2            N/A     N/A 
Sharable Mem(KB)                                 22            N/A     N/A 
  
Execution Plan 
------------------------------------------------------------------------------------------- 
| Id  | Operation            | Name     | Rows  | Bytes | Cost (%CPU)| Time     |PQ Dis 
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |          |       |       | 73425 (100)|          |   
|   1 |  PX COORDINATOR      |          |       |       |            |          |       
|   2 |   PX SEND QC (RANDOM)| :TQ10000 |     1 |    39 | 73425   (1)| 00:14:42 | P->S  
|   3 |    PX BLOCK ITERATOR |          |     1 |    39 | 73425   (1)| 00:14:42 | PCWC  
|   4 |     TABLE ACCESS FULL| EMPPART  |     1 |    39 | 73425   (1)| 00:14:42 | PCWP  
-------------------------------------------------------------------------------------------- 
 
Full SQL Text 
 
SQL ID       SQL Text 
------------ ------------------------------------------------------------------ 
5z1b3z8rhutn /* SQL Analyze(98, 0) */ select * from emppart where empno > 12345 

How It Works 
Utilizing this feature is a handy way to get historical statistics for a given SQL statement. For current 
statements, you can continue to use other mechanisms such as AUTOTRACE, but after a SQL statement has 
been run, using the awrsqrpt.sql script provides an easy mechanism to help analyze past run 
statements and help retroactively tune poorly performing SQL statements. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

123 

4-6. Creating a Statistical Baseline for Your Database 

Problem 
You want to establish baseline statistics that represent a normal view of database operations. 

Solution 
You can create AWR baselines in order to establish a saved workload view for your database, which can 
be used later for comparison to other AWR snapshots. The purpose of a baseline is to establish a normal 
workload view of your database for a predefined time period. Performance statistics for an AWR baseline 
are saved in your database, and are not purged automatically. There are two types of baselines—fixed 
and moving. 

Fixed Baselines 
The most common type of baseline is called a fixed baseline. This is a single, static view that is meant to 
represent a normal system workload. To manually create an AWR baseline, you can use the 
CREATE_BASELINE procedure of the DBMS_WORKLOAD_REPOSITORY PL/SQL package. The following example 
illustrates how to create a baseline based on a known begin and end date and time for which the 
baseline will be created: 

SQL> exec dbms_workload_repository.create_baseline - 
    (to_date('2011-06-01:00:00:00','yyyy-mm-dd:hh24:mi:ss'), - 
    to_date('2011-06-01:06:00:00','yyyy-mm-dd:hh24:mi:ss'),'Batch Baseline #1'); 
 
PL/SQL procedure successfully completed. 

For the foregoing baseline, we want to establish a normal workload for a data warehouse batch 
window, which is between midnight and 6 a.m. This baseline will be held indefinitely unless explicitly 
dropped (see Recipe 4-7 for managing AWR baselines). Any fixed baseline you create stays in effect until 
a new baseline is created. If you want to have a set expiration for a baseline, you can simply specify the 
retention period for a baseline when creating it by using the EXPIRATION parameter, which is specified in 
days: 

exec dbms_workload_repository.create_baseline( - 
start_time=>to_date('2011-06-01:00:00:00','yyyy-mm-dd:hh24:mi:ss'), - 
end_time=>to_date('2011-06-01:06:00:00','yyyy-mm-dd:hh24:mi:ss'), - 
baseline_name=>'Batch Baseline #1', - 
expiration=>30); 

You can also create a baseline based on already created AWR snapshot IDs. In order to do this, you 
could run the CREATE_BASELINE procedure as follows: 

exec dbms_workload_repository.create_baseline( - 
start_snap_id=>258,end_snap_id=>268,baseline_name=>'Batch Baseline #1', - 
expiration=>30); 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

124 

Moving Baselines 
Like the fixed baseline, the moving baseline is used to capture metrics over a period of time. The big 
difference is the metrics for moving baselines are captured based on the entire AWR retention period. 
For instance, the default AWR retention is eight days (see Recipe 4-2 on changing the AWR retention 
period). These metrics, also called adaptive thresholds, are captured based on the entire eight-day 
window. Furthermore, the baseline changes with each passing day, as the AWR window for a given 
database moves day by day. Because of this, the metrics over a given period of time can change as a 
database evolves and performance loads change over time. A default moving baseline is automatically 
created—the SYSTEM_MOVING_BASELINE. It is recommended to increase the default AWR retention period, 
as this may give a more complete set of metrics on which to accurately analyze performance. The 
maximum size of the moving window is the AWR retention period. To modify the moving window 
baseline, use the MODIFY_BASELINE_WINDOW_SIZE procedure of the DBMS_WORKLOAD_REPOSITORY package, as 
in the following example: 

SQL>  exec dbms_workload_repository.modify_baseline_window_size(30); 
 
PL/SQL procedure successfully completed. 

How It Works 
Setting the AWR retention period is probably the most important thing to configure when utilizing the 
moving baseline, as all adaptive threshold metrics are based on information from the entire retention 
period. When setting the retention period for the moving baseline, remember again that it cannot 
exceed the AWR retention period, else you may get the following error: 

SQL> exec dbms_workload_repository.modify_baseline_window_size(45); 
BEGIN dbms_workload_repository.modify_baseline_window_size(45); END; 
* 
ERROR at line 1: 
ORA-13541: system moving window baseline size (3888000) greater than retention 
(2592000) 
ORA-06512: at "SYS.DBMS_WORKLOAD_REPOSITORY", line 686 
ORA-06512: at line 1 

If you set your AWR retention to an unlimited value, there still is an upper bound to the moving 
baseline retention period, and you could receive the following error if you set your moving baseline 
retention period too high, and your AWR retention period is set to unlimited: 

exec dbms_workload_repository.modify_baseline_window_size(92); 
BEGIN dbms_workload_repository.modify_baseline_window_size(92); END; 
* 
ERROR at line 1: 
ORA-13539: invalid input for modify baseline window size (window_size, 92) 
ORA-06512: at "SYS.DBMS_WORKLOAD_REPOSITORY", line 686 
ORA-06512: at line 1 

For fixed baselines, the AWR retention isn’t a factor, and is a consideration only based on how far 
back in time you want to compare a snapshot to your baseline. After you have set up any baselines, you 
can get information on baselines from the data dictionary. To get information on the baselines in your 
database, you can use a query such as the following one, which would show you any fixed baselines you 
have configured, as well as the automatically configured moving baseline: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

125 

  SELECT baseline_name, start_snap_id start_id, 
         TO_CHAR(start_snap_time, 'yyyy-mm-dd:hh24:mi') start_time, 
         end_snap_id end_id, 
         TO_CHAR(end_snap_time, 'yyyy-mm-dd:hh24:mi') end_time, 
         expiration 
  FROM dba_hist_baseline 
  ORDER BY baseline_id; 
 
BASELINE_NAME          START_ID START_TIME           END_ID END_TIME         EXPIRATION 
-------------------- ---------- ---------------- ---------- ---------------- ---------- 
SYSTEM_MOVING_WINDOW        255 2011-05-27:22:00        358 2011-06-08:22:00 
Batch Baseline #1           258 2011-05-28:13:39        268 2011-05-29:00:00      30 

From the foregoing results, the moving baseline includes the entire range of snapshots based on the 
AWR retention period; therefore the expiration is shown as NULL. You can get similar information by 
using the SELECT_BASELINE_DETAILS function of the DBMS_WORKLOAD_REPOSITORY package. You do need the 
baseline_id number to pass into the function to get the desired results: 

SELECT start_snap_id, start_snap_time, end_snap_id, end_snap_time, 
       pct_total_time pct  FROM (SELECT * FROM 
       TABLE(DBMS_WORKLOAD_REPOSITORY.select_baseline_details(12))); 
 
START_SNAP_ID START_SNAP_TIME           END_SNAP_ID END_SNAP_TIME                 PCT 
------------- ------------------------- ----------- ------------------------- ---------- 
          258 28-MAY-11 01.39.19.296 PM         268 29-MAY-11 12.00.45.211 AM     100 

To get more specific information on the moving baseline in the database, you are drilling down into 
the statistics for the adaptive metrics. For instance, to see an average and maximum for each metric 
related to reads based on the moving window, you could use the following query: 

column metric_name format a50 
SELECT metric_name, average, maximum FROM 
(SELECT * FROM TABLE 
(DBMS_WORKLOAD_REPOSITORY.select_baseline_metric('SYSTEM_MOVING_WINDOW'))) 
where lower(metric_name) like '%read%' 
order by metric_name; 
 
METRIC_NAME                                           AVERAGE    MAXIMUM 
-------------------------------------------------- ---------- ---------- 
Average Synchronous Single-Block Read Latency      .159658155 53.8876404 
Consistent Read Changes Per Sec                    2.99232446 3984.11246 
Consistent Read Changes Per Txn                    117.812978     239485 
Consistent Read Gets Per Sec                       202.570936  64677.436 
Consistent Read Gets Per Txn                       3930.41373 372602.889 
Logical Reads Per Sec                              224.984307 64690.6884 
Logical Reads Per Txn                              4512.34119     840030 
Logical Reads Per User Call                        276.745756     135804 
Physical Read Bytes Per Sec                        1249601.48  528672777 
Physical Read IO Requests Per Sec                  6.44664078 2040.73828 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

126 

Physical Read Total Bytes Per Sec                  1272159.18  528699475 
Physical Read Total IO Requests Per Sec            7.82238122 2042.31792 
Physical Reads Direct Lobs Per Sec                 .006030572  4.6953047 
Physical Reads Direct Lobs Per Txn                 .231642268        141 
Physical Reads Direct Per Sec                      59.3280451 64535.1513 
Physical Reads Direct Per Txn                      602.336945 371825.222 
Physical Reads Per Sec                             152.539244 64535.2511 
Physical Reads Per Txn                             2966.04803 371831.889 

4-7. Managing AWR Baselines via Enterprise Manager 

Problem 
You want to create and manage AWR baselines using Enterprise Manager. 

Solution 
Using Enterprise Manager, you can easily configure or modify baselines. In Figure 4-3, you can see the 
window where you can establish or modify your existing baselines, including any fixed baselines, as well 
as the system moving baseline. To create a new fixed baseline, you would click the Create button, which 
would navigate you to the screen shown in Figure 4-4, where you can configure your new fixed baseline. 
Within this screen, you name your baseline, and choose between a snapshot-based or time-based 
baseline. 

 

 

Figure 4-3. Managing baselines within Enterprise Manager 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

127 

 

Figure 4-4. Creating new fixed baseline within Enterprise Manager 

When deciding to modify your existing baselines, the screen options differ between modifying fixed 
baselines, and modifying the system moving baseline. Figure 4-5 shows the modifiable options for a 
fixed baseline. As you can see, the only real modification that can be made is the actual baseline name 
itself. Figure 4-6 shows how to change the moving baseline window within Enterprise Manager. As 
mentioned before, the actual screens may differ between versions of the Enterprise Manager tool. 

 

 

Figure 4-5. Modifying a fixed baseline within Enterprise Manager 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

128 

 

Figure 4-6. Modifying the moving baseline within Enterprise Manager 

How It Works 
For any fixed baseline created or the system moving baseline, you can also simply generate an AWR 
report based on a particular baseline. Figure 4-1 shows how to generate a snapshot-based AWR report by 
clicking the By Snapshot button. Using this same screen, you can also generate an AWR report for a 
baseline simply by clicking the By Baseline button. 

If you want to delete a baseline from within Enterprise Manager, simply click the radio button of the 
baseline you wish to delete, and then click the Delete button, as depicted in Figure 4-7. Figure 4-8 shows 
how to actually delete the baseline. You can choose to keep or purge the baseline data by clicking the 
appropriate radio button. 

 

 

Figure 4-7. Choosing a baseline to delete 

 

Figure 4-8. Deleting a baseline 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

129 

■ Note You cannot delete the system moving baseline. 

4-8. Managing AWR Statistics Repository 

Problem 
You have AWR snapshots and baselines in place for your database, and need to perform regular 
maintenance activities for your AWR information. 

Solution 
By using the DBMS_WORKLOAD_REPOSITORY package, you can perform most maintenance on your baselines, 
including the following: 

• Renaming a baseline 

• Dropping a baseline 

• Dropping a snapshot range 

To rename a baseline, use the RENAME_BASELINE procedure of the DBMS_WORKLOAD_REPOSITORY 
package: 

SQL>  exec dbms_workload_repository.rename_baseline - 
      ('Batch Baseline #9','Batch Baseline #10'); 
 
PL/SQL procedure successfully completed. 

To drop a baseline, simply use the DROP_BASELINE procedure: 

SQL> exec dbms_workload_repository.drop_baseline('Batch Baseline #1'); 
 
PL/SQL procedure successfully completed. 

If you have decided you have AWR snapshots you no longer need, you can reduce the number of 
AWR snapshots held within your database by dropping a range of snapshots using the DROP_BASELINE 
procedure: 

SQL>  exec dbms_workload_repository.drop_snapshot_range(255,256); 
 
PL/SQL procedure successfully completed. 

How It Works 
In addition to the DBMS_WORKLOAD_REPOSITORY package, there are other things you can do to analyze your 
AWR information in order to help manage all of the AWR information in your database, including the 
following: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

130 

• Viewing AWR information from the data dictionary 

• Moving AWR information to a repository in another database location 

If you wanted to store AWR  information for an entire grid of databases in a single database, Oracle 
provides scripts that can be run in order to extract AWR information from a given database, based on a 
snapshot range, and in turn, load that information into a different database. 

To extract a given snapshot range of AWR information from your database, you need to run the 
awrextr.sql script. This script is an interactive script, and asks for the same kind of information as when 
you generate an AWR report using the awrrpt.sql script. You need to answer the following questions 
when running this script: 

1. DBID (defaults to DBID of current database) 

2. Number of days of snapshots to display for extraction 

3. The beginning snapshot number to extract 

4. The ending snapshot number to extract 

5. Oracle directory in which to place the resulting output file holding all the AWR 
information for the specified snapshot range; the directory must be entered in 
upper case. 

6. Output file name (defaults to awrdat plus snapshot range numbers) 

Keep in mind that the output file generated by this process does take up space, which can vary 
based on the number of sessions active at snapshot time. Each individual snapshot needed for 
extraction can take up 1 MB or more of storage, so carefully gauge the amount of snapshots needed. If 
necessary, you can break the extraction process into pieces if there is inadequate space on a given target 
directory. 

 In addition, for each output file generated, a small output log file is also generated, with 
information about the extraction process, which can be useful in determining if the information 
extracted matches what you think has been extracted. This is a valuable audit to ensure you have 
extracted the AWR information you need. 

Once you have the extract output file(s), you need to transport them (if necessary) to the target 
server location for loading into the target database location. The load process is done using the 
awrload.sql script. What is needed for input into the load script includes the following: 

1. Oracle directory in which to place the resulting output file holding all the AWR 
information for the specified snapshot range; the directory must be entered in 
upper case. 

2. File name (would be the same name as entered in number 6 of the extraction 
process (for the awrextr.sql script); when entering the file name, exclude the 
.dmp suffix, as it will be appended automatically. 

3. Target schema (default schema name is AWR_STAGE) 

4. Target tablespace for object that will be created (provides list of choices) 

5. Target temporary tablespace for object that will be created (provides list of 
choices) 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

131 

After the load of the data is complete, the AWR data is moved to the SYS schema in the data
dictionary tables within the target database. The temporary target schema (for example, AWR_STAGE) is
then dropped. 

In order to generate an AWR report generated from one database that is then loaded into a different 
database, use the AWR_REPORT_TEXT function of the DBMS_WORKLOAD_REPOSITORY package. For example, let’s
say we loaded and stored snapshots 300 through 366 into our separate AWR  database. If we wanted to
generate an AWR report for the information generated between snapshots 365 and 366 for a given
database, we would run the following command, with the DBID of the originating, source database, as
well as the beginning and ending snapshot numbers as follows: 

SELECT  dbms_workload_repository.awr_report_text 
        (l_dbid=>2334201269,l_inst_num=>1,l_bid=>365,l_eid=>366)
FROM dual; 

4-9. Creating AWR Baselines Automatically 

Problem 
You want to periodically create baselines in your database automatically. 

Solution 
You can create an AWR repeating template, which gives you the ability to have baselines created
automatically based on a predefined interval and time frame. By using the CREATE_BASELINE_TEMPLATE
procedure within the DBMS_WORKLOAD_REPOSITORY package, you can have a fixed baseline automatically
created for this repeating interval and time frame. See the following example to set up an AWR template: 

SQL> alter session set nls_date_format = 'yyyy-mm-dd:hh24:mi:ss'; 

SQL> exec DBMS_WORKLOAD_REPOSITORY.create_baseline_template( -
>    day_of_week          => 'WEDNESDAY', - 
>    hour_in_day          => 0, - 
>    duration             => 6, - 
>    start_time           => '2011-06-14:00:00:00', - 
>    end_time             => '2011-06-14:06:00:00', - 
>    baseline_name_prefix => 'Batch Baseline ', - 
>    template_name        => 'Batch Template', - 
>    expiration           => 365); 

PL/SQL procedure successfully completed. 

For the foregoing template, a fixed baseline will be created based on the midnight to 6 a.m. window
every Wednesday. In this case, this template creates baselines for a normal batch window time frame. 

If you are using Enterprise Manager, you can create a template using the same parameters. See
Figure 4-9 for an example. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

132 

 

Figure 4-9. Creating an AWR template 

How It Works 
If you need to drop your template, you simply use the DROP_BASELINE_TEMPLATE procedure from the 
DBMS_WORKLOAD_REPOSITORY package. See the following example: 

SQL> exec dbms_workload_repository.drop_baseline_template('Batch Template'); 
 
PL/SQL procedure successfully completed. 

If you wish to view information on any templates you have created, you can query the 
DBA_HIST_BASELINE_TEMPLATE view. See the following sample query: 

column template_name format a14 
column prefix format a14 
column hr format 99 
column dur format 999 
column exp format 999 
 
SELECT template_name, baseline_name_prefix prefix, 
to_char(start_time,'mm/dd/yy:hh24') start_time, 
to_char(end_time,'mm/dd/yy:hh24') end_time, 
substr(day_of_week,1,3) day, hour_in_day hr, duration dur, expiration exp, 
to_char(last_generated,'mm/dd/yy:hh24') last 
FROM dba_hist_baseline_template; 

 

TEMPLATE_NAME  PREFIX         START_TIME  END_TIME    DAY  HR  DUR  EXP LAST 
-------------- -------------- ----------- ----------- --- --- ---- ---- ----------- 
Batch Template Batch Baseline 06/14/11:00 06/14/11:06 WED   0    6  365 06/14/11:00 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

133 

4-10. Quickly Analyzing AWR Output 

Problem 
You have generated an AWR report, and want to quickly interpret key portions of the report to determine 
if there are performance issues for your database. 

Solution 
The AWR report, like its predecessors Statspack and UTLBSTAT/UTLESTAT for earlier versions of 
Oracle, has a multitude of statistics to help you determine how your database is functioning and 
performing. There are many sections of the report. The first three places on the report to gauge how your 
database is performing are as follows: 

1. DB Time 

2. Instance Efficiency 

3. Top 5 Timed Events  

The first section displayed on the report shows a summary of the snapshot window for your report, 
as well as a brief look at the elapsed time, which represents the snapshot window, and the DB time, 
which represents activity on your database. If the DB time exceeds the elapsed time, it denotes a busy 
database. If it is a lot higher than the elapsed time, it may mean that some sessions are waiting for 
resources. While not specific, it can give you a quick view to see if your overall database is busy and 
possibly overtaxed. We can see from the following example of this section that this is a very busy 
database by comparing the elapsed time to the DB time: 

              Snap Id      Snap Time      Sessions Curs/Sess 
            --------- ------------------- -------- --------- 
Begin Snap:     18033 11-Jun-11 00:00:43        59       2.3 
  End Snap:     18039 11-Jun-11 06:00:22        69       2.4 
   Elapsed:              359.66 (mins) 
   DB Time:            7,713.90 (mins) 

The instance efficiency section gives you a very quick view to determine if things are running 
adequately on your database. Generally, most percentages within this section should be above 90%. The 
Parse CPU to Parse Elapsd metric shows how much time the CPU is spending parsing SQL statements. 
The lower this metric is, the better. In the following example, it is about 2%, which is very low. If this 
metric ever gets to 5%, it may mean investigation is warranted to determine why the CPU is spending 
this much time simply parsing SQL statements. 

Instance Efficiency Percentages (Target 100%) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Buffer Nowait %: 99.64 Redo NoWait %: 99.99
 Buffer Hit %: 91.88 In-memory Sort %: 99.87
 Library Hit %: 98.92 Soft Parse %: 94.30
 Execute to Parse %: 93.70 Latch Hit %: 99.89
Parse CPU to Parse Elapsd %: 2.10 % Non-Parse CPU: 99.75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE

134

The third place to get a quick glance at your database performance is the Top 5 Timed Events
section. This section gives you a quick look at exactly where the highest amount of resources are being
consumed within your database for the snapshot period. Based on these results, it may show you that
there is an inordinate amount of time spent performing full-table scans, or getting data across a network
database link. The following example shows that the highest amount of resources is being used
performing index scans (noted by “db file sequential read”). We can see there is significant time on
“local write wait”, “enq: CF – contention”, and “free buffer waits”, which gives us a quick view of
what possible contention and wait events are for our database, and gives us immediate direction for
investigation and analysis.

Top 5 Timed Foreground Events Avg
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                             wait   % DB 
Event                                 Waits    Time (s)   (ms)   Time Wait Class 
------------------------------ ------------ ----------- ------ ------ ---------- 
db file sequential read           3,653,606      96,468     26   20.8   User I/O 
local write wait                     94,358      67,996    721   14.7   User I/O 
enq: CF - contention                 18,621      46,944   2521   10.1      Other 
free buffer waits                 3,627,548      38,249     11    8.3 Configurat 
db file scattered read            2,677,267      32,400     12    7.0   User I/O 

How It Works 
After looking at the DB Time, Instance Efficiency, and Top 5 Timed Events sections, if you want to look 
in more detail at the sections of a given AWR report, refer to Recipe 7-17 in Chapter 7 for more 
information. Because the sheer volume of information in the AWR report is so daunting, it is strongly 
recommended to create baselines that represent a normal processing window. Then, AWR snapshots 
can be compared to the baselines, and metrics that may just look like a number on a given AWR report 
will stand out when a particular metric is significantly above or below a normal range. 

4-11. Manually Getting Active Session Information 

Problem 
You need to do performance analysis on sessions that run too frequently or are too short to be available 
on available AWR snapshots. The AWR snapshots are not taken often enough to capture the information 
that you need. 

Solution 
You can use the Oracle Active Session History (ASH) information in order to get real-time or near real-
time session information. While the AWR information is very useful, it is bound by the reporting periods, 
which are by default run every hour on your database. The ASH information has active session 
information, and is sampled every second from V$SESSION, and can show more real-time or near real-
time session information to assist in doing performance analysis on your database. There are a few ways 
to get active session information from the database: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

135 

• Running the canned ASH report 

• Running an ASH report from within Enterprise Manager (see Recipe 4-12) 

• Getting ASH information from the data dictionary (see Recipe 4-13) 

The easiest method to get information on active sessions is to run the ashrpt.sql script, which is 
similar in nature to the awrrpt.sql script that is run when generating an AWR report. When you run the 
ashrpt.sql script, it asks you for the following: 

• Report type (text or HTML) 

• Begin time for report (defaults to current time minus 15 minutes) 

• End time for report (defaults to current time) 

• Report name 

There are many sections to the ASH report. See Table 4-1 for a brief description of each section. See 
the following snippet from many of the sections of the ASH report. Some sections have been shortened 
for brevity. 

Top User Events            DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
                                                               Avg Active 
Event                               Event Class     % Activity   Sessions 
----------------------------------- --------------- ---------- ---------- 
CPU + Wait for CPU                  CPU                  35.36       1.66 
db file scattered read              User I/O             33.07       1.55 
db file sequential read             User I/O             21.33       1.00 
read by other session               User I/O              6.20       0.29 
direct path read temp               User I/O              2.59       0.12 
          ------------------------------------------------------------- 
 
Top Background Events      DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
                                                               Avg Active 
Event                               Event Class     % Activity   Sessions 
----------------------------------- --------------- ---------- ---------- 
Log archive I/O                     System I/O           12.77       0.68 
CPU + Wait for CPU                  CPU                   6.38       0.34 
log file parallel write             System I/O            5.66       0.30 
log file sequential read            System I/O            4.91       0.26 
log file sync                       Commit                1.06       0.06 
          ------------------------------------------------------------- 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

136 

Top Event P1/P2/P3 Values  DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
Event                          % Event  P1 Value, P2 Value, P3 Value % Activity 
------------------------------ ------- ----------------------------- ---------- 
Parameter 1                Parameter 2                Parameter 3 
-------------------------- -------------------------- -------------------------- 
db file scattered read           17.30           "775","246084","16"       0.14 
file#                      block#                     blocks 
 
Datapump dump file I/O            6.32         "1","32","2147483647"       6.32 
count                      intr                       timeout 
 
RMAN backup & recovery I/O        5.83         "1","32","2147483647"       5.80 
count                      intr                       timeout 
 
Top Service/Module         DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
Service        Module                   % Activity Action               % Action 
-------------- ------------------------ ---------- ------------------ ---------- 
SYS$BACKGROUND UNNAMED                       31.00 UNNAMED                 31.00 
               DBMS_SCHEDULER                18.87 GATHER_STATS_JOB        18.87 
               Data Pump Worker              18.87 APP_IMPORT              18.87 
SYS$BACKGROUND MMON_SLAVE                     1.95 Auto-Flush Slave A       1.42 
          ------------------------------------------------------------- 
 
Top SQL Command Types      DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
                                           Distinct            Avg Active 
SQL Command Type                             SQLIDs % Activity   Sessions 
---------------------------------------- ---------- ---------- ---------- 
INSERT                                            2      18.88       1.00 
SELECT                                           27       2.36       0.12 
          ------------------------------------------------------------- 
 
Top SQL Statements        DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
       SQL ID    Planhash % Activity Event                             % Event 
------------- ----------- ---------- ------------------------------ ---------- 
av2f2stsjfr5k  3774074286       1.16 CPU + Wait for CPU                   0.80 
 select a.tablespace_name, round(sum_free/sum_bytes,2)*100 pct_free from 
(select tablespace_name, sum(bytes) sum_bytes from sys.dba_data_files group by t 
ablespace_name) a, (select tablespace_name, sum(bytes) sum_free , max(bytes) 
 bigchunk from sys.dba_free_space group by tablespace_name) b where a.table 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

137 

Top Sessions              DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
   Sid, Serial# % Activity Event                             % Event 
--------------- ---------- ------------------------------ ---------- 
User                 Program                          # Samples Active     XIDs 
-------------------- ------------------------------ ------------------ -------- 
      365, 3613      18.87 CPU + Wait for CPU                  12.29 
D_USER               oracle@oraprod (DW01)         1,755/2,700 [ 65%]        8 
 
                           Datapump dump file I/O               6.32 
                                                      903/2,700 [ 33%]        8 
 
      515, 8721      18.87 db file scattered read              17.26 
SYS                  oracle@oraprod (J000)         2,465/2,700 [ 91%]        1 
 
Top Blocking Sessions      DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
   Blocking Sid % Activity Event Caused                      % Event 
--------------- ---------- ------------------------------ ---------- 
User                 Program                          # Samples Active     XIDs 
-------------------- ------------------------------ ------------------ -------- 
      549,    1       2.09 enq: CF - contention                 2.03 
SYS                  oracle@oraprod (CKPT)           248/2,700 [  9%]        0 
 
Top DB Objects             DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
      Object ID % Activity Event                             % Event 
--------------- ---------- ------------------------------ ---------- 
Object Name (Type)                                    Tablespace 
----------------------------------------------------- ------------------------- 
        1837336       3.25 db file scattered read               3.25 
STG.EMPPART.EMPPART10_11P (TAB EMP_S 
 
        1837324       3.05 db file scattered read               3.05 
STG.EMPPART.EMPPART10_10P (TAB EMP_S 
 
Top DB Files               DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
        File ID % Activity Event                             % Event 
--------------- ---------- ------------------------------ ---------- 
File Name                                             Tablespace 
----------------------------------------------------- ------------------------- 
            200       6.31 Datapump dump file I/O               6.31 
/opt/vol01/ORCL/app_s_016.dbf                          APP_S 
 
          ------------------------------------------------------------- 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

138 

Activity Over Time        DB/Inst: ORCL/ORCL  (Jun 18 12:00 to 12:45) 
 
                         Slot                                   Event 
Slot Time (Duration)    Count Event                             Count % Event 
-------------------- -------- ------------------------------ -------- ------- 
12:00:00   (5.0 min)    2,672 CPU + Wait for CPU                1,789   12.52 
                              db file scattered read              290    2.03 
                              enq: CF - contention                290    2.03 
12:05:00   (5.0 min)    2,586 CPU + Wait for CPU                1,396    9.77 
                              RMAN backup & recovery I/O          305    2.14 
                              db file scattered read              287    2.01 
12:10:00   (5.0 min)    2,392 CPU + Wait for CPU                1,068    7.48 
                              Log archive I/O                     423    2.96 
                              RMAN backup & recovery I/O          356    2.49 
... 
          ------------------------------------------------------------- 

Table 4-1. ASH Report Section Information for the Specified Report Period 

Section Name Description 

General Report 
Information 

Contains database name, reporting period, CPU and memory information 

Top User Events Displays the top run user events for the reporting period 

Top Background 
Events 

Shows the top wait events in the database 

Top P1/P2/P3 Events Lists top wait event parameter values based on highest percentages, ordered in 
descending order 

Top Service Module Displays the top services or module names 

Top Client IDs Shows the top users 

Top SQL Command 
Types 

Shows all the SQL commands run 

Top SQL Statements Displays the top consuming SQL statement text 

Top SQL Using Literals Shows SQL statements using literals; this can assist in determining offending 
SQL for shared pool contention. 

Top PL/SQL 
Procedures 

Displays the PL/SQL programs run 

Top Sessions Displays the top sessions within the database 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

139 

Section Name Description 

Top Blocking Sessions Sessions that are blocking other sessions 

Top Sessions Running 
PQs 

Sessions running parallel query processes 

Top DB Objects Objects referenced 

Top DB Files Files referenced 

Top Latches Latch information for the reporting period 

Activity Over Time Shows top three consuming events for each five-minute reporting period 
shown on report 

How It Works 
Retrieving ASH information is necessary if you need to get session information more current than you 
can retrieve from the AWR report. Again, AWR information is generated only hourly by default. ASH 
information is gathered every second from V$SESSION, and stores the most useful session information to 
help gauge database performance at any given moment. 

The ASH information is stored within a circular buffer in the SGA. Oracle documentation states that 
the buffer size is calculated as follows: 

Max [Min [ #CPUs * 2 MB, 5% of Shared Pool Size, 30MB ], 1MB ] 

The amount of time that the information is stored within the data dictionary depends on the activity 
within your database. You may need to view the DBA_HIST_ACTIVE_SESS_HISTORY historical view in order 
to get the ASH information you need if your database is very active. For an example of querying the 
DBA_HIST_ACTIVE_SESS_HISTORY view, see Recipe 4-13. To quickly see how much data is held in your 
historical view, you could simply get the earliest SAMPLE_TIME from the DBA_HIST_ACTIVE_SESS_HISTORY 
view: 

SELECT min(sample_time) FROM dba_hist_active_sess_history; 
 
MIN(SAMPLE_TIME) 
--------------------------------------------------------------------------- 
20-MAR-11 11.00.27.433 PM 

The MMON background process, which manages the AWR hourly snapshots, also flushes ASH 
information to the historical view at the same time. If there is heavy activity on the database, and the 
buffer fills between the hourly AWR snapshots, the MMNL background process will wake up and flush 
the ASH data to the historical view. 

The V$ACTIVE_SESSION_HISTORY and DBA_HIST_ACTIVE_SESS_HISTORY views contain much more 
detailed information than just the samples shown within this recipe, and you can drill down and get 
much more information at the session level, if desired, including information regarding actual SQL 
statements, the SQL operations, blocking session information, and file I/O information. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

140 

4-12. Getting ASH Information from Enterprise Manager 

Problem 
You want to get to ASH information from within Enterprise Manager because you use Enterprise 
Manager for performance tuning activities. 

Solution 
The ASH report generated from within Enterprise Manager has the same sections as specified in Table 4-
1 (see Recipe 4-11). To generate an ASH report from within Enterprise Manager, you generally need to be 
in the Performance tab, depending on your particular version of Enterprise Manager. As with running 
the ashrpt.sql script, you need to specify the beginning and ending time frames for the report period 
desired. See Figure 4-10 for an example of the screen used to generate an ASH report, and Figure 4-11 for 
a sample of the ASH report output: 

 

 

Figure 4-10. Generating ASH report from Enterprise Manager 

 

Figure 4-11. Sample ASH report from Enterprise Manager 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

141 

How It Works 
When generating an ASH report, you have the option to filter on specific criteria. In Figure 4-12, see the
Filter drop-down menu. If you have a very active database, and already want to zero in on a specific
SQL_ID, for example, you can choose the SQL_ID option from the Filter drop-down menu, and enter the
SQL_ID value. The resulting report will show information based only on the filtered criteria. 

The choices to filter on include the following: 

• SID 

• SQL_ID 

• Wait Class 

• Service 

• Module 

• Action 

• Client 

Many of the foregoing filters can be found in the V$SESSION view. For a list of the possible wait
classes, you can query the DBA_HIST_EVENT_NAME view as shown in the following example: 

SELECT DISTINCT wait_class FROM dba_hist_event_name; 

WAIT_CLASS
---------------------------------------------------------------- 
Concurrency 
User I/O 
Administrative 
System I/O 
Scheduler 
Configuration 
Other 
Application 
Cluster 
Network 
Idle 
Commit 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

142 

 

Figure 4-12. Customizing ASH report by filter 

4-13. Getting ASH Information from the Data Dictionary 

Problem 
You want to see what ASH information is kept in Oracle’s data dictionary. 

Solution 
There are a couple of data dictionary views you can use to get ASH information. The first, 
V$ACTIVE_SESSION_HISTORY, can be used to get information on current or recent sessions within your 
database. The second, DBA_HIST_ACTIVE_SESS_HISTORY, is used to store older, historical ASH information. 

If you wanted to see all the events and their total wait time for activity within the past 15 minutes in 
your database, you could issue the following query: 

SELECT s.event, sum(s.wait_time + s.time_waited) total_wait 
FROM v$active_session_history s 
WHERE s.sample_time between sysdate-1/24/4 AND sysdate 
GROUP BY s.event 
ORDER BY 2 desc; 
 
EVENT                                                            TOTAL_WAIT 
---------------------------------------------------------------- ---------- 
                                                                   20002600 
db file scattered read                                             15649078 
read by other session                                               9859503 
db file sequential read                                              443298 
direct path read temp                                                156463 
direct path write temp                                               139984 
log file parallel write                                               49469 
db file parallel write                                                21207 
log file sync                                                         11793 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

143 

SGA: allocation forcing component growth                              11711 
control file parallel write                                            4421 
control file sequential read                                           2122 
SQL*Net more data from client                                           395 
SQL*Net more data to client                                              66 

If you wanted to get more session-specific information, and wanted to see the top 5 sessions that 
were using the most CPU resources within the last 15 minutes, you could issue the following query: 

column username format a12 
column module format a30 
 
SELECT * FROM 
( 
SELECT s.username, s.module, s.sid, s.serial#, count(*) 
FROM v$active_session_history h, v$session s 
WHERE h.session_id = s.sid 
AND   h.session_serial# = s.serial# 
AND   session_state= 'ON CPU' AND 
      sample_time > sysdate - interval '15' minute 
GROUP BY s.username, s.module, s.sid, s.serial# 
ORDER BY count(*) desc 
) 
where rownum <= 5; 
 
USERNAME   MODULE                              SID    SERIAL#   COUNT(*) 
---------- ---------------------------- ---------- ---------- ---------- 
SYS        DBMS_SCHEDULER                      536          9         43 
APPLOAD    etl1@app1 (TNS V1-V3)              1074       3588         16 
APPLOAD    etl1@app1 (TNS V1-V3)              1001       4004         12 
APPLOAD    etl1@app1 (TNS V1-V3)               968        108          5 
DBSNMP     emagent@ora1 (TNS V1-V3)            524          3          2 

The SESSION_STATE column has two valid values, ON CPU and WAITING, which denote whether a 
session is active or is waiting for resources. If you wanted to see the sessions that are waiting for 
resources, you could issue the same query as previously, with a SESSION_STATE of WAITING. 

If you wanted to see the most heavily used database objects for a given sample period, you could 
join V$ACTIVE_SESSION_HISTORY to the DBA_OBJECTS view to get that information. In the following 
example, we are getting a list of the top 5 database objects in use, along with the event associated with 
that database object, over the past 15 minutes: 

SELECT * FROM 
( 
SELECT o.object_name, o.object_type, s.event, 
       SUM(s.wait_time + s.time_waited) total_waited 
FROM v$active_session_history s, dba_objects o 
WHERE s.sample_time between sysdate - 1/24/4 and sysdate 
AND s.current_obj# = o.object_id 
GROUP BY o.object_name, o.object_type, s.event 
ORDER BY 4 desc 
) 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

144 

WHERE rownum <= 5; 
 
 
OBJECT_NAME                  OBJECT_TYPE     EVENT                     TOTAL_WAITED 
---------------------------- --------------- ------------------------- ------------ 
WRI$_ALERT_OUTSTANDING       TABLE           Streams AQ: enqueue block    110070196 
                                             ed on low memory 
APP_ETL_IDX1                 INDEX           read by other session         65248777 
APP_SOURCE_INFO              TABLE PARTITION db file scattered read        33801035 
EMPPART_PK_I                 INDEX PARTITION read by other session         28077262 
APP_ORDSTAT                  TABLE PARTITION db file scattered read        15569867 

How It Works 
The DBA_HIST_ACTIVE_SESS_HISTORY view can give you historical information on sessions that have aged 
out of the V$ACTIVE_SESSION_HISTORY view. Let’s say you had a day when performance was particularly 
bad on your database. You could zero in on historical session information for a given time frame, 
provided it is still held within the DBA_HIST_ACTIVE_SESS_HISTORY view. For instance, if you wanted to get 
the users that were consuming the most resources for a given day when performance was poor, you 
could issue the following query: 

SELECT * FROM 
( 
SELECT u.username, h.module, h.session_id sid, 
       h.session_serial# serial#, count(*) 
FROM dba_hist_active_sess_history h, dba_users u 
WHERE h.user_id = u.user_id 
AND   session_state= 'ON CPU' 
AND  (sample_time between to_date('2011-05-15:00:00:00','yyyy-mm-dd:hh24:mi:ss') 
AND   to_date('2011-05-15:23:59:59','yyyy-mm-dd:hh24:mi:ss')) 
AND u.username != 'SYS' 
GROUP BY u.username, h.module, h.session_id, h.session_serial# 
ORDER BY count(*) desc 
) 
where rownum <= 5; 
 
USERNAME     MODULE                                SID    SERIAL#   COUNT(*) 
------------ ------------------------------ ---------- ---------- ---------- 
APPLOAD1     etl1@app1 (TNS V1-V3)                1047        317       1105 
APPLOAD1     etl1@app1 (TNS V1-V3)                1054        468        659 
APPLOAD1     etl1@app1 (TNS V1-V3)                1000        909        387 
STG          oracle@ora1 (TNS V1-V3)               962       1707        353 
APPLOAD1     etl1@app1 (TNS V1-V3)                 837      64412        328 

To then zero in on the database objects, you could issue the following query for the same time 
frame: 

SELECT * FROM 
( 
SELECT o.object_name, o.object_type, s.event, 
       SUM(s.wait_time + s.time_waited) total_waited 
FROM dba_hist_active_sess_history s, dba_objects o 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4 ■ MONITORING SYSTEM PERFORMANCE 

 

145 

WHERE s.sample_time 
between to_date('2011-05-15:00:00:00','yyyy-mm-dd:hh24:mi:ss') 
AND   to_date('2011-05-15:23:59:59','yyyy-mm-dd:hh24:mi:ss') 
AND s.current_obj# = o.object_id 
GROUP BY o.object_name, o.object_type, s.event 
ORDER BY 4 desc 
) 
WHERE rownum <= 5; 

 

OBJECT_NAME                  OBJECT_TYPE     EVENT                     TOTAL_WAITED 
---------------------------- --------------- ------------------------- ------------ 
EMPPART                      TABLE PARTITION PX Deq Credit: send blkd    8196703427 
APPLOAD_PROCESS_STATUS       TABLE           db file scattered read       628675085 
APPLOAD_PROCESS_STATUS       TABLE           read by other session        408577335 
APP_SOURCE_INFO              TABLE PARTITION db file scattered read       288479849 
APP_QUALITY_INFO             TABLE PARTITION Datapump dump file I/O       192290534 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 
 

 

    

 

   

 

  

 

 

  

 

147 

Minimizing System Contention 

It’s not uncommon for Oracle DBAs to field calls about a user being locked or “blocked” in the database. 
Oracle’s locking behavior is extremely sophisticated and supports simultaneous use of the database by 
multiple users. However, on occasion, it’s possible for a user to block another user’s work, mostly due to 
flaws in application design. This chapter explains how Oracle handles locks and how to identify a session 
that’s blocking others. 

Oracle database can experience two main types of contention for resources. The first is contention 
for transaction locks on a table’s rows. The second type of contention is that caused by simultaneous 
requests for areas of the shared memory (SGA), resulting in latch contention. In addition to showing you 
how to troubleshoot typical locking issues, we will also show how to handle various types of latch 
contention in your database. 

Oracle Wait Interface is a handy name for Oracle’s internal mechanism for classifying and 
measuring the different types of waits for resources in an Oracle instance. Understanding Oracle wait 
events is the key to instance tuning, because high waits slow down response time. We will explain the 
Oracle Wait Interface in this chapter and show you how to reduce the most common Oracle wait events 
that beguile Oracle DBAs. We will show you how to use various SQL scripts to unravel the mysteries of 
the Oracle Wait Interface, and we will also show how to use Oracle Enterprise Manager to quickly track 
down the SQL statements and sessions that are responsible for contention in the database. 

5-1. Understanding Response Time 

Problem 
You want to understand what database response time is, and its relationship with wait time. 

Solution 
The most crucial performance indicator in a database is response time. Response time is the time it 
takes to get a response from the database for a query that a client sends to the database. Response time 
is simply the sum of two components: 

response time = processing time + wait time 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

148 

The foregoing relationship is also frequently represented as R=S + W, where R is the response time, S 
the service time, and W stands for the wait time. The processing time component is the actual time spent 
by the database processing the request. Wait time, on the other hand, is time actually wasted by the 
database—it’s the time the database spends waiting for resources such as a lock on a table's rows, library 
cache latch, or any of the numerous resources that a query needs to complete its processing. Oracle has 
hundreds of official wait events, a dozen or so of which are crucial to troubleshooting slow-running 
queries. 

Do You Have a Wait Problem? 
It’s easy to find out the percentage of time a database has spent waiting for resources instead of actually 
executing. Issue the following query to find out the relative percentages of wait times and actual CPU 
processing in the database: 

SQL> select metric_name, value 
   2 from v$sysmetric 
   3 where metric_name in ('Database CPU Time Ratio', 
   4 'Database Wait Time Ratio') and 
   5 intsize_csec = 
   6 (select max(INTSIZE_CSEC) from V$SYSMETRIC); 
 
METRIC_NAME                             VALUE 
————————————------------              ----------- 
Database Wait Time Ratio                11.371689 
Database CPU Time Ratio                 87.831890 
SQL> 

If the query shows a very high value for the Database Wait Time Ratio, or if the Database Wait Time 
Ratio is much greater than the Database CPU Time Ratio, the database is spending more time waiting 
than processing and you must dig deeper into the Oracle wait events to identify the specific wait events 
causing this. 

Find Detailed Information 
You can use the following Oracle views to find out detailed information of what a wait event is actually 
waiting for and how long it has waited for each resource. 

V$SESSION: This view shows the event currently being waited for as well as the 
event last waited for in each session. 

V$SESSION_WAIT: This view lists either the event currently being waited for or the 
event last waited on for each session. It also shows the wait state and the wait 
time. 

V$SESSION_WAIT_HISTORY: This view shows the last ten wait events for each 
current session. 

V$SESSION_EVENT: This view shows the cumulative history of events waited on 
for each session. The data in this view is available only so long as a session is 
active. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

149 

V$SYSTEM_EVENT: This view shows each wait event and the time the entire 
instance waited for that event since you started the instance. 

V$SYSTEM_WAIT_CLASS: This view shows wait event statistics by wait classes. 

How It Works 
Your goal in tuning performance is to minimize the total response time. If the Database Wait Time Ratio 
(in the query shown in the “Solution” section) is high, your response time will also be high due to waits 
or bottlenecks in your system. On the other hand, high values for the Database CPU Time Ratio indicate 
a well-running database, with few waits or bottlenecks. The Database CPU Time Ratio is calculated by 
dividing the total CPU used by the database by the Oracle time model statistic DB time. 

Oracle uses time model statistics to measure the time spent in the database by the type of operation. 
Database time, or DB time, is the most important time model statistic—it represents the total time spent 
in database calls, and serves as a measure of total instance workload. DB time is computed by adding the 
CPU time and wait time of all sessions (excluding the waits for idle events). An AWR report shows the 
total DB time for the instance (in the section titled “Time Model System Stats”) during the period 
covered by the AWR snapshots. If the time model statistic DB CPU consumes most of the DB time for the 
instance, it shows the database was actively processing most of the time. DB time tuning, or 
understanding how the database is spending its time, is fundamental to understanding performance. 

The total time spent by foreground sessions making database calls consists of I/O time, CPU time, 
and time spent waiting for non-idle events. Your DB time will increase as the system load increases—
that is, as more users log on and larger queries are executed, the greater the system load. However, even 
in the absence of an increase in system load, DB time can increase, due to deterioration either in I/O or 
application performance. As application performance degrades, wait time will increase and 
consequently DB time (that is, response time) will increase. 

DB time is captured by internal instrumentation, ASH, AWR, and ADDM, and you can find detailed 
performance information by querying various views or through Enterprise Manager. 

■ Note If the host system is CPU-bound, you’ll see an increase in DB time. You must first tune CPU usage before 
focusing on wait events in that particular case. 

The V$SESSION_WAIT view shows more detailed information than the V$SESSION_EVENT and the 
V$SYSTEM_EVENT views. While both the V$SESSION_EVENT and the V$SESSION_WAIT views show that there are 
waits such as the event db file scattered read, for example, only the V$SESSION_WAIT view shows the 
file number (P1), the block number read (P2), and the number of blocks read (P3). The columns P1 and 
P2 from this view help you identify the segments involved in the wait event that is currently occurring. 

■ Note The Automatic Workload Repository (AWR) queries the V$SYSTEM_EVENT view for its wait event–related 
analysis. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

150 

You can first query the V$SYSTEM_EVENT view to rank the top wait events by total and average time 
waited for that event. You can then drill down to the wait event level, by focusing on the events at the top 
of the event list. Note that you can query the V$WAITSTAT view for the same information as well. In 
addition to providing information about blocking and blocked users and the current wait events, the 
V$SESSION view also shows the objects that are causing the problem, by providing the file number and 
block number for the object. 

5-2. Identifying SQL Statements with the Most Waits 

Problem 
You want to identify the SQL statements responsible for the most waits in your database. 

Solution 
Execute the following query to identify the SQL statements that are experiencing the most waits in your 
database: 

SQL> select ash.user_id, 
  2  u.username, 
  3  s.sql_text, 
  4  sum(ash.wait_time + 
  5  ash.time_waited) ttl_wait_time 
  6  from v$active_session_history ash, 
  7  v$sqlarea s, 
  8  dba_users u 
  9  where ash.sample_time between sysdate - 60/2880 and sysdate 
 10  and ash.sql_id = s.sql_id 
 11  and ash.user_id = u.user_id 
 12  group by ash.user_id,s.sql_text, u.username 
 13* order by ttl_wait_time 
SQL> 

The preceding query ranks queries that ran during the past 30 minutes, according to the total time 
waited by each query. 

How It Works 
When you’re experiencing a performance problem, it’s a good idea to see which SQL statements are 
waiting the most. These are the statements that are using most of the database’s resources. To find the 
queries that are waiting the most, you must sum the values in the wait_time and the time_waited 
columns of the V$ACTIVE_SESSION_HISTORY for a specific SQL statement. In order to do this, you must join 
the V$SQLAREA view with the V$ACTIVE_SESSION_HISTORY view, using SQL_ID as the join column. 

Besides the SQL_ID of the SQL statements, the V$ACTIVE_SESSION_HISTORY view also contains 
information about the execution plans used by the SQL statements. You can use this information to 
identify why a SQL statement is experiencing a high amount of waits. You can also run an Active Session 
History (ASH) report, using a SQL script or through Oracle Enterprise Manager, to get details about the 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

151 

top SQL statements in the sampled session activity. The Top SQL section of an ASH report helps you 
identify the high-load SQL statements that are responsible for performance problems. Examining the 
Top SQL report may show you, for example, that one bad query has been responsible for most of the 
database activity. 

5-3. Analyzing Wait Events 

Problem 
You want to analyze Oracle wait events. 

Solution 
Several recipes in this chapter show you how to analyze the most important Oracle wait events. An 
overwhelming amount of wait time in a database is due to I/O–related waits, such as those caused by 
either full table scans or indexed reads. While indexed reads may seem to be completely normal on the 
face of it, too many indexed reads can also slow down performance. Therefore, you must investigate why 
the database is performing a large number of indexed reads. For example, if you see the db file 
sequential read event (indicates indexed reads) at the top of the wait event list, you must look a bit 
further to see how the database is accumulating these read events. If you find that the database is 
performing hundreds of thousands of query executions, with each query doing only a few indexed reads, 
that’s fine. However, if you find that just a couple of queries are contributing to a high number of logical 
reads, then, most likely, those queries are reading more data than necessary. You must tune those 
queries to reduce the db file sequential read events. 

How It Works 
Wait events are statistics that a server process or thread increments when it waits for an event to 
complete, in order to continue its processing. For example, a SQL statement may be modifying data, but 
the server process may have to wait for a data block to be read from disk, because it’s not available in the 
SGA. Although there’s a large number of wait events, the most common events are the following: 

• buffer busy waits 

• free buffer waits 

• db file scattered read 

• db file sequential read 

• enqueue waits 

• log buffer space 

• log file sync 

Analyzing Oracle wait events is the most important performance tuning task you’ll perform when 
troubleshooting a slow-running query. When a query is running slow, it usually means that there are 
excessive waits of one type or another. Some of the waits may be due to excessive I/O due to missing 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

152 

indexes. Other waits may be caused by a latch or a locking event. Several recipes in this chapter show
you how to identify and fix various types of Oracle wait-related performance problems. In general, wait
events that account for the most wait time warrant further investigation. However, it’s important to
understand that wait events show only the symptoms of underlying problems—thus, you should view a
wait event as a window into a particular problem, and not the problem itself. When Oracle encounters a
problem such as buffer contention or latch contention, it simply increments a specific type of wait event
relating to that latch or buffer. By doing this, the database is showing where it had to wait for a specific
resource, and was thus unable to continue processing. The buffer or latch contention can often be
traced to faulty application logic, but some wait events could also emanate from system issues such as a
misconfigured RAID system. Missing indexes, inappropriate initialization parameters, inadequate values
for initialization parameters that relate to memory, and inadequate sizing of redo log files are just some
of the things that can lead to excessive waits in a database. The great benefit of analyzing Oracle wait
events is that it takes the guesswork out of performance tuning—you can see exactly what is causing a
performance slowdown, so you can immediately focus on fixing the problem. 

5-4. Understanding Wait Class Events 

Problem 
You want to understand how Oracle classifies wait events into various classes. 

Solution 
Every Oracle wait event belongs to a specific wait event class. Oracle groups wait events into classes such
as Administrative, Application, Cluster, Commit, Concurrency, Configuration, Scheduler, System I/O,
and User I/O, to facilitate the analysis of wait events. Here are some examples of typical waits in some of
these classes: 

Application: Lock-related wait information 

Commit: Waits for confirmation of a redo log write after committing a
transaction 

Network: Waits caused by delays in sending data over the network 

User I/O: Waiting to read blocks from disk 

Two key wait classes are the Application and the User I/O wait classes. The Application wait class
contains waits due to row and table locks caused by an application. The User I/O class includes the db
file scattered read, db file sequential read, direct path read, and direct path write events. The
System I/O class includes redo log–related wait events among other waits. The Commit class contains just
the log file sync wait information. There’s also an “idle” class of wait events such as SQL*Net message
from client for example, that merely indicate an inactive session. You can ignore the idle waits. 

How It Works 
Classes of wait events help you quickly find out what type of activity is affecting database performance.
For example, the Administrative wait class may show a high number of waits because you’re rebuilding 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

153 

an index. Concurrency waits point to waits for internal database resources such as latches. If the Cluster 
wait class shows the most wait events, then your RAC instances may be experiencing contention for 
global cache resources (gc cr block busy event). Note that the System I/O wait class includes waits for 
background process I/O such as the DBWR (database writer) wait event  db file parallel write. 

The Application wait class contains waits that result from user application code—most of your 
enqueue waits fall in this wait class. The only wait event in the Commit class is the log file sync event, 
which we examine in detail later in this chapter. The Configuration class waits include waits such as 
those caused by log files that are sized too small. 

5-5. Examining Session Waits 

Problem 
You want to find out the wait events in a session. 

Solution 
You can use the V$SESSION_WAIT view to get a quick idea about what a particular session is waiting for, as 
shown here: 

SQL> select event, count(*) from v$session_wait 
     group by event; 
 
EVENT                                                                       COUNT(*) 
----------------------------------------------------------------           ---------- 
SQL*Net message from client                                                11 
Streams AQ: waiting for messages in the queue                              1 
enq: TX - row lock contention                                              1 
… 
15 rows selected. 
 
SQL> 

The output of the query indicates that one session is waiting for an enqueue lock, possibly because 
of a blocking lock held by another session. If you see a large number of sessions experiencing row lock 
contention, you must investigate further and identify the blocking session. 

Here’s one more way you can query the V$SESSION_WAIT view, to find out what’s slowing down a 
particular session: 

SQL> select event, state, seconds_in_wait siw 
     from   v$session_wait 
     where  sid = 81; 
 
 
EVENT                                            STATE            SIW 
----------------------------------------      -----------        ------  
enq: TX - row lock contention                   WAITING             976 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

154 

The preceding query shows that the session with the SID 81 has been waiting for an enqueue event, 
because the row (or rows) it wants to update is locked by another transaction. 

■ Note In Oracle Database 11g, the database counts each resource wait as just one wait, even if the session 
experiences many internal time-outs caused by the wait. For example, a wait for an enqueue for 15 seconds may 
include 5 different 3-second-long wait calls—the database considers these as just a single enqueue wait. 

How It Works 
The first query shown in the “Solution” section offers an easy way to find out which wait events, if any, 
are slowing down user sessions. When you issue the query without specifying a SID, it displays the 
current and last waits for all sessions in the database. If you encounter a locking situation in the 
database, for example, you can issue the query periodically to see whether the total number of enqueue 
waits is coming down. If the number of enqueue waits across the instance is growing, that means more 
sessions are encountering slowdowns due to blocked locks. 

The V$SESSION_WAIT view shows the current or the last wait for each session. The STATE column in 
this view tells you if a session is currently waiting. Here are the possible values for the STATE column: 

WAITING: The session is currently waiting for a resource. 

WAITED UNKNOWN TIME: The duration of the last wait is unknown (this value is 
shown only if you set the TIMED_STATISTICS parameter to false). 

WAITED SHORT TIME: The most recent wait was less than a hundredth of a second 
long. 

WAITED KNOWN TIME: The WAIT_TIME column shows the duration of the last wait. 

Note that the query utilizes the seconds_in_wait column to find out how long this session has been 
waiting. Oracle has deprecated this column in favor of the wait_time_micro column, which shows the 
amount of time waited in microseconds. Both columns show the amount of time waited for the current 
wait, if the session is currently waiting. If the session is not currently waiting, the wait_time_micro 
column shows the amount of time waited during the last wait. 

5-6. Examining Wait Events by Class 

Problem 
You want to examine Oracle wait event classes. 

Solution 
The following query shows the different types of wait classes and the wait events associated with each 
wait class. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

155 

SQL> select  wait_class, name 
  2  from v$event_name 
  3  where name LIKE 'enq%' 
  4  and wait_class <> 'Other' 
  5* order by wait_class 
SQL> / 
 
WAIT_CLASS                                 NAME 
--------------------               -------------------------- 
Administrative                     enq: TW - contention 
Concurrency                        enq: TX - index contention 
… 
SQL> 

To view the current waits grouped into various wait classes, issue the following query: 

SQL> select wait_class, sum(time_waited), sum(time_waited)/sum(total_waits) 
  2  sum_waits 
  3  from v$system_wait_class 
  4  group by wait_class 
  5* order by 3 desc; 
 
WAIT_CLASS                             SUM(TIME_WAITED)                SUM_WAITS 
---------------- ----------           -----------------        ----------------- 
Idle                                          249659211               347.489249 
Commit                                          1318006               236.795904 
Concurrency                                       16126                 4.818046 
User I/O                                         135279                 2.228869 
Application                                         912                 .0928055 
Network                                             139                 .0011209 
… 
SQL> 

If you see a very high sum of waits for the Idle wait class, not to worry—actually, you should expect 
to see this in any healthy database. In a typical production environment, however, you’ll certainly see 
more waits under the User I/O and Application wait classes. If you notice that the database has 
accumulated a very large wait time for the Application wait class, or the User I/O wait class, for example, 
it’s time to investigate those two wait classes further. In the following example, we drill down into a 
couple of wait classes to find out which specific waits are causing the high sum of total wait time under 
the Application and Concurrency classes. To do this, we use the V$SYSTEM_EVENT and the $EVENT_NAME 
views in addition to the V$SYSTEM_WAIT_CLASS view. Focus not just on the total time waited, but also on 
the average wait, to gauge the effect of the wait event. 

SQL> select a.event, a.total_waits, a.time_waited, a.average_wait 
     from v$system_event a, v$event_name b, v$system_wait_class c 
     where a.event_id=b.event_id 
     and b.wait_class#=c.wait_class# 
     and c.wait_class in ('Application','Concurrency') 
     order by average_wait desc; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

156 

EVENT                       TOTAL_WAITS   TIME_WAITED    AVERAGE_WAIT 
----------- ------------    -----------   -------------  ------------- 
enq: UL - contention                  1             499         499.19 
 
latch: shared pool                  251           10944           43.6 
 
library cache load lock              24             789          32.88 
 
SQL> 

■ Tip Two of the most common Oracle wait events are the db file scattered read and the db file 
sequential read events. The db file scattered read wait event is due to full table scans of large tables. If 
you experience this wait event, investigate the possibility of adding indexes to the table or tables. The db file 
sequential read wait event is due to indexed reads. While an indexed read may seem like it’s a good thing, a 
very high amount of indexed reads could potentially indicate an inefficient query that you must tune. If high values 
for the db file sequential read wait event are due to a very large number of small indexed reads, it’s not 
really a problem—this is natural in a database. You should be concerned if a handful of queries are responsible for 
most of the waits. 

You can see that the enqueue waits caused by the row lock contention are what’s causing the most 
waits under these two classes. Now you know exactly what’s slowing down the queries in your database! 
To get at the session whose performance is being affected by the contention for the row lock, drill down 
to the session level using the following query: 

SQL> select a.sid, a.event, a.total_waits, a.time_waited, a.average_wait 
     from v$session_event a, v$session b 
     where time_waited > 0 
     and a.sid=b.sid 
     and b.username is not NULL 
     and a.event='enq: TX - row lock contention'; 
  
  SID               EVENT                      TOTAL_WAITS    time_waited      average_wait 
----------     ------------------------------  ------------   -----------      ------------ 
        68     enq: TX - row lock contention             24           8018              298 
SQL> 

The output shows that the session with the SID 68 is waiting for a row lock that’s held by another 
transaction. 

How It Works 
Understanding the various Oracle wait event classes enhances your ability to quickly diagnose Oracle 
wait-related problems. Analyzing wait events by classes lets you know if contention, user I/O, or a 
configuration issue is responsible for high waits. The examples in the “Solution” section show you how 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

157 

to start analyzing the waits based on the wait event classes. This helps identify the source of the waits, 
such as concurrency issues, for example. Once you identify the wait event class responsible for most of 
the waits, you can drill down into that wait event class to find out the specific wait events that are 
contributing to high total waits for that wait event class. You can then identify the user sessions waiting 
for those wait events, using the final query shown in the “Solution” section. 

5-7. Resolving Buffer Busy Waits 

Problem 
Your database is experiencing a high number of buffer busy waits, based on the output from the AWR 
report. You want to resolve those waits. 

Solution 
Oracle has several types of buffer classes, such as data block, segment header, undo header, and undo 
block. How you fix a buffer busy wait situation will depend on the types of buffer classes that are causing 
the problem. You can find out the type of buffer causing the buffer waits by issuing the following two 
queries. Note that you first get the value of row_wait_obj# from the first query and use it as the value for 
data_object_id in the second query. 

SQL> select row_wait_obj#  
     from v$session  
     where event = 'buffer busy waits'; 
 
SQL> select owner, object_name, subobject_name, object_type 
     from dba_objects 
     where data_object_id = &row_wait_obj; 

The preceding queries will reveal the specific type of buffer causing the high buffer waits. Your fix 
will depend on which buffer class causes the buffer waits, as summarized in the following subsections. 

Segment Header 
If your queries show that the buffer waits are being caused by contention on the segment header, there’s 
free list contention in the database, due to several processes attempting to insert into the same data 
block—each of these processes needs to obtain a free list before it can insert data into that block. If you 
aren’t already using it, you must switch from manual space management to automatic segment space 
management (ASSM)—under ASSM, the database doesn’t use free lists. However, note that moving to 
ASSM may not be easily feasible in most cases. In cases where you can’t implement ASSM, you must 
increase the free lists for the segment in question. You can also try increasing the free list groups as well. 

Data Block 
Data block buffer contention could be related to a table or an index. This type of contention is often 
caused by right-hand indexes, that is, indexes that result in several processes inserting into the same 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

158 

point, such as when you use sequence number generators to produce the key values. Again, if you’re 
using manual segment management, move to ASSM or increase free lists for the segment. 

Undo Header and Undo Block 
If you’re using automatic undo management, few or none of the buffer waits will be due to contention 
for an undo segment header or an undo segment block. If you do see one of these buffer classes as the 
culprit, however, you may increase the size of your undo tablespace to resolve the buffer busy waits. 

How It Works 
A buffer busy wait indicates that more than one process is simultaneously accessing the same data 
block. One of the reasons for a high number of buffer busy waits is that an inefficient query is reading 
too many data blocks into the buffer cache, thus potentially keeping in wait other sessions that want to 
access one or more of those same blocks. Not only that, a query that reads too much data into the buffer 
cache may lead to the aging out of necessary blocks from the cache. You must investigate queries that 
involve the segment causing the buffer busy waits with a view to reducing the number of data blocks 
they’re reading into the buffer cache. 

If your investigation of buffer busy waits reveals that the same block or set of blocks is involved most 
of the time, a good strategy would be to delete some of these rows and insert them back into the table, 
thus forcing them onto different data blocks. 

Check your current memory allocation to the buffer cache, and, if necessary, increase it. A larger 
buffer cache can reduce the waiting by sessions to read data from disk, since more of the data will 
already be in the buffer cache. You can also place the offending table in memory by using the KEEP POOL 
in the buffer cache (please see Recipe 3-7). By making the hot block always available in memory, you’ll 
avoid the high buffer busy waits. 

Indexes that have a very low number of unique values are called low cardinality indexes. Low 
cardinality indexes generally result in too many block reads. Thus, if several DML operations are 
occurring concurrently, some of the index blocks could become “hot” and lead to high buffer busy waits. 
As a long-term solution, you can try to reduce the number of the low cardinality indexes in your 
database. 

Each Oracle data segment such as a table or an index contains a header block that records 
information such as free blocks available. When multiple sessions are trying to insert or delete rows from 
the same segment, you could end up with contention for the data segment’s header block. 

Buffer busy waits are also caused by a contention for free lists. A session that’s inserting data into a 
segment needs to first examine the free list information for the segment, to find blocks with free space 
into which the session can insert data. If you use ASSM in your database, you shouldn’t see any waits 
due to contention for a free list.  

5-8. Resolving Log File Sync Waits 

Problem 
You’re seeing a high amount of log file sync wait events, which are at the top of all wait events in your 
database. You want to reduce these wait events. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

159 

Solution 
The following are two strategies for dealing with high log file sync waits in your database. 

• If you notice a very large number of waits with a short average wait time per wait, 
that’s an indication that too many commit statements are being issued by the 
database. You must change the commit behavior by batching the commits. 
Instead of committing after each row, for example, you can specify that the 
commits occur after every 500 rows. 

• If you notice that the large amount of wait time accumulated due to the redo log 
file sync event was caused by long waits for writing to the redo log file (high 
average time waited for this event), it’s more a matter of how fast your I/O 
subsystem is. You can alternate the redo log files on various disks to reduce 
contention. You can also see if you can dedicate disks entirely for the redo logs 
instead of allowing other files on those disks—this will reduce I/O contention 
when the LGWR is writing the buffers to disk. Finally, as a long-term solution, you 
can look into placing redo logs on faster devices, say, by moving them from a RAID 
5 to a RAID 1 device. 

How It Works 
Oracle (actually the LGWR background process) automatically flushes a session’s redo information to 
the redo log file whenever a session issues a COMMIT statement. The database writes commit records to 
disk before it returns control to the client. The server process thus waits for the completion of the  write 
to the redo log. This is the default behavior, but you can also control the database commit behavior with 
the COMMIT_WRITE initialization parameter. 

■ Note The COMMIT_WRITE parameter is an advanced parameter that has been deprecated in Oracle Database 
11.2. Since it may have an adverse impact on performance, you may want to leave the parameter alone and rely 
on Oracle’s default commit behavior. 

The session will tell the LGWR process to write the session’s redo information from the redo log 
buffer to the redo log file on disk. The LGWR process posts the user session after it finishes writing the 
buffer’s contents to disk. The log file sync wait event includes the wait during the writing of the log 
buffer to disk by LGWR and the posting of that information to the session. The server process will have to 
wait until it gets confirmation that the LGWR process has completed writing the log buffer contents out 
to the redo log file. 

The log file sync events are caused by contention during the writing of the log buffer contents to 
the redo log files. Check the V$SESSION_WAIT view to ascertain whether Oracle is incrementing the SEQ# 
column. If Oracle is incrementing this column, it means that the LGWR process is the culprit, as it may 
be stuck. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

160 

As the log file sync wait event is caused by contention caused by the LGWR process, see if you  
can use the NOLOGGING option to get rid of these waits. Of course, in a production system, you can’t use 
the NOLOGGING option when the database is processing user requests, so this option is of limited use in 
most cases. 

The log file sync wait event can also be caused by too large a setting for the LOG_BUFFER 
initialization parameter. Too large a value for the LOG_BUFFER parameter will lead the LGWR process to 
write data less frequently to the redo log files. For example, if you set the LOG BUFFER to something like 12 
MB, it sets an internal parameter, log_io_size, to a high value. The log_io_size parameter acts as a 
threshold for when the LGWR writes to the redo log files. In the absence of a commit request or a 
checkpoint, LGWR waits until the log_io_size threshold is met. Thus, when the database issues a COMMIT 
statement, the LGWR process would be forced to write a large amount of data to the redo log files at 
once, resulting in sessions waiting on the log file sync wait event. This happens because each of the 
waiting sessions is waiting for LGWR to flush the contents of the redo log buffer to the redo log files. 
Although the database automatically calculates the value of the log_io_size parameter, you can specify 
a value for it, by issuing a command such as the following: 

SQL> alter system set "_log_io_size"=1024000 scope=spfile; 
 
System altered. 
 
SQL> 

5-9. Minimizing read by other session Wait Events 

Problem 
Your AWR report shows that the read by other session wait event is responsible for the highest number 
of waits. You’d like to reduce the high read by other session waits. 

Solution 
The main reason you’ll see the read by other session wait event is that multiple sessions are seeking to 
read the same data blocks, whether they are table or index blocks, and are forced to wait behind the 
session that’s currently reading those blocks. You can find the data blocks a session is waiting for by 
executing the following command: 

SQL> select p1 "file#", p2 "block#", p3 "class#"  
     from v$session_wait 
     where event = 'read by other session'; 

You can then take the block# and use it in the following query, to identify the exact segments (table 
or index) that are causing the read by other session waits. 

SQL> select relative_fno, owner, segment_name, segment_type  
     from dba_extents  
     where file_id = &file  
     and &block between block_id 
     and block_id + blocks - 1; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

161 

Once you identify the hot blocks and the segments they belong to, you need to identify the queries 
that use these data blocks and segments and tune those queries if possible. You can also try deleting and 
re-inserting the rows inside the hot blocks. 

In order to reduce the amount of data in each of the hot blocks and thus reduce these types of waits, 
you can also try to create a new tablespace with a smaller block size and move the segment to that 
tablespace. It’s also a good idea to check if any low cardinality indexes are being used, because this type 
of an index will make the database read a large number of data blocks into the buffer cache, potentially 
leading to the read by other session wait event. If possible, replace any low cardinality indexes with an 
index on a column with a high cardinality. 

How It Works 
The read by other session wait event indicates that one or more sessions are waiting for another 
session to read the same data blocks from disk into the SGA. Obviously, a large number of these waits 
will slow down performance. Your first goal should be to identify the actual data blocks and the objects 
the blocks belong to. For example, these waits can be caused by multiple sessions trying to read the 
same index blocks. Multiple sessions can also be trying to execute a full table scan simultaneously on the 
same table. 

5-10. Reducing Direct Path Read Wait Events 

Problem 
You notice a high amount of the direct path read wait events, and also of direct path read temp wait 
events, and you’d like to reduce the occurrence of those events. 

Solution 
Direct path read and direct path read temp events are related wait events that occur when sessions 
are reading data directly into the PGA instead of reading it into the SGA. Reading data into the PGA isn’t 
the problem here—that’s normal behavior for certain operations, such as sorting, for example. The 
direct path read and direct path read temp events usually indicate that that the sorts being 
performed are very large and that the PGA is unable to accommodate those sorts. 

Issue the following command to get the file ID for the blocks that are being waited for: 

SQL> select p1 "file#", p2 "block#", p3 "class#" 
     from v$session_wait 
     where event = 'direct path read temp'; 

The column P1 shows the file ID for the read call. Column P2 shows the start BLOCK_ID, and column 
P3 shows the number of blocks. You can then execute the following statement to check whether this file 
ID is for a temporary tablespace tempfile: 

SQL> select relative_fno, owner, segment_name, segment_type 
     from dba_extents 
     where file_id = &file 
     and &block betgween block_id and block_id + &blocks - 1; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

162 

The direct read–type waits can be caused by excessive sorts to disk or full table scans. In order to
find out what the reads are actually for, check the P1 column (file ID for the read call) of the
V$SESSION_WAIT view. By doing this, you can find out if the reads are being caused by reading data from
the TEMP tablespace due to disk sorting, or if they’re occurring due to full table scans by parallel slaves. 

If you determine that sorts to disk are the main culprit in causing high direct read wait events,
increase the value of the PGA_AGGREGATE_TARGET parameter (or specify a minimum size for it, if you’re
using automatic memory management). Increasing PGA size is also a good strategy when the queries are
doing large hash joins, which could result in excessive I/O on disk if the PGA is inadequate for handling
the large hash joins. When you set a high degree of parallelism for a table, Oracle tends to go for full table
scans, using parallel slaves. If your I/O system can’t handle all the parallel slaves, you’ll notice a high
amount of direct path reads. The solution for this is to reduce the degree of parallelism for the table or
tables in question. Also investigate if you can avoid the full table scan by specifying appropriate indexes. 

How It Works 
Normally, during both a sequential db read or a scattered db read operation, the database reads data
from disk into the SGA. A direct path read is one where a single or multiblock read is made from disk
directly to the PGA, bypassing the SGA. Ideally, the database should perform the entire sorting of the
data in the PGA. When a huge sort doesn’t fit into the available PGA, Oracle writes part of the sort data
directly to disk. A direct read occurs when the server process reads this data from disk (instead of the
PGA). 

A direct path read event can also occur when the I/O subsystem is overloaded, most likely due to
full table scans caused by setting a high degree of parallelism for tables, causing the database to return
buffers slower than what the processing speed of the server process requires. A good disk striping
strategy would help out here. Oracle’s Automatic Storage Management (ASM) automatically stripes data
for you. If you aren’t already using ASM, consider implementing it in your database. 

Direct path write and direct path write temp wait events are analogous to the direct path read
and the direct path read temp waits. Normally, it’s the DBWR that writes data from the buffer cache.
Oracle uses a direct path write when a process writes data buffers directly from the PGA. If your
database is performing heavy sorts that spill onto disk, or parallel DML operations, you can on occasion
expect to encounter the direct path write events. You may also see this wait event when you execute
direct path load events such as a parallel CTAS (create table as select) or a direct path INSERT
operation. As with the direct path read events, the solution for direct path write events depends on
what’s causing the waits. If the waits are being mainly caused by large sorts, then you may think about
increasing the value of the PGA_AGGREGATE_TARGET parameter. If operations such as parallel DML are
causing the waits, you must look into the proper spreading of I/O across all disks and also ensure that
your I/O subsystem can handle the high degree of parallelism during DML operations. 

5-11. Minimizing Recovery Writer Waits 

Problem 
You’ve turned on the Oracle Flashback Database feature in your database. You’re now seeing a large
number of wait events due to a slow RVWR (recovery writer) process. You want to reduce the recovery
writer waits. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

163 

Solution 
Oracle writes all changed blocks from memory to the flashback logs on disk. You may  encounter  the 
flashback buf free by RVWR wait event as a top wait event when thie database is writing to the flashback 
logs. To reduce these recovery writer waits, you must tune the flash recovery area file system and 
storage. Specifically, you must do the following: 

• Since flashback logs tend to be quite large, your database is going to incur some 
CPU overhead when writing to these files. One of the things you may consider is 
moving the flash recovery area to a faster file system. Also, Oracle recommends 
that you use file systems based on ASM, because they won’t be subject to 
operating system file caching, which tends to slow down I/O. 

• Increase the disk throughput for the file system where you store the flash recovery 
area, by configuring multiple disk spindles for that file system. This will speed up 
the writing of the flashback logs. 

• Stripe the storage volumes, ideally with small stripe sizes (for example, 128 KB). 

• Set the LOG_BUFFER initialization parameter to a minimum value of 8 MB—the 
memory allocated for writing to the flashback database logs depends on the 
setting of the LOG_BUFFER parameter. 

How It Works 
Unlike in the case of the redo log buffer, Oracle writes flashback buffers to the flashback logs at 
infrequent intervals to keep overhead low for the Oracle Flashback Database. The flashback buf free 
by RVWR wait event occurs when sessions are waiting on the RVWR process. The RVWR process writes the 
contents of the flashback buffers to the flashback logs on disk. When the RVWR falls behind during this 
process, the flashback buffer is full and free buffers aren’t available to sessions that are making changes 
to data through DML operations. The sessions will continue to wait until RVWR frees up buffers by 
writing their contents to the flashback logs. High RVWR waits indicate that your I/O system is unable to 
support the rate at which the RVWR needs to flush flashback buffers to the flashback logs on disk. 

5-12. Finding Out Who’s Holding a Blocking Lock 

Problem 
Your users are complaining that some of their sessions are very slow. You suspect that those sessions 
may be locked by Oracle for some reason, and would like to find the best way to go about figuring out 
who is holding up these sessions. 

Solution 
As we’ve explained in the introduction to this chapter, Oracle uses several types of locks to control 
transactions being executed by multiple sessions, to prevent destructive behavior in the database. A 
blocking lock could “slow” a session down—in fact, the session is merely waiting on another session that 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

164 

is holding a lock on an object (such as a row or a set of rows, or even an entire table). Or, in a 
development scenario, a developer might have started multiple sessions, some of which are blocking 
each other. 

When analyzing Oracle locks, some of the key database views you must examine are the V$LOCK and 
the V$SESSION views. The V$LOCKED_OBJECT and the DBA_OBJECTS views are also very useful in identifying 
the locked objects. In order to find out whether a session is being blocked by the locks being applied by 
another session, you can execute the following query: 

SQL> select s1.username || '@' || s1.machine 
  2  || ' ( SID=' || s1.sid || ' )  is blocking ' 
  3  || s2.username || '@' || s2.machine || ' ( SID=' || s2.sid || ' ) ' AS blocking_status 
  4  from v$lock l1, v$session s1, v$lock l2, v$session s2 
  5  where s1.sid=l1.sid and s2.sid=l2.sid 
  6  and l1.BLOCK=1 and l2.request > 0 
  7  and l1.id1 = l2.id1 
  8  and l2.id2 = l2.id2 ; 
 
 
BLOCKING_STATUS 
-------------------------------------------------------------------- 
 
HR@MIRO\MIROPC61 ( SID=68 )  is blocking SH@MIRO\MIROPC61 ( SID=81 ) 
 
SQL>  

The output of the query shows the blocking session as well as all the blocked sessions. 
A quick way to find out if you have any blocking locks in your instance at all, for any user, is to 

simply run the following query: 

SQL> select * from V$lock where block > 0; 

If you don’t get any rows back from this query—good—you don’t have any blocking locks in the 
instance right now! We’ll explain this view in more detail in the explanation section. 

How It Works 
Oracle uses two types of locks to prevent destructive behavior: exclusive and shared locks. Only one 
transaction can obtain an exclusive lock on a row or a table, while multiple shared locks can be obtained 
on the same object. Oracle uses locks at two levels—row and table levels. Row locks, indicated by the 
symbol TX, lock just a single row of a table for each row that’ll be modified by a DML statement such as 
INSERT, UPDATE, and DELETE. This is true also for a MERGE or a SELECT … FOR UPDATE statement. The 
transaction that includes one of these statements grabs an exclusive row lock as well as a row share table 
lock. The transaction (and the session) will hold these locks until it commits or rolls back the statement. 
Until it does one of these two things, all other sessions that intend to modify that particular row are 
blocked. Note that each time a transaction intends to modify a row or rows of a table, it holds a table lock 
(TM) as well on that table, to prevent the database from allowing any DDL operations (such as DROP 
TABLE) on that table while the transaction is trying to modify some of its rows. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

165 

In an Oracle database, locking works this way: 

• A reader won’t block another reader. 

• A reader won’t block a writer. 

• A writer won’t block a reader of the same data. 

• A writer will block another writer that wants to modify the same data. 

It’s the last case in the list, where two sessions intend to modify the same data in a table, that 
Oracle’s automatic locking kicks in, to prevent destructive behavior. The first transaction that contains 
the statement that updates an existing row will get an exclusive lock on that row. While the first session 
that locks a row continues to hold that lock (until it issues a COMMIT or ROLLBACK statement), other 
sessions can modify any other rows in that table other than the locked row. The concomitant table lock 
held by the first session is merely intended to prevent any other sessions from issuing a DDL statement 
to alter the table’s structure. Oracle uses a sophisticated locking mechanism whereby a row-level lock 
isn’t automatically escalated to the table, or even the block level. 

5-13. Identifying Blocked and Blocking Sessions 

Problem 
You notice enqueue locks in your database and suspect that a blocking lock may be holding up other 
sessions. You’d like to identify the blocking and the blocked sessions. 

Solution 
When you see an enqueue wait event in an Oracle database, chances are that it’s a locking phenomenon 
that’s holding up some sessions from executing their SQL statements. When a session waits on an 
“enqueue” wait event, that session is waiting for a lock that’s held by a different session. The blocking 
session is holding the lock in a mode that’s incompatible with the lock mode that’s being requested by 
the blocked session. You can issue the following command to view information about the blocked and 
the blocking sessions: 

SQL> select decode(request,0,'Holder: ','Waiter: ')||sid sess,  
     id1, id2, lmode, request, type 
     from v$lock 
     where (id1, id2, type) in 
     (select id1, id2, type from v$lock where request>0) 
     order by id1, request;   

The V$LOCK view shows if there are any blocking locks in the instance. If there are blocking locks, it 
also shows the blocking session(s) and the blocked session(s). Note that a blocking session can block 
multiple sessions simultaneously, if all of them need the same object that’s being blocked. Here’s an 
example that shows there are locks present: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

166 

 SQL> select sid,type,lmode,request,ctime,block from v$lock; 
 
       SID           TY           LMODE         REQUEST       CTIME        BLOCK 
--------------     --------     -----------    -----------   --------     -------      
       127           MR              4             0         102870          0 
        81           TX              0             6            778          0 
       191           AE              4             0            758          0 
       205           AE              4             0            579          0 
       140           AE              4             0          11655          0 
        68           TM              3             0            826          0 
        68           TX              6             0            826          1 
… 
SQL> 

The key column to watch is the BLOCK column—the blocking session will have the value 1 for this 
column. In our example, session 68 is the blocking session, because it shows the value 1 under the BLOCK 
column. Thus, the V$LOCK view confirms our initial finding in the “Solution” section of this recipe. The 
blocking session, with a SID of 68, also shows a lock mode 6 under the LMODE column, indicating that it’s 
holding this lock in the exclusive mode—this is the reason session 81 is “hanging,” unable to perform its 
update operation. The blocked session, of course, is the victim—so it shows a value of 0 in the BLOCK 
column. It also shows a value of 6 under the REQUEST column, because it’s requesting a lock in the 
exclusive mode to perform its update of the column. The blocking session, in turn, will show a value of 0 
for the REQUEST column, because it isn’t requesting any locks—it’s already holding it. 

If you want to find out the wait class and for how long a blocking session has been blocking others, 
you can do so by querying the V$SESSION view, as shown here: 

SQL> select  blocking_session, sid,  wait_class, 
     seconds_in_wait 
     from     v$session 
     where blocking_session is not NULL 
     order by blocking_session; 
 
BLOCKING_SESSION        SID        WAIT_CLASS        SECONDS_IN_WAIT 
-----------------    --------       -------------    ----------------   
      68                81          Application                  7069 
 
SQL> 

The query shows that the session with SID=68 is blocking the session with SID=81, and the block 
started 7,069 seconds ago. 

 
 
 
 
 
 
 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

167 

How It Works 
The following are the most common types of enqueue locks you’ll see in an Oracle database: 

• TX: These are due to a transaction lock and usually caused by faulty application 
logic. 

• TM: These are table-level DML locks, and the most common cause is that you 
haven’t indexed foreign key constraints in a child table. 

In addition, you are also likely to notice ST enqueue locks on occasion. These indicate sessions that 
are waiting while Oracle is performing space management operations, such as the allocation of 
temporary segments for performing a sort. 

5-14. Dealing with a Blocking Lock 

Problem 
You’ve identified blocking locks in your database. You want to know how to deal with those locks. 

Solution 
There are two basic strategies when dealing with a blocking lock—a short-term and a long-term strategy. 
The first thing you need to do is get rid of the blocking lock, so the sessions don’t keep queuing up—it’s 
not at all uncommon for a single blocking lock to result in dozens and even hundreds of sessions, all 
waiting for the blocked object. Since you already know the SID of the blocking session (session 68 in our 
example), just kill the session in this way, after first querying the V$SESSION view for the corresponding 
serial# for the session: 

SQL> alter system kill session '68, 1234'; 

The short-term solution is to quickly get rid of the blocking locks so they don’t hurt the performance 
of your database. You get rid of them by simply killing the blocking session. If you see a long queue of 
blocked sessions waiting behind a blocking session, kill the blocking session so that the other sessions 
can get going. 

For the long run, though, you must investigate why the blocking session is behaving the way that it 
is. Usually, you’ll find a flaw in the application logic. You may, though, need to dig deep into the SQL 
code that the blocking session is executing. 

How It Works 
In this example, obviously, the blocking lock is a DML lock. However, even if you didn’t know this  
ahead of time, you can figure out the type of lock by examining the TYPE (TY) column of the V$LOCK view. 
Oracle uses several types of internal “system” locks to maintain the library cache and other instance-
related components, but those locks are normal and you won’t find anything related to those locks in the 
V$LOCK view. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

168 

For DML operations, Oracle uses two basic types of locks—transaction locks (TX) and DML locks 
(TM). There is also a third type of lock, a user lock (UL), but it doesn’t play a role in troubleshooting 
general locking issues. Transaction locks are the most frequent type of locks you’ll encounter when 
troubleshooting Oracle locking issues. Each time a transaction modifies data, it invokes a TX lock, which 
is a row transaction lock. The DML lock, TM, on the other hand, is acquired once for each object that’s 
being changed by a DML statement. 

The LMODE column shows the lock mode, with a value of 6 indicating an exclusive lock. The REQUEST 
column shows the requested lock mode. The session that first modifies a row will hold an exclusive lock 
with LMODE=6. This session’s REQUEST column will show a value of 0, since it’s not requesting a lock—it 
already has one! The blocked session needs but can’t obtain an exclusive lock on the same rows, so it 
requests a TX in the exclusive mode (MODE=6) as well. So, the blocked session’s REQUEST column will show 
a value of 6, and its LMODE column a value of 0 (a blocked session has no lock at all in any mode). 

The preceding discussion applies to row locks, which are always taken in the exclusive mode. A TM 
lock is normally acquired in mode 3, which is a Shared Row Exclusive mode, whereas a DDL statement 
will need a TM exclusive lock.  

5-15. Identifying a Locked Object 

Problem 
You are aware of a locking situation, and you’d like to find out the object that’s being locked. 

Solution 
You can find the locked object’s identity by looking at the value of the ID1 (LockIdentifier) column in the 
V$LOCK view (see Recipe 5-13). The value of the ID1 column where the TYPE column is TM (DML enqueue) 
identifies the  locked object. Let's say you've ascertained that the value of the ID1 column is 99999.  You 
can then issue the following query to identify the locked table: 

SQL> select object_name from dba_objects where object_id=99999; 
 
OBJECT_NAME 
------------ 
TEST 
SQL> 

An even easier way is  to use the V$LOCKED_OBJECT view to find out the locked object, the object type, 
and the owner of the object. 

SQL> select lpad(' ',decode(l.xidusn,0,3,0)) || l.oracle_username "User", 
     o.owner, o.object_name, o.object_type 
     from v$locked_object l, dba_objects o 
     where l.object_id = o.object_id 
     order by o.object_id, 1 desc; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

169 

User       OWNER      OBJECT_NAME      OBJECT_TYPE 
------     ------     ------------     ------------ 
HR         HR         TEST             TABLE 
SH         HR         TEST             TABLE 
 
SQL> 

Note that the query shows both the blocking and the blocked users. 

How It Works 
As the “Solution” section shows, it’s rather easy to identify a locked object. You can certainly use Oracle 
Enterprise Manager to quickly identify a locked object, the ROWID of the object involved in the lock, and 
the SQL statement that’s responsible for the locks. However, it’s always important to understand the 
underlying Oracle views that contain the locking information, and that’s what this recipe demonstrates. 
Using the queries shown in this recipe, you can easily identify a locked object without recourse to a 
monitoring tool such as Oracle Enterprise Manager, for example. 

In the example shown in the solution, the locked object was a table, but it could be any other type of 
object, including a PL/SQL package. Often, it turns out that the reason a query is just hanging is that one 
of the objects the query needs is locked. You may have to kill the session holding the lock on the object 
before other users can access the object. 

5-16. Resolving enq: TM Lock Contention 

Problem 
Several sessions in your database are taking a very long time to process some insert statements. As a 
result, the “active” sessions count is very high and the database is unable to accept new session 
connections. Upon checking, you find that the database is experiencing a lot of enq: TM – contention 
wait events. 

Solution 
The enq: TM – contention event is usually due to missing foreign key constraints on a table that’s part of 
an Oracle DML operation. Once you fix the problem by adding the foreign key constraint to the relevant 
table, the enq: TM – contention event will go away. 

The waits on the enq: TM – contention event for the sessions that are waiting to perform insert 
operations are almost always due to an unindexed foreign key constraint.. This happens when a 
dependent or child table’s foreign key constraint that references a parent table is missing an index on 
the associated key. Oracle acquires a table lock on a child table if it’s performing modifications on the 
primary key column in the parent table that’s referenced by the foreign key of the child table. Note that 
these are full table locks (TM), and not row-level locks (TX)—thus, these locks aren’t restricted to a row but 
to the entire table. Naturally, once this table lock is acquired, Oracle will block all other sessions that 
seek to modify the child table’s data. Once you create an index in the child table performing on the 
column that references the parent table, the waits due to the TM contention will go away. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

170 

How It Works 
Oracle takes out an exclusive lock on a child table if you don’t index the foreign key constraints in that 
table. To illustrate how an unindexed foreign key will result in contention due to locking, we use the 
following example. Create two tables, STORES and PRODUCTS, as shown here: 

SQL> create table stores 
     (store_id     number(10)     not null, 
     supplier_name     varchar2(40)     not null, 
     constraint stores_pk PRIMARY KEY (store_id)); 
SQL>create table products 
    (product_id     number(10)     not null, 
    product_name    varchar2(30)    not null, 
    supplier_id     number(10)     not null, 
    store_id     number(10)     not null, 
    constraint fk_stores 
    foreign key (store_id) 
    references stores(store_id) 
    on delete cascade); 

If you now delete any rows in the STORES table, you’ll notice waits due to locking. You can get rid of 
these waits by simply creating an index on the column you’ve specified as the foreign key in the PRODUCTS 
table: 

create index fk_stores on products(store_id); 

You can find all unindexed foreign key constraints in your database by issuing the following query: 

SQL> select * from ( 
     select c.table_name, co.column_name, co.position column_position 
     from   user_constraints c, user_cons_columns co 
     where  c.constraint_name = co.constraint_name 
     and   c.constraint_type = 'R' 
     minus 
     select ui.table_name, uic.column_name, uic.column_position 
     from   user_indexes ui, user_ind_columns uic 
     where  ui.index_name = uic.index_name 
     ) 
     order by table_name, column_position; 

If you don’t index a foreign key column, you’ll notice the child table is often locked, thus leading to 
contention-related waits. Oracle recommends that you always index your foreign keys. 

■ Tip If the matching unique or primary key for a child table’s foreign key never gets updated or deleted, you 
don’t have to index the foreign key column in the child table. 

Oracle will tend to acquire a table lock on the child table if you don’t index the foreign key column. 
If you insert a row into the parent table, the parent table doesn’t acquire a lock on the child table; 
however, if you update or delete a row in the parent table, the database will acquire a full table lock on 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

171 

the child table. That is, any modifications to the primary key in the parent table will result in a full table 
lock (TM) on the child table. In our example, the STORES table is a parent of the PRODUCTS table, which 
contains the foreign key STORE_ID. The table PRODUCTS being a dependent table, the values of the 
STORE_ID column in that table must match the values of the unique or primary key of the parent table, 
STORES. In this case, the STORE_ID column in the STORES table is the primary key of that table. 

Whenever you modify the parent table's (STORES) primary key, the database acquires a full table lock 
on the PRODUCTS table. Other sessions can’t change any values in the PRODUCTS table, including the 
columns other than the foreign key column. The sessions can only query but not modify the PRODUCTS 
table. During this time, any sessions attempting to modify any column in the PRODUCTS table will have to 
wait (TM: enq contention wait). Oracle will release this lock on the child table PRODUCTS only after it 
finishes modifying the primary key in the parent table, STORES. If you have a bunch of sessions waiting to 
modify data in the PRODUCTS table, they’ll all have to wait, and the active session count naturally will go 
up very fast, if you’ve an online transaction processing–type database that has many users that perform 
short DML operations. Note that any DML operations you perform on the child table don’t require a 
table lock on the parent table. 

5-17. Identifying Recently Locked Sessions 

Problem 
A session is experiencing severe waits in the database, most likely due to a blocking lock placed by 
another session. You’ve tried to use the V$LOCK and other views to drill deeper into the locking issue, but 
are unable to “capture” the lock while it’s in place. You’d like to use a different view to “see” the older 
locking data that you might have missed while the locking was going on. 

Solution 
You can execute the following statement based on ASH, to find out information about all locks held in 
the database during the previous five minutes. Of course, you can vary the time interval to a smaller or 
larger period, so long as there’s ASH data covering that time period. 

SQL> select to_char(h.sample_time, 'HH24:MI:SS') TIME,h.session_id, 
     decode(h.session_state, 'WAITING' ,h.event, h.session_state) STATE,      
     h.sql_id, 
     h.blocking_session BLOCKER 
     from v$active_session_history h, dba_users u 
     where u.user_id = h.user_id 
     and h.sample_time > SYSTIMESTAMP-(2/1440); 
 
TIME            SID                      STATE                      SQL_ID          BLOCKER 
------------   -----      -----------------------------------     -------------    --------- 
17:00:52        197         116 enq: TX - row lock contention     094w6n53tnywr     191 
17:00:51        197         116 enq: TX - row lock contention     094w6n53tnywr     191 
17:00:50        197         116 enq: TX - row lock contention     094w6n53tnywr     191 
 
… 
 
SQL> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

172 

You can see that ASH has recorded all the blocks placed by session 1, the blocking session (SID=191)
that led to a “hanging” situation for session 2, the blocked session (SID=197). 

How It works 
Often, when your database users complain about a performance problem, you may query the V$SESSION
or V$LOCK views, but you may not find anything useful there, because the wait issue may have been
already resolved by then. In these circumstances you can query the V$ACTIVE_SESSION_HISTORY view to
find out what transpired in the database during the previous 60 minutes. This view offers a window into
the Active Session History (ASH), which is a memory buffer that collects information about all active
sessions, every second. The V$ACTIVE_SESSION_HISTORY contains one row for each active session, and
newer information continuously overwrites older data, since ASH is a rolling buffer. 

We can best demonstrate the solution by creating the scenario that we’re discussing, and then
working through that scenario. Begin by creating a test table with a couple of columns: 

SQL>  create table test (name varchar(20), id number (4));
Table created. 
SQL> 

Insert some data into the test table. 

SQL> insert into test values ('alapati','9999');
1 row created. 
SQL> insert into test values ('sam', '1111'); 
1 row created. 
SQL> commit; 
Commit complete. 
SQL> 

In session 1 (the current session), execute a SELECT * FOR UPDATE statement on the table TEST—this
will place a lock on that table. 

SQL> select * from test for update; 

SQL> 

In a different session, session 2, execute the following UPDATE statement: 

SQL> update test set name='Jackson' where id = '9999'; 

Session 2 will hang now, because it’s being blocked by the SELECT FOR UPDATE statement issued by
session 1. Go ahead now and issue either a ROLLBACK or a COMMIT from session 1: 

SQL> rollback;
Rollback complete.
SQL> 

When you issue the ROLLBACK statement, session 1 releases all locks it’s currently holding on table
TEST. You’ll notice that session 2, which has been blocked thus far, immediately processes the UPDATE
statement, which was previously “hanging,” waiting for the lock held by session 2. 

Therefore, we know for sure that there was a blocking lock in your database for a brief period, with
session 1 the blocking session, and session 2 the blocked session. You can’t find any evidence of this in
the V$LOCK view, though, because that and all other lock-related views show you details only about
currently held locks. Here’s where the Active Session History views shine—they can provide you 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

173 

information about locks that have been held recently but are gone already before you can view them 
with a query on the V$LOCK or V$SESSION views. 

■ Caution   Be careful when executing the Active Session History (ASH) query shown in the “Solution” section of 
this recipe. As the first column (SAMPLE_TIME) shows, ASH will record session information every second. If you 
execute this query over a long time frame, you may get a very large amount of output just repeating the same 
locking information. To deal with that output, you may specify the SET PAUSE ON option in SQL*Plus. That will 
pause the output every page, enabling you to scroll through a few rows of the output to identify the problem. 

Use the following query to find out the wait events for which this session has waited during the past 
hour. 

SQL> select sample_time, event, wait_time 
     from v$active_session_history 
     where session_id = 81 
     and session_serial# = 422; 

The column SAMPLE_TIME lets you know precisely when this session suffered a performance hit due 
to a specific wait event. You can identify the actual SQL statement that was being executed by this 
session during that period, by using the V$SQL view along with the V$ACTIVE_SESSION_HISTORY view, as 
shown here: 

SQL> select sql_text, application_wait_time 
     from v$sql 
     where sql_id in ( select sql_id from v$active_session_history 
     where sample_time =  '08-MAR-11 05.00.52.00 PM' 
     and session_id = 68 and session_serial# = 422); 

Alternatively, if you have the SQL_ID already from the V$ACTIVE_SESSION_HISTORY view, you can get 
the value for the SQL_TEXT column from the V$SQLAREA view, as shown here: 

SQL> select sql_text FROM v$sqlarea WHERE sql_id = '7zfmhtu327zm0'; 

Once you have the SQL_ID, it’s also easy to extract the SQL Plan for this SQL statement, by executing 
the following query based on the DBMS_XPLAN package: 

SQL> select * FROM table(dbms_xplan.display_awr('7zfmhtu327zm0')); 

The background process MMON flushes ASH data to disk every hour, when the AWR snapshot is 
created. What happens when MMON flushes ASH data to disk? Well, you won’t be able to query older 
data any longer with the V$ACTIVE_SESSION_HISTORY view. Not to worry, because you can still use the 
DBA_HIST_ACTIVE_SESS_HISTORY view to query the older data. The structure of this view is similar to that 
of the V$ACTIVE_SESSION_HISTORY view. The DBA_HIST_ACTIVE_SESS_HISTORY view shows the history of the 
contents of the in-memory active session history of recent system activity. You can also query the 
V$SESSION_WAIT_HISTORY view to examine the last ten wait events for a session, while it’s still active. This 
view offers more reliable information for very recent wait events than the V$SESSION and V$SESSION_WAIT 
views, both of which show wait information for only the most recent wait. Here’s a typical query using 
the V$SESSION_WAIT_HISTORY view. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

174 

SQL> select sid from v$session_wait_history 
     where wait_time = (select max(wait_time) from v$session_wait_history); 

Any non-zero values under the WAIT_TIME column represent the time waited by this session for the 
last wait event. A zero value for this column means that the session is waiting currently for a wait event. 

5-18. Analyzing Recent Wait Events in a Database 

Problem 
You’d like to find out the most important waits in your database in the recent past, as well as the users, 
SQL statements, and objects that are responsible for most of those waits. 

Solution 
Query the V$ACTIVE_SESSION_HISTORY view to get information about the most common wait events, and 
the SQL statements, database objects, and users responsible for those waits. The following are some 
useful queries you can use. 

To find the most important wait events in the last 15 minutes, issue the following query: 

SQL> select event, 
     sum(wait_time + 
     time_waited) total_wait_time 
     from v$active_session_history 
     where sample_time between 
     sysdate – 30/2880 and sysdate 
     group by event 
     order by total_wait_time desc 

To find out which of your users experienced the most waits in the past 15 minutes, issue the 
following query: 

SQL> select s.sid, s.username, 
     sum(a.wait_time + 
     a.time_waited) total_wait_time 
     from v$active_session_history a, 
     v$session s 
     where a.sample_time between sysdate – 30/2880 and sysdate 
     and a.session_id=s.sid 
     group by s.sid, s.username 
     order by total_wait_time desc; 

Execute the following query to find out the objects with the highest waits. 

SQL>select a.current_obj#, o.object_name, o.object_type, a.event, 
    sum(a.wait_time + 
    a.time_waited) total_wait_time 
    from v$active_session_history a, 
    dba_objects d 
    where a.sample_time between sysdate – 30/2880 and sysdate 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

175 

    and a.current_obj# = d.object_id 
    group by a.current_obj#, d.object_name, d.object_type, a.event 
    order by total_wait_time; 

You can identify the SQL statements that have been waiting the most during the last 15 minutes 
with this query. 

SQL> select a.user_id,u.username,s.sql_text, 
     sum(a.wait_time + a.time_waited) total_wait_time 
     from v$active_session_history a, 
     v$sqlarea s, 
     dba_users u 
     where a.sample_time between sysdate – 30/2880 and sysdate 
     and a.sql_id = s.sql_id 
     and a.user_id = u.user_id 
     group by a.user_id,s.sql_text, u.username;  

How It Works 
The “Solution” section shows how to join the V$ACTIVE_SESSION_HISTORY view with other views, such as 
the V$SESSION, V$SQLAREA, DBA_USERS, and DBA_OBJECTS views, to find out exactly what’s causing the 
highest number of wait events or who’s waiting the most, in the past few minutes. This information is 
extremely valuable when troubleshooting “live” database performance issues. 

5-19. Identifying Time Spent Waiting Due to Locking 

Problem 
You want to identify the total time spent waiting by sessions due to locking issues. 

Solution  
You can use the following query to identify (and quantify) waits caused by locking of a table’s rows. Since 
the query orders the wait events by time waited, you can quickly see which type of wait events accounts 
for most of the waits in your instance. 

SQL> select wait_class, event, time_waited / 100 time_secs 
  2  from v$system_event e 
  3  where e.wait_class <> 'Idle' AND time_waited > 0 
  4  union 
  5  select 'Time Model', stat_name NAME, 
  6  round ((value / 1000000), 2) time_secs 
  7  from v$sys_time_model 
  8  where stat_name NOT IN ('background elapsed time', 'background cpu time') 
  9*  order by 3 desc; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

176 

WAIT_CLASS                                EVENT                    TIME_SECS 
-------------------------       ------------------------------   -------------- 
System I/O                      log file parallel write                45066.32 
System I/O                      control file sequential read           23254.41 
Time Model                      DB time                                11083.91 
Time Model                      sql execute elapsed time                7660.04 
Concurrency                     latch: shared pool                      5928.73 
Application                     enq: TX - row lock contention           3182.06 
… 
SQL> 

In this example, the wait event enq: TX - row lock contention reveals the total time due to row 
lock enqueue wait events. Note that the shared pool latch events are classified under the Concurrency 
wait class, while the enqueue TX - row lock contention event is classified as an Application class wait 
event. 

How It Works 
The query in the “Solution” section joins the V$SYSTEM_EVENT and the V$SYS_TIME_MODEL views to show 
you the total time waited due to various wait events. In our case, we’re interested in the total time waited 
due to enqueue locking. If you’re interested in the total time waited by a specific session, you can use a 
couple of different V$ views to find out how long sessions have been in a wait state, but we recommend 
using the V$SESSION view, because it shows you various useful attributes of the blocking and blocked 
sessions. Here’s an example showing how to find out how long a session has been blocked by another 
session. 

SQL>select sid, username, event, blocking_session, 
    seconds_in_wait, wait_time 
    from v$session where state in ('WAITING');          

The query reveals the following about the session with SID 81, which is in a WAITING state: 

SID  : 81 (this is the blocked session) 
username: SH (user who's being blocked right now) 
event: TX - row lock contention (shows the exact type of lock contention) 
blocking session: 68 (this is the "blocker") 
seconds_in_wait: 3692 (how long the blocked session is in this state) 

The query reveals that the user SH, with a SID of 81, has been blocked for almost an hour (3,692 
seconds). User SH is shown as waiting for a lock on a table that is currently locked by session 68. While 
the V$SESSION view is highly useful for identifying the blocking and blocked sessions, it can’t tell you the 
SQL statement that’s involved in the blocking of the table. Often, identifying the SQL statement that’s 
involved in a blocking situation helps in finding out exactly why the statement is leading to the locking 
behavior. To find out the actual SQL statement that’s involved, you must join the V$SESSION and the 
V$SQL views, as shown here. 

SQL> select sid, sql_text 
     from v$session s, v$sql q 
     where sid in (68,81) 
     and ( 
     q.sql_id = s.sql_id or  q.sql_id = s.prev_sql_id) 
SQL> / 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

177 

     SID                       SQL_TEXT 
-------------     ----------------------------------------------------- 
     68           select * from test for update 
     81           update hr.test set name='nalapati' where user_id=1111 
 
SQL> 

The output of the query shows that session 81 is being blocked because it’s trying to update a row in 
a table that has been locked by session 68, using the SELECT … FOR UPDATE statement. In cases such as 
this, if you find a long queue of user sessions being blocked by another session, you must kill the 
blocking session so the other sessions can process their work. You’ll also see a high active user count in 
the database during these situations—killing the blocking session offers you an immediate solution to 
resolving contention caused by enqueue locks. Later on, you can investigate why the blocks are 
occurring, so as to prevent these situations. 

For any session, you can identify the total time waited by a session for each wait class, by issuing the 
following query: 

SQL> select wait_class_id, wait_class, 
     total_waits, time_waited 
     from v$session_wait_class 
     where sid = <SID>; 

If you find, for example, that this session endured a very high number of waits in the application 
wait class (wait class ID for this class is 4217450380), you can issue the following query using the 
V$SYSTEM_EVENT view, to find out exactly which waits are responsible: 

SQL> select event, total_waits, time_waited 
     from v$system_event e, v$event_name n 
     where n.event_id = e.event_id 
     and e.wait_class_id = 4217450380; 
 
EVENT                                    TOTAL_WAITS             TIME_WAITED 
----------------------        ----------------------     -------------------- 
 
enq: TM - contention                              82                      475 
… 
SQL> 

In our example, the waits in the application class (ID 4217450380) are due to locking contention as 
revealed by the wait event enq:TM - contention. You can further use the V$EVENT_HISTOGRAM view, to find 
out how many times and for how long sessions have waited for a specific wait event since you started the 
instance. Here’s the query you need to execute to find out the wait time pattern for enqueue lock waits: 

SQL> select wait_time_milli bucket, wait_count 
     from v$event_histogram 
     where event = 'enq: TX - row lock contention'; 

A high amount of enqueue waits due to locking behavior is usually due to faulty application design. 
You’ll sometimes encounter this when an application executes many updates against the same row or a 
set of rows. Since this type of high waits due to locking is due to inappropriately designed applications, 
there’s not much you can do by yourself to reduce these waits. Let your application team know why 
these waits are occurring, and ask them to consider modifying the application logic to avoid the waits. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

178 

Any of the following four DML statements can cause locking contention: INSERT, UPDATE, DELETE, and 
SELECT FOR UPDATE. INSERT statements wait for a lock because another session is attempting to insert a 
row with an identical value. This usually happens when you have a table that has a primary key or 
unique constraint, with the application generating the keys. Use an Oracle sequence instead to generate 
the key values, to avoid these types of locking situations. You can specify the NOWAIT option with a SELECT 
FOR UPDATE statement to eliminate session blocking due to locks. You can also use the SELECT FOR UPDATE 
NOWAIT statement to avoid waiting by sessions for locks when they issue an UPDATE or DELETE statement. 
The SELECT FOR UPDATE NOWAIT statement locks the row without waiting. 

5-20. Minimizing Latch Contention 

Problem 
You’re seeing a high number of latch waits, and you’d like to reduce the latch contention. 

Solution 
Severe latch contention can slow your database down noticeably. When you’re dealing with a latch 
contention issue, start by executing the following query to find out the specific types of latches and the 
total wait time caused by each wait. 

SQL> select event, sum(P3), sum(seconds_in_wait) seconds_in_wait 
     from v$session_wait 
     where event like 'latch%' 
     group by event; 

The previous query shows the latches that are currently being waited for by this session. To find out 
the amount of time the entire instance has waited for various latches, execute the following SQL 
statement. 

SQL> select wait_class, event, time_waited / 100 time_secs 
     from v$system_event e 
     where e.wait_class <> 'Idle' AND time_waited > 0 
     union 
     select 'Time Model', stat_name NAME, 
     round ((value / 1000000), 2) time_secs 
     from v$sys_time_model 
     where stat_name not in ('background elapsed time', 'background cpu time') 
     order by 3 desc; 
 
WAIT_CLASS                                EVENT                     TIME_SECS 
--------------------         ----------------------------       ----------------- 
Concurrency                  library cache pin                             622.24 
Concurrency                  latch: library cache                          428.23 
Concurrency                  latch: library cache lock                      93.24 
Concurrency                  library cache lock                             24.20 
Concurrency                  latch: library cache pin                       60.28 

… 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

179 

The partial output from the query shows the latch-related wait events, which are part of the 
Concurrency wait class. 

You can also view the top five wait events in the AWR report to see if lache contention is an issue, as 
shown here: 

Event                         Waits           Time (s)     (ms)      Time      Wait Class 
------------------------   ------------    ----------    -------   --------   ------------  
db file sequential read      42,005,780       232,838          6       73.8      User I/O 
CPU time                                      124,672                  39.5      Other 
latch free                   11,592,952        76,746          7       24.3      Other 
wait list latch free            107,553         2,088         19        0.7      Other 
latch: library cache          1,135,976         1,862          2        0.6      Concurrency 

Here are the most common Oracle latch wait types and how you can reduce them. 

Shared pool and library latches: These are caused mostly by the database 
repeatedly executing the same SQL statement that varies  slightly each time. For 
example, a database may execute a SQL statement 10,000 times, each time with 
a different value for a variable. The solution in all such cases is to use bind 
variables. An application that explicitly closes all cursors after each execution 
may also contribute to this type of wait. The solution for this is to specify the 
CURSOR_SPACE_FOR_TIME initialization parameter. Too small a shared pool may 
also contribute to the latch problem, so check your SGA size. 

Cache buffers LRU chain: These latch events are usually due to excessive buffer 
cache usage and may be caused both by excessive physical reads as well as 
logical reads. Either the database is performing large full table scans, or it’s 
performing large index range scans. The usual cause for these types of latch 
waits is either the lack of an index or the presence of an unselective index. Also 
check to see if you need to increase the size of the buffer cache. 

Cache buffer chains: These waits are due to one or more hot blocks that are 
being repeatedly accessed. Application code that updates a table’s rows to 
generate sequence numbers, rather than using an Oracle sequence, can result 
in such hot blocks. You might also see the cache buffer chains wait event when 
too many processes are scanning an unselective index with similar predicates. 

Also, if you’re using Oracle sequences, re-create them with a larger cache size setting and try to 
avoid using the ORDER clause. The CACHE clause for a sequence determines the number of sequence values 
the database must cache in the SGA. If your database is processing a large number of inserts and 
updates, consider increasing the cache size to avoid contention for sequence values. By default, the 
cache is set to 20 values. Contention can result if values are being requested fast enough to frequently 
deplete the cache. If you’re dealing with a RAC environment, using the NOORDER clause will prevent 
enqueue contention due to the forced ordering of queued sequence values. 

How It Works 
Oracle uses internal locks called latches to protect various memory structures. When a server process 
attempts to get a latch but fails to do so, that attempt is counted as a latch free wait event. Oracle doesn’t 
group all latch waits into a single latch free wait event. Oracle does use a generic latch free wait event, 
but this is only for the minor latch-related wait events. For the latches that are most common, Oracle 
uses various subgroups of latch wait events, with the name of the wait event type. You can identify the 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

180 

exact type of latch by looking at the latch event name. For example, the latch event latch: library 
cache indicates contention for library cache latches. Similarly, the latch: cache buffer chains event 
indicates contention for the buffer cache. 

Oracle uses various types of latches to prevent multiple sessions from updating the same area of the 
SGA. Various database operations require sessions to read or update the SGA. For example, when a 
session reads a data block into the SGA from disk, it must modify the buffer cache least recently used 
chain. Similarly, when the database parses a SQL statement, that statement has to be added to the 
library cache component of the SGA. Oracle uses latches to prevent database operations from stepping 
on each other and corrupting the SGA. 

 A database operation needs to acquire and hold a latch for very brief periods, typically lasting a few 
nanoseconds. If a session fails to acquire a latch at first because the latch is already in use, the session 
will try a few times before going to “sleep.” The session will re-awaken and try a few more times, before 
going into the sleep mode again if it still can’t acquire the latch it needs. Each time the session goes into 
the sleep mode, it stays longer there, thus increasing the time interval between subsequent attempts to 
acquire a latch. Thus, if there’s a severe contention for latches in your database, it results in a severe 
degradation of response times and throughput. 

Don’t be surprised to see latch contention even in a well-designed database running on very fast 
hardware. Some amount of latch contention, especially the cache buffers chain latch events, is pretty 
much unavoidable. You should be concerned only if the latch waits are extremely high and are slowing 
down database performance. 

Contention due to the library cache latches as well as shared pool latches is usually due to 
applications not using bind variables. If your application can’t be recoded to incorporate bind variables, 
all’s not lost. You can set the CURSOR_SHARING parameter to force Oracle to use bind variables, even if your 
application hasn’t specified them in the code. You can choose between a setting of FORCE or SIMILAR for 
this parameter to force the substituting of bind variables for hard-coded values of variables. The default 
setting for this parameter is EXACT, which means that the database won’t substitute bind variables for 
literal values. When you set the CURSOR_SHARING parameter to FORCE, Oracle converts all literals to bind 
variables. The SIMILAR setting causes a statement to use bind variables only if doing so doesn’t change a 
statement’s execution plan. Thus, the SIMILAR setting seems a safer way to go about forcing the database 
to use bind variables instead of literals. Although there are some concerns about the safety of setting the 
CURSOR_SHARING parameter to FORCE, we haven’t seen any real issues with using this setting. The library 
cache contention usually disappears once you set the CURSOR_SHARING parameter to FORCE or to SIMILAR. 
The CURSOR_SHARING parameter is one of the few Oracle silver bullets that’ll improve database 
performance immediately by eliminating latch contention. Use it with confidence when dealing with 
library cache latch contention. 

The cache buffer chains latch contention is usually due to a session repeatedly reading the same 
data blocks. First identify the SQL statement that’s responsible for the highest amount of the cache 
buffers chain latches and see if you can tune it. If this doesn’t reduce the latch contention, you must 
identify the actual hot blocks that are being repeatedly read. 

If a hot block belongs to an index segment, you may consider partitioning the table and using local 
indexes. For example, a hash partitioning scheme lets you spread the load among multiple partitioned 
indexes. You can also consider converting the table to a hash cluster based on the indexed columns.  
This way, you can avoid the index altogether. If the hot blocks belong to a table segment instead, you  
can still consider partitioning the table to spread the load across the partitions. You may also want to 
reconsider the application design to see why the same blocks are being repeatedly accessed, thus 
rendering them “hot.” 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

181 

5-21. Managing Locks from Oracle Enterprise Manager 

Problem 
You’d like to find out how to handle locking issues through the Oracle Enterprise Manager Database 
Control GUI interface. 

Solution 
Instead of issuing multiple SQL queries to identify quickly disappearing locking events, you can use 
Oracle Enterprise Manager (OEM) DB Control to identify and resolve locking situations. You can find all 
current locks in the instance, including the blocking and the blocked sessions—you can can also kill the 
blocking session from OEM. 

Here are the ways you can manage locking issues through OEM: 

• In the Home page of DB Control, you’ll see locking information in the Alerts table. 
Look for the User Block category to identify blocking sessions. The alert name you 
must look for is Blocking Session Count. Clicking the message link shown for this 
alert, such as “Session 68 is blocking 12 other sessions,” for example, will take you 
to the Blocking Session Count page. In the Alert History table on this page, you 
can view details about the blocking and blocked sessions. 

Also in the Home page, under Related Alerts, you’ll find the ADDM Performance 
table. Locking issues are revealed by the presence of the Row Lock Waits link. 
Click the Row Lock Waits link to go to the Row Lock Waits page. This page, shown 
in Figure 5-1, lets you view you all the SQL statements that were found waiting for 
row locks. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

182 

Figure 5-1. The Row Lock Waits page in OEM 

• You can also view blocking session details by clicking the Performance tab in the
Home page. Click Blocking Sessions under the Additional Monitoring Links
section to go to the Blocking Sessions page. The Blocking Sessions page contains
details for both the blocking as well as the blocked sessions. You can see the exact
wait event, which will be enq: TX row lock contention when one session blocks
another. You can find out the exact SQL statement that’s involved in blocking
sessions, by clicking the SQL ID link on this page. You can kill the blocking session
from this page by clicking the Kill Session button at the top left side of the page. 

• Also in the Additional Monitoring Links section is another link named Instance
Locks, which takes you to the Instance Locks page. The Instance Locks page shows
the session details for both the blocking and blocked sessions. You can click the
SQL ID link to view the current SQL that’s being executed by the blocker and the
blocked sessions. You can also find out the name of the object that’s locked. You
can kill the blocking session by clicking the Kill Session button. 

How It Works 
You don’t necessarily have to execute multiple SQL scripts to analyze locking behavior in your database.
The SQL code we showed you earlier in various recipes was meant to explain how Oracle locking works.
On a day-to-day basis, it’s much more practical and efficient to just use OEM to quickly find out who’s
blocking a session and why. 

5-22. Analyzing Waits from Oracle Enterprise Manager 

Problem 
You’d like to use Oracle Enterprise Manager to manage waits in your database instances. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5 ■ MINIMIZING SYSTEM CONTENTION 

 

183 

Solution 
The OEM interface lets you quickly analyze current waits in your database, instead of running SQL 
scripts to do so. In the Home page, the Active Sessions graph shows the relative amounts of waits,  
I/O, and CPU. Click the Waits link in this graph to view the Active Sessions graph. To the right of the 
graph, you’ll see various links such as Concurrency, Application, Cluster, Administrative, User I/O, etc. 
Clicking each of these links will take you to a page that shows you all active sessions that are waiting for 
waits under that wait class. We summarize the wait events under the most important of these wait 
classes here. 

User I/O: This shows wait events such as db file scattered read, db file 
sequential read, direct path read, direct path write, and read by other 
session. You can click any of the links for the various waits to get a graph of the 
wait events. For example, clicking the “db file scattered read” link will take you 
to the histogram for the “Wait Event: db file scattered read” page. 

System I/O: This shows waits due to the db file parallel write, log file 
parallel write, control file parallel write, and the control file 
sequential read wait events. 

Application: This shows active sessions waiting for events such as enqueue 
locks. 

How It Works 
Once you understand the theory behind the Oracle Wait Interface, you can use OEM to quickly analyze 
current wait events in your database. You can find out not only which wait events are adversely affecting 
performance, but also which SQL statement and which users are involved. All the details pages you can 
drill down to from the Active Session page show a graph of the particular wait event class from the time 
the instance started. The pages also contain tables named Top SQL and Top Users, which show exactly 
which SQL and users are affected by the wait event.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 
 

 

    

 

   

 

  

 

 

  

 

185 

Analyzing Operating System 
Performance 

Solving database performance issues sometimes requires the use of operating system (OS) utilities. 
These tools often provide information that can help isolate database performance problems. Consider 
the following situations: 

• You’re running multiple databases and multiple applications on one server and 
want to use OS utilities to identify which database (and corresponding process) is 
consuming the most operating system resources. This approach is invaluable 
when one database application is consuming resources to the point of causing 
other databases on the box to perform poorly. 

• You need to verify if the database server is adequately sized for current application 
workload in terms of CPU, memory, disk I/O, and network bandwidth. 

• An analysis is needed to determine at what point the server will not be able to 
handle larger (future) workloads. 

• You’ve used database tools to identify system bottlenecks and want to double-
check the analysis via operating system tools. 

In these scenarios, to effectively analyze, tune, and troubleshoot, you’ll need to employ OS tools to 
identify resource-intensive processes. Furthermore, if you have multiple databases and applications 
running on one server, when troubleshooting performance issues, it’s often more efficient to first 
determine which database and process is consuming the most resources. Operating system utilities help 
pinpoint whether the bottleneck is CPU, memory, disk I/O, or a network issue. In Linux/Unix 
environments, once you have the operating system identifier, you can then query the database to show 
any corresponding database processes and SQL statements. 

Take a look at Figure 6-1. This flowchart details the decision-making process and the relevant 
Linux/Unix operating system tools that a DBA steps through when diagnosing sluggish server 
performance. For example, when you’re dealing with performance problems, one common first task is 
to log on to the box and quickly check for disk space issues using OS utilities like df and du. A full mount 
point is a common cause of database unavailability. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

186 

 

Figure 6-1. Troubleshooting poor performance 

After inspecting disk space issues, the next task is to use an OS utility such as vmstat, top, or ps to 
determine what type of bottleneck you have. For example, is sluggish performance related to a disk I/O 
issue, CPU, memory, or the network? After determining the type of bottleneck, the next step is to 
determine if a database process is causing the bottleneck. 

The ps command is useful for displaying the process name and ID of the resource-consuming 
session. When you have multiple databases running on one box, you can determine which database is 
associated with the process from the process name. Once you have the process ID and associated 
database, you can then log on to the database and run SQL queries to determine if the process is 
associated with a SQL query. If the problem is SQL-related, then you can identify further details 
regarding the SQL query and where it might be tuned. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

187 

Figure 6-1 encapsulates the difficulty of troubleshooting performance problems. Correctly 
pinpointing the cause of performance issues and recommending an efficient solution is often easier said 
than done. When trying to resolve issues, some paths result in relatively efficient and inexpensive 
solutions, such as terminating a runaway operating system process or regenerating fresh statistics. Other 
decisions may lead you to conclude that you need to add expensive hardware or redesign the system. 
Your performance tuning conclusions can have long-lasting financial impact on your company and thus 
influence your ability to retain a job. Obviously you want to focus on the cause of a performance 
problem and not just address the symptom. If you can consistently identify the root cause of the 
performance issue and recommend an effective and inexpensive solution, this will greatly improve your 
employment opportunities. 

The focus of this chapter is to provide detailed examples that show how to use Linux/Unix operating 
system utilities to identify server performance issues. These utilities are invaluable for providing extra 
information used to diagnose performance issues outside of tools available within the database. 
Operating system utilities act as an extra set of eyes to help zero in on the cause of poor database 
performance. 

6-1. Detecting Disk Space Issues 

Problem 
Users are reporting that they can’t connect to a database. You log on to the database server, attempt to 
connect to SQL*Plus, and receive this error: 

ORA-09817: Write to audit file failed. 
Linux Error: 28: No space left on device 
Additional information: 12 

You want to quickly determine if a mount point is full and where the largest files are within this 
mount point. 

Solution 
In a Linux/Unix environment, use the df command to identify disk space issues. This example uses the -
h to format the output so that space is reported in megabytes or gigabytes: 

$ df –h 

Here is some sample output: 

Filesystem            Size  Used Avail Use% Mounted on 
/dev/mapper/VolGroup00-LogVol00 
                       29G   28G     0 100% / 
/dev/sda1              99M   19M   75M  20% /boot 

The prior output indicates that the root (/) file system is full on this server. In this situation, once a 
full mount point is identified, then use the find command to locate the largest files contained in a 
directory structure. This example navigates to the ORACLE_HOME directory and then connects the find, ls, 
sort, and head commands to identify the largest files beneath that directory: 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

188 

$ cd $ORACLE_HOME 
$ find . -ls | sort -nrk7 | head -10 

If you have a full mount point, also consider looking for the following types of files that can be 
moved or removed: 

• Deleting database trace files 

• Removing large Oracle Net log files 

• Moving, compressing, or deleting old archive redo log files 

• Removing old installation files or binaries 

• If you have datafiles with ample free space, consider resizing them to smaller sizes 

Another way to identify where the disk space is being used is to find the largest space-consuming 
directories beneath a given directory. This example combines the du, sort, and head commands to show 
the ten largest directories beneath the current working directory: 

$ du -S . | sort -nr | head -10 

The prior command is particularly useful for identifying a directory that might not necessarily have 
large files in it, but lots of small files consuming space (like trace files). 

■ Note On Solaris Unix systems, the prior command will need to use du with the –o option. 

How It Works 
When you have a database that is hung because there is little or no free disk space, you should quickly 
find files that can be safely removed without compromising database availability. On Linux/Unix 
servers, the df, find, and du commands are particularly useful. 

When working with production database servers, it’s highly desirable to proactively monitor disk 
space so that you’re warned about a mount point becoming full. Listed next is a simple shell script that 
monitors disk space for a given set of mount points: 

#!/bin/bash 
mntlist="/orahome /oraredo1 /oraarch1 /ora01 /oradump01 /" 
for ml in $mntlist 
do 
echo $ml 
usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -) 
BOX=$(uname -a | awk '{print $2}') 
# 
case $usedSpc in 
[0-9]) 
arcStat="relax, lots of disk space: $usedSpc" 
;; 
[1-7][0-9]) 
arcStat="disk space okay: $usedSpc" 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

189 

;; 
[8][0-9]) 
arcStat="space getting low: $usedSpc" 
;; 
[9][0-9]) 
arcStat="warning, running out of space: $usedSpc" 
echo $arcStat $ml | mailx -s "space on: $BOX" dkuhn@oracle.com 
;; 
[1][0][0]) 
arcStat="update resume, no space left: $usedSpc" 
echo $arcStat $ml | mailx -s "space on: $BOX" dkuhn@oracle.com 
;; 
*) 
arcStat="huh?: $usedSpc" 
esac 
# 
BOX=$(uname -a | awk '{print $2}') 
echo $arcStat 
# 
done 
# 
exit 0 

You’ll have to modify the script to match your environment. For example, the second line of the 
script specifies the mount points on the box being monitored: 

mntlist="/orahome /oraredo1 /oraarch1 /ora01 /oradump01 /" 

These mount points should match the mount points listed in the output of the df –h command. For 
a Solaris box that this script runs on, here’s the output of df: 

Filesystem             size   used  avail capacity  Mounted on 
/                       35G   5.9G    30G    17%    / 
/ora01                 230G   185G    45G    81%    /ora01 
/oraarch1              100G    12G    88G    13%    /oraarch1 
/oradump01             300G    56G   244G    19%    /oradump01 
/orahome                20G    15G   5.4G    73%    /orahome 
/oraredo1               30G   4.9G    25G    17%    /oraredo1 

Also, depending on what version of Linux/Unix you’re using, you’ll have to modify this line as well: 

usedSpc=$(df -h $ml | awk '{print $5}' | grep -v capacity | cut -d "%" -f1 -) 

The prior line of code depends on the output of the df command, which can vary somewhat 
depending on the operating system vendor and version. For example, on one Linux system, the output 
of df might span two lines and reports on Use% instead of capacity, so in this scenario, the usedSpc 
variable is populated as shown: 

usedSpc=$(for x in `df -h $ml | grep -v "Use%"` ; do echo $x ; done | \ 
grep "%" |  cut -d "%" -f1 -) 

The prior code (broken into two lines to fit on the page) runs several Linux/Unix commands and 
places the output in the usedSpc variable. The command first runs df –h, which is piped to the awk 
command. The awk command takes the output and prints out the fifth column. This is piped to the grep 

www.it-ebooks.info

mailto:dkuhn@oracle.com
mailto:dkuhn@oracle.com
mailto:dkuhn@oracle.com
mailto:dkuhn@oracle.com
http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

190 

command, which uses –v to eliminate the word Use% from the output. This is finally piped to the cut 
command, which cuts out the “%” character from the output. 

On a Linux/Unix system, a shell script such as the prior one can easily be run from a scheduling 
utility such as cron. For example, if the shell script is named filesp.bsh, here is a sample cron entry: 

#----------------------------------------------------------------- 
# Filesystem check 
7 * * * * /orahome/oracle/bin/filesp.bsh 1>/orahome/oracle/bin/log/filesp.log 2>&1 
#----------------------------------------------------------------- 

The prior entry instructs the system to run the filesp.bsh shell script at seven minutes after the 
hour for every hour of the day. 

6-2. Identifying System Bottlenecks (vmstat) 

Problem 
You want to determine if a server performance issue is specifically related to disk I/O, CPU, memory, or 
network. 

■ Note If you are running under Solaris, see Recipe 6-3 for a specific solution applying to that operating system. 

Solution 
Use vmstat to determine where the system is resource-constrained. For example, the following 
command reports on system resource usage every five seconds on a Linux system: 

$ vmstat 5 

Here is some sample output: 

procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st 
2  0 228816 2036164  78604 3163452   0    0     1   16    0    0 29  0 70  0  0 
 2  0 228816 2035792  78612 3163456   0    0     0   59  398  528 50  1 49  0  0 
 2  0 228816 2035172  78620 3163448   0    0     0   39  437  561 50  1 49  0  0 

To exit out of vmstat in this mode, press Ctrl+C. You can also have vmstat report for a specific 
number of runs. For example, this instructs vmstat to run every six seconds for a total of ten reports: 

$ vmstat 6 10 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

191 

Here are some general heuristics you can use when interpreting the output of vmstat: 

• If the wa (time waiting for I/O) column is high, this is usually an indication that the 
storage subsystem is overloaded. See Recipe 6-6 for identifying the sources of I/O 
contention. 

• If b (processes sleeping) is consistently greater than 0, then you may not have 
enough CPU processing power. See Recipes 6-5 and 6-9 for identifying Oracle 
processes and SQL statements consuming the most CPU. 

• If so (memory swapped out to disk) and si (memory swapped in from disk) are 
consistently greater than 0, you may have a memory bottleneck. See Recipe 6-5 for 
details on identifying Oracle processes and SQL statements consuming the most 
memory. 

How It Works 
The vmstat (virtual memory statistics) tool helps quickly identify bottlenecks on your server. Use the 
output of vmstat to help determine if the performance bottleneck is related to CPU, memory, or disk I/O. 
Table 6-1 describes the columns available in the output of vmstat. These columns may vary somewhat 
depending on your operating system and version. 

Table 6-1. Descriptions of vmstat Output Columns 

Column Description 

r Number of processes waiting for run time 

b Number of processes in uninterruptible sleep 

swpd Amount of virtual memory 

free Amount of idle memory 

buff Amount of buffer memory 

cache Amount of cache memory 

inact Amount of inactive memory (-a option) 

active Amount of active memory (-a option) 

si Amount of memory swapped from disk/second 

so Amount of memory swapped to disk/second 

bi Blocks read/second from disk 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

192 

Continued 

Column Description 

bo Blocks written/second to disk 

in Number of interrupts/seconds 

cs Number of context switches/second 

us CPU time running non-kernel code 

sy CPU time running kernel code 

Id CPU time idle 

wa CPU time waiting for I/O 

st CPU time taken from virtual machine 

OS WATCHER 

Oracle provides a collection of operating system scripts that gather and store metrics for CPU, memory, 
disk I/O, and network usage. The OS Watcher tool suite automates the gathering of statistics using tools 
such as top, vmstat, iostat, mpstat, netstat, and so on. 

You can obtain OS Watcher from the My Oracle Support web site (support.oracle.com). Navigate to the 
support web site and search for OS Watcher. The OS Watcher User Guide can be found under document ID 
301137.1. This tool is supported on most Linux/Unix systems, and there is also a version for the Windows 
platform. 

6-3. Identifying System Bottlenecks (Solaris) 

Problem 
You’re working on a Solaris system, and irate users are reporting the database application is slow. You 
have multiple databases running on this box and want to identify which processes are consuming the 
most CPU resources. Once the resource-consuming processes are identified at the OS, then you want to 
map them (if possible) to a database process. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

193 

■ Note If you are not running Solaris, then see the solution in Recipe 6-2. 

Solution 
On most Solaris systems, the prstat utility is used to identify which processes are consuming the most
CPU resources. For example, you can instruct the prstat to report system statistics every five seconds: 

$ prstat 5 

Here is some sample output: 

   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP 
 16609 oracle   2364M 1443M cpu2    60    0   3:14:45  20% oracle/11 
 27565 oracle   2367M 1590M cpu3    21    0   0:11:28  16% oracle/14 
 23632 oracle   2284M 1506M run     46    2   0:16:18 6.1% oracle/11 
  4066 oracle   2270M 1492M sleep   59    0   0:02:52 1.7% oracle/35 
 15630 oracle   2274M 1482M sleep   48    0  19:40:41 1.2% oracle/11 

Type q or press Ctrl+C to exit prstat. In the prior output, process 16609 is consistently showing up
as a top CPU-consuming process. 

After identifying a top resource-consuming process, you can determine which database the process
is associated with by using the ps command. This example reports on process information associated
with the PID of 16609: 

$ ps -ef | grep 16609 
  oracle 16609  3021  18   Mar 09 ?         196:29 ora_dw00_ENGDEV 

In this example, the name of the process is ora_dw00_ENGDEV and the associated database is ENGDEV. 

How It Works 
If you’re working on a Solaris server, the top utility is oftentimes not installed. In these environments, the
prstat command can be used to determine top resource-consuming processes on the system. Table 6-2
describes several of the columns displayed in the default output of prstat. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

194 

Table 6-2. Column Descriptions of the top Output 

Column Description 

PID Unique process identifier 

USERNAME OS username running the process 

SIZE Virtual memory size of the process 

RSS Resident set size of process 

STATE State of process (running, stopped, and so on) 

PRI Priority of process 

NICE Nice value used to compute priority 

TIME Cumulative execution time 

CPU Percent of CPU consumption 

PROCESS  Name of the executed file 

NLWP Number of LWPs in the process 

6-4. Identifying Top Server-Consuming Resources (top) 

Problem 
You have a Linux server that hosts multiple databases. Users are reporting sluggishness with an 
application that uses one of the databases. You want to identify which processes are consuming the 
most resources on the server and then determine if the top consuming process is associated with a 
database. 

Solution 
The top command shows a real-time display of the highest resource-consuming processes on a server. 
Here’s the simplest way to run top: 

$ top 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

195 

Listed next is a fragment of the output: 

top - 04:40:05 up 353 days, 15:16,  3 users,  load average: 2.84, 2.34, 2.45 
Tasks: 454 total,   4 running, 450 sleeping,   0 stopped,   0 zombie 
Cpu(s): 64.3%us,  3.4%sy,  0.0%ni, 20.6%id, 11.8%wa,  0.0%hi,  0.0%si,  0.0%st 
Mem:   7645184k total,  6382956k used,  1262228k free,   176480k buffers 
Swap:  4128760k total,      184k used,  4128576k free,  3953512k cached 
 
  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND 
19888 oracle    25   0  148m  13m  11m R 100.1  0.2 313371:45 oracle 
19853 oracle    25   0  148m  13m  11m R 99.8  0.2 313375:41 oracle 
 9722 oracle    18   0 1095m 287m 150m R 58.6  3.8   0:41.89 oracle 
  445 root      11  -5     0    0    0 S  0.3  0.0   8:32.67 kjournald 
 9667 oracle    15   0  954m  55m  50m S  0.3  0.7   0:01.03 oracle 
    2 root      RT  -5     0    0    0 S  0.0  0.0   2:17.99 migration/0 

Type q or press Ctrl+C to exit top. In the prior output, the first section of the output displays general 
system information such as how long the server has been running, number of users, CPU information, 
and so on. The second section shows which processes are consuming the most CPU resources (listed top 
to bottom). In the prior output, the process ID of 19888 is consuming a large amount of CPU. To 
determine which database this process is associated with, use the ps command: 

$ ps 19888 

Here is the associated output: 

PID TTY      STAT   TIME COMMAND 
19888 ?        Rs   313393:32 oracleO11R2 (DESCRIPTION=(LOCAL=YES) 

In the prior output, the fourth column displays the value of oracleO11R2. This indicates that this is 
an Oracle process associated with the O11R2 database. If the process continues to consume resources, 
you can next determine if there is a SQL statement associated with the process (see Recipe 6-9) or 
terminate the process (see Recipe 6-10). 

■ Tip If you work in a Solaris operating system environment, use the prstat command to view the top CPU-
consuming processes (see Recipe 6-3 for details). 

How It Works 
If installed, the top utility is often the first investigative tool employed by DBAs and system 
administrators to identify resource-intensive processes on a server. If a process is continuously 
consuming excessive system resources, then you should further determine if the process is associated 
with a database and a specific SQL statement. 

By default, top will repetitively refresh (every few seconds) information regarding the most CPU-
intensive processes. While top is running, you can interactively change its output. For example, if you 
type >, this will move the column that top is sorting one position to the right. Table 6-3 lists the most 
useful hot key features to alter the top display to the desired format. 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

196 

Table 6-3. Commands to Interactively Change the top Output 

Command Function 

Spacebar Immediately refreshes the output 

< or > Moves the sort column one to the left or to 
the right; by default, top sorts on the CPU 
column. 

d Changes the refresh time 

R Reverses the sort order 

z Toggles the color output 

h Displays help menu 

F or O Chooses a sort column 

 
Table 6-4 describes several of the columns displayed by top. Use these descriptions to help interpret 

the output. 

Table 6-4. Column Descriptions of the top Output 

Column Description 

PID Unique process identifier 

USER OS username running the process 

PR Priority of the process 

NI Nice value or process; negative value means high priority; positive value means low priority. 

VIRT Total virtual memory used by process 

RES Non-swapped physical memory used 

SHR Shared memory used by process 

S Process status 

%CPU Processes percent of CPU consumption since last screen refresh 

%MEM Percent of physical memory the process is consuming 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

197 

Column Description 

TIME Total CPU time used by process 

TIME+ Total CPU time, showing hundredths of seconds 

COMMAND Command line used to start a process 

6-5. Identifying CPU and Memory Bottlenecks (ps) 

Problem 
You want to quickly isolate which processes on the server are consuming the most CPU and memory 
resources. 

Solution 
The ps (process status) command is handy for quickly identifying top resource-consuming processes. 
For example, this command displays the top ten CPU-consuming resources on the box: 

$ ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head 

Here is a partial listing of the output: 

97.8 26902 oracle   ?        oracleO11R2 (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq))) 
 0.5 27166 oracle   ?        ora_diag_O11R2 
0.0     9 root     ?        [ksoftirqd/2] 

In the prior output, the process named oracleO11R2 is consuming an inordinate amount of CPU 
resources on the server. The process name identifies this as an Oracle process associated with the O11R2 
database. 

Similarly, you can also display the top memory-consuming processes: 

$ ps -e -o pmem,pid,user,tty,args | sort -n -k 1 -r | head 

How It Works 
The Linux/Unix ps command displays information about currently active processes on the server. The 
pcpu switch instructs the process status to report the CPU usage of each process. Similarly the pmem 
switch instructs ps to report on process memory usage. This gives you a quick and easy way to determine 
which processes are consuming the most resources. 

When using multiple commands on one line (such as ps, sort, and head), it’s often desirable to 
associate the combination of commands with a shortcut (alias). Here’s an example of creating aliases: 

$ alias topc='ps -e -o pcpu,pid,user,tty,args | sort -n -k 1 -r | head' 
$ alias topm='ps -e -o pmem,pid,user,tty,args | sort -n -k 1 -r | head' 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

198 

Now instead of typing in the long line of commands, you can use the alias—for example: 

$ topc 

Also consider establishing the aliases in a startup file (like .bashrc or .profile) so that the 
commands are automatically defined when you log on to the database server. 

6-6. Identifying I/O Bottlenecks 

Problem 
You are experiencing performance problems and want to determine if the issues are related to slow disk 
I/O. 

Solution 
Use the iostat command with the -x (extended) option combined with the -d (device) option to 
generate I/O statistics. This next example displays extended device statistics every ten seconds: 

$ iostat –xd 10 

You need a fairly wide screen to view this output; here’s a partial listing: 

Device:    rrqm/s wrqm/s   r/s   w/s  rsec/s  wsec/s    rkB/s    wkB/s avgrq-sz 
avgqu-sz   await  svctm  %util 
sda          0.01   3.31  0.11  0.31    5.32   28.97     2.66    14.49    83.13 
0.06  138.44   1.89   0.08 

This periodic extended output allows you to view in real time which devices are experiencing spikes 
in read and write activity. To exit from the previous iostat command, press Ctrl+C. The options and 
output may vary depending on your operating system. For example, on some Linux/Unix distributions, 
the iostat output may report the disk utilization as %b (percent busy). 

When trying to determine whether device I/O is the bottleneck, here are some general guidelines 
when examining the iostat output: 

• Look for devices with abnormally high blocks read or written per second. 

• If any device is near 100% utilization, that’s a strong indicator I/O is a bottleneck. 

How It Works 
The iostat command can help you determine whether disk I/O is potentially a source of performance 
problems. Table 6-5 describes the columns displayed in the iostat output. 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

199 

Table 6-5. Column Descriptions of iostat Disk I/O Output 

Column Description 

Device Device or partition name 

tps I/O transfers per second to the device 

Blk_read/s Blocks per second read from the device 

Blk_wrtn/s Blocks written per second to the device 

Blk_read Number of blocks read 

Blk_wrtn Number of blocks written 

rrqm/s Number of read requests merged per second that were queued to device 

wrqm/s Number of write requests merged per second that were queued to device 

r/s Read requests per second 

w/s Write requests per second 

rsec/s Sectors read per second 

wsec/s Sectors written per second 

rkB/s Kilobytes read per second 

wkB/s Kilobytes written per second 

avgrq-sz Average size of requests in sectors 

avgqu-sz Average queue length of requests 

await Average time in milliseconds for I/O requests sent to the device to be served 

svctm Average service time in milliseconds 

%util Percentage of CPU time during which I/O requests were issued to the device. Near 100% 
indicates device saturation 

 
You can also instruct iostat to display reports at a specified interval. The first report displayed will 

report averages since the last server reboot; each subsequent report shows statistics since the previously 
generated snapshot. The following example displays a device statistic report every three seconds: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

200 

$ iostat -d 3 

You can also specify a finite number of reports that you want generated. This is useful for gathering 
metrics to be analyzed over a period of time. This example instructs iostat to report every 2 seconds for 
a total of 15 reports: 

$ iostat 2 15 

When working with locally attached disks, the output of the iostat command will clearly show 
where the I/O is occurring. However, it is not that clear-cut in environments that use external arrays for 
storage. What you are presented with at the file system layer is some sort of a virtual disk that might also 
have been configured by a volume manager. In virtualized storage environments, you’ll have to work 
with your system administrator or storage administrator to determine exactly which disks are 
experiencing high I/O activity. 

Once you have determined that you have a disk I/O contention issue, then you can use utilities such 
as AWR (if licensed), Statspack (no license required), or the V$ views to determine if your database is I/O 
stressed. For example, the AWR report contains an I/O statistics section with the following subsections: 

• IOStat by Function summary 

• IOStat by Filetype summary 

• IOStat by Function/Filetype summary 

• Tablespace IO Stats 

• File IO Stats 

You can also directly query data dictionary views such as V$SQL to determine which SQL statements 
are using excessive I/O—for example: 

SELECT * 
FROM 
(SELECT 
  parsing_schema_name 
 ,direct_writes 
 ,SUBSTR(sql_text,1,75) 
 ,disk_reads 
FROM v$sql 
ORDER BY disk_reads DESC) 
WHERE rownum < 20; 

To determine which sessions are currently waiting for I/O resources, query V$SESSION: 

SELECT 
 username 
,program 
,machine 
,sql_id 
FROM v$session 
WHERE event LIKE 'db file%read'; 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

201 

To view objects that are waiting for I/O resources, run a query such as this: 

SELECT 
 object_name 
,object_type 
,owner 
FROM v$session   a 
    ,dba_objects b 
WHERE a.event LIKE 'db file%read' 
AND   b.data_object_id = a.row_wait_obj#; 

Once you have identified queries (using the prior queries in this section), then consider the 
following factors, which can cause a SQL statement to consume inordinate amounts of I/O: 

• Poorly written SQL 

• Improper indexing 

• Improper use of parallelism (which can cause excessive full table scans) 

You’ll have to examine each query and try to determine if one of the prior items is the cause of poor 
performance as it relates to I/O. 

6-7. Identifying Network-Intensive Processes 

Problem 
You’re investigating performance issues on a database server. As part of your investigation, you want to 
determine if there are network bottlenecks on the system. 

Solution 
Use the netstat (network statistics) command to display network traffic. Perhaps the most useful way to 
view netstat output is with the -ptc options. These options display the process ID and TCP connections, 
and they continuously update the output: 

$ netstat -ptc 

Press Ctrl+C to exit the previous command. Here’s a partial listing of the output: 

(Not all processes could be identified, non-owned process info 
 will not be shown, you would have to be root to see it all.) 
Active Internet connections (w/o servers) 
Proto Recv-Q Send-Q Local Address  Foreign Address  State       PID/Program name 
tcp        0      0 rmug.com:62386 rmug.com:1521    ESTABLISHED 22864/ora_pmon_RMDB 
tcp        0      0 rmug.com:53930 rmug.com:1521    ESTABLISHED 6091/sqlplus 
tcp        0      0 rmug.com:1521  rmug.com:53930   ESTABLISHED 6093/oracleRMDB1 
tcp        0      0 rmug.com:1521  rmug.com:62386   ESTABLISHED 10718/tnslsnr 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

202 

If the Send-Q (bytes not acknowledged by remote host) column has an unusually high value for a 
process, this may indicate an overloaded network. The useful aspect about the previous output is that 
you can determine the operating system process ID (PID) associated with a network connection. If you 
suspect the connection in question is an oracle session, you can use the techniques described in the 
“Solution” section of Recipe 6-9 to map an operating system PID to an Oracle process or SQL statement. 

How It Works 
When experiencing performance issues, usually the network is not the cause. Most likely you’ll 
determine that bad performance is related to a poorly constructed SQL statement, inadequate disk I/O, 
or not enough CPU or memory resources. However, as a DBA, you need to be aware of all sources of 
performance bottlenecks and how to diagnose them. In today’s highly interconnected world, you must 
possess network troubleshooting and monitoring skills. The netstat utility is a good starting place for 
monitoring server network connections. 

6-8. Troubleshooting Database Network Connectivity 

Problem 
A user has reported that he or she can’t connect to a database. You know there are many components 
involved with network connectivity and want to figure out the root cause of the problem. 

Solution 
Use these steps as guidelines when diagnosing Oracle database network connectivity issues: 

1. Use the operating system ping utility to determine whether the remote box is 
accessible—for example: 

$ ping dwdb 
dwdb is alive 

If ping doesn’t work, work with your system or network administrator to 
ensure you have server-to-server connectivity in place. 

2. Use telnet to see if you can connect to the remote server and port (that the 
listener is listening on)—for example: 

$ telnet ora03 1521 
Trying 127.0.0.1... 
Connected to ora03. 
Escape character is '^]'. 

The prior output indicates that connectivity to a server and port is okay. If the 
prior command hangs, then contact your SA or network administrator for 
further assistance. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

203 

3. Use tnsping to determine whether Oracle Net is working. This utility will verify
that an Oracle Net connection can be made to a database via the network—for
example: 

$ tnsping dwrep 
.......... 
Used TNSNAMES adapter to resolve the alias 
Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)
(HOST = dwdb1.us.farm.com)(PORT = 1521)) 
(CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = DWREP))) 
OK (500 msec) 

If tnsping can’t contact the remote database, verify that the remote listener
and database are both up and running. On the remote box, use the lsnrctl
status command to verify that the listener is up. Verify that the remote
database is available by establishing a local connection as a non-SYS account
(SYS can often connect to a troubled database when other schemas will not
work). 

4. Verify that the TNS information is correct. If the remote listener and database
are working, then ensure that the mechanism for determining TNS information
(like the tnsnames.ora file) contains the correct information. 

Sometimes the client machine will have multiple TNS_ADMIN locations and
tnsnames.ora files. One way to verify whether a particular tnsnames.ora file is
being used is to rename it and see whether you get a different error when
attempting to connect to the remote database. 

How It Works 
Network connectivity issues can be troublesome to diagnose because there are several architectural
components that have to be in place for it to work correctly. You need to have the following in place: 

• A functional network 

• Open ports from point to point 

• Oracle Net correctly installed and configured 

• Target database and listener up and running 

• Correct navigational information from the client to the target database 

If you’re still having issues, examine the client sqlnet.log file and the remote server listener.log
file. Sometimes these log files will show additional information that will pinpoint the issue. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

204 

6-9. Mapping a Resource-Intensive Process to a Database 
Process 

Problem 
It’s a dark and stormy night, and the system is performing poorly. You identify an operating system–
intensive process on the box. You want to map an operating system process back to a database process. 
If the database process is a SQL process, you want to display the user of the SQL statement and also  
the SQL. 

Solution 
In Linux/Unix environments, if you can identify the resource-intensive operating system process, then 
you can easily check to see if that process is associated with a database process. The process consists of 
the following: 

1. Run an OS command to identify resource-intensive processes and associated 
IDs. 

2. Identify the database associated with the process. 

3. Extract details about the process from the database data dictionary views. 

4. If it’s a SQL statement, get those details. 

5. Generate an execution plan for the SQL statement. 

For example, suppose you identify the top CPU-consuming queries with the ps command: 

$ ps -e -o pcpu,pid,user,tty,args|grep -i oracle|sort -n -k 1 -r|head 

Here is some sample output: 

16.4 11026   oracle ?       oracleDWREP (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq))) 
 0.1  6448   oracle ?       oracleINVPRD (LOCAL=NO) 
 0.5  3639   oracle ?       ora_dia0_STAGE 
 0.4 28133   oracle ?       ora_dia0_DEVSEM 
 0.4  4093   oracle ?       ora_dia0_DWODI 
 0.4  3534   oracle ?       ora_dia0_ENGDEV 
 0.2  4111   oracle ?       ora_mmnl_DWODI 

The prior output identifies one operating system process consuming an excessive amount of CPU 
(16.4%). The process ID is 11026 and name is oracleDWREP. From the process name, it’s an Oracle process 
associated with the DWREP database. 

You can determine what type of Oracle process this is by querying the data dictionary: 

SELECT 
  'USERNAME   : ' || s.username     || CHR(10) || 
  'SCHEMA     : ' || s.schemaname   || CHR(10) || 
  'OSUSER     : ' || s.osuser       || CHR(10) || 
  'PROGRAM    : ' || s.program      || CHR(10) || 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

205 

  'SPID       : ' || p.spid         || CHR(10) || 
  'SID        : ' || s.sid          || CHR(10) || 
  'SERIAL#    : ' || s.serial#      || CHR(10) || 
  'KILL STRING: ' || '''' || s.sid || ',' || s.serial# || ''''  || CHR(10) || 
  'MACHINE    : ' || s.machine      || CHR(10) || 
  'TYPE       : ' || s.type         || CHR(10) || 
  'TERMINAL   : ' || s.terminal     || CHR(10) || 
  'SQL ID     : ' || q.sql_id       || CHR(10) || 
  'SQL TEXT   : ' || q.sql_text 
FROM v$session s 
    ,v$process p 
    ,v$sql     q 
WHERE s.paddr  = p.addr 
AND   p.spid   = '&&PID_FROM_OS' 
AND   s.sql_id = q.sql_id(+); 

The prior script prompts you for the operating system process ID. Here is the output for this 
example: 

USERNAME   : MV_MAINT 
SCHEMA     : MV_MAINT 
OSUSER     : oracle 
PROGRAM    : sqlplus@dwdb (TNS V1-V3) 
SPID       : 11026 
SID        : 410 
SERIAL#    : 30653 
KILL STRING: '410,30653' 
MACHINE    : dwdb 
TYPE       : USER 
TERMINAL   : pts/2 
SQL ID     : by3c8848gyngu 
SQL TEXT   : SELECT "A1"."REGISTRATION_ID","A1"."PRODUCT_INSTANCE_ID" 
,"A1"."SOA_ID","A1"."REG_SOURCE_IP_ADDR","A1"... 

The output indicates that this is a SQL*Plus process with a database SID of 410 and SERIAL# of 30653. 
You’ll need this information if you decide to terminate the process with the ALTER SYSTEM KILL SESSION 
statement (see Recipe 6-10 for details). 

In this example, since the process is running a SQL statement, further details about the query can be 
extracted by generating an execution plan: 

SQL> SELECT * FROM table(DBMS_XPLAN.DISPLAY_CURSOR(('&&sql_id'))); 

You’ll be prompted for the sql_id when you run the prior statement (in this example, the sql_id is 
by3c8848gyngu). Here is a partial listing of the output: 

SQL_ID  by3c8848gyngu, child number 0 
------------------------------------- 
SELECT "A1"."REGISTRATION_ID","A1"."PRODUCT_INSTANCE_ID","A1"."SOA_ID"," 
A1"."REG_SOURCE_IP_ADDR","A1"."REGISTRATION_STATUS","A1"."CREATE_DTT","A 
1"."DOMAIN_ID","A1"."COUNT_FLG","A2"."PRODUCT_INSTANCE_ID","A2"."SVC_TAG 
Plan hash value: 4286489280 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

206 

----------------------------------------------------------------------------------------- 
| Id|Operation                   |Name          | Rows  | Bytes | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------------------- 
|  0|SELECT STATEMENT            |              |       |       | 64977 (100)|          | 
|  1| NESTED LOOPS               |              |       |       |            |          | 
|  2|  NESTED LOOPS              |              |     1 |   499 | 64977   (5)| 00:13:00 | 
|  3|   NESTED LOOPS OUTER       |              |     1 |   462 | 64975   (5)| 00:13:00 | 
|  4|    NESTED LOOPS OUTER      |              |     1 |   454 | 64973   (5)| 00:13:00 | 
|  5|     NESTED LOOPS           |              |     1 |   420 | 64972   (5)| 00:13:00 | 
|  6|      NESTED LOOPS OUTER    |              |     1 |   351 | 64971   (5)| 00:13:00 | 
|  7|       NESTED LOOPS         |              |     1 |   278 | 64969   (5)| 00:13:00 | 
|  8|        NESTED LOOPS OUTER  |              |     1 |   188 | 64967   (5)| 00:13:00 | 
|  9|         NESTED LOOPS       |              |     1 |   180 | 64966   (5)| 00:13:00 | 
|*10|          TABLE ACCESS FULL |REGISTRATIONS |     1 |    77 | 64964   (5)| 00:13:00 | 

This output will help you determine the efficiency of the SQL statement and provide insight on how 
to tune it. Refer to Chapter 9 for details on how to manually tune a query and Chapter 11 for automated 
SQL tuning. 

How It Works 
The process described in the “Solution” section of this recipe allows you to quickly identify resource-
intensive processes, then map the OS process to a database process, and subsequently map the database 
process to a SQL statement. Once you know which SQL statement is consuming resources, then you can 
generate an execution plan to further attempt to determine any possible inefficiencies. 

Sometimes the resource-consuming process will not be associated with a database. In these 
scenarios, you’ll have to work with your SA to determine what the process is and if it can be tuned or 
terminated. 

Also, you may encounter resource-intensive processes that are database-specific but not associated 
with a SQL statement. For example, you might have a long-running RMAN backup process, Data Pump, 
or PL/SQL jobs running. In these cases, work with your DBA to identify whether these types of processes 
can be tuned or killed. 

ORADEBUG 

You can use Oracle’s oradebug utility to display top consuming SQL statements if you know the operating 
system ID. For example, suppose that you have used a utility such as top or ps to identify a high CPU-
consuming operating system process, and from the name of the process you determine it’s a database 
process. Now log in to SQL*Plus and use oradebug to display any SQL associated with the process. In this 
example, the OS process ID is 7853: 

SQL> oradebug setospid 7853; 
Oracle pid: 18, Unix process pid: 7853, image: oracle@xengdb (TNS V1-V3) 

Now show the SQL associated with this process (if any): 

SQL> oradebug current_sql; 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

207 

If there is a SQL statement associated with the process, it will be displayed—for example: 

select 
 a.table_name 
from dba_tables a, dba_indexes b, ..... 

The oradebug utility can be used in a variety of methods to help troubleshoot performance issues. You can 
display the name of the trace file associated with the session by issuing the following: 

SQL> oradebug tracefile_name; 

Use oradebug help to display all options available. 

6-10. Terminating a Resource-Intensive Process 

Problem 
You have identified a process that is consuming inordinate amounts of system resources (see Recipe 6-9) 
and determined that it’s a runaway SQL statement that needs to be killed. 

Solution 
There are three basic ways to terminate a SQL process: 

• If you have access to the terminal where the SQL statement is running, you can 
press Ctrl+C and attempt to halt the process. 

• Determine the session ID and serial number, and then use the SQL ALTER SYSTEM 
KILL SESSION statement. 

• Determine the operating system process ID, and use the kill utility to stop the 
process. 

If you happen to have access to the terminal from which the resource-consuming SQL statement is 
running, you can attempt to press Ctrl+C to terminate the process. Oftentimes you don’t have access to 
the terminal and will have to use a SQL statement or an operating system command to terminate the 
process. 

Using SQL to Kill a Session 
If it’s an Oracle process and you have identified the SID and SERIAL# (see Recipe 6-9), you can terminate 
a process from within SQL*Plus. Here is the general syntax: 

alter system kill session 'integer1, integer2 [,integer3]' [immediate]; 

In the prior syntax statement, integer1 is the value of the SID column and integer2 is the value from 
the SERIAL# column (of V$SESSION). In a RAC environment, you can optionally specify the value of the 
instance ID for integer3. The instance ID can be retrieved from the GV$SESSION view. 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6 ■ ANALYZING OPERATING SYSTEM PERFORMANCE 

 

208 

Here’s an example that terminates a process with a SID of 1177 and a SERIAL# of 38583: 

SQL> alter system kill session '1177,38583'; 

If successful, you should see this output: 

System altered. 

When you kill a session, this will mark the session as terminated, roll back active transactions 
(within the session), and release any locks (held by the session). The session will stay in a terminated 
state until any dependent transactions are rolled back. If it takes a minute or more to roll back the 
transaction, Oracle reports the session as “marked to be terminated” and returns control to the SQL 
prompt. If you specify IMMEDIATE (optional), Oracle will roll back any active transactions and 
immediately return control back to you. 

Using the OS Kill Command 
If you have access to the database server and access to an operating system account that has privileges 
to terminate an Oracle process (such as the oracle OS account), you can also terminate a process 
directly with the kill command. 

For example, suppose you run the ps command and have done the associated work to determine 
that you have a SQL statement that has been running for hours and needs to be terminated. The kill 
command directly terminates the operating system process. In this example, the process ID of 6254 is 
terminated: 

$ kill -9 6254 

■ Caution   Ensure that you don’t kill the wrong Oracle process. If you accidentally kill a required Oracle 
background process, this will cause your instance to abort. 

How It Works 
Sometimes you’ll find yourself in a situation where you need to kill hung SQL processes, database jobs, 
or SQL statements that are consuming inordinate amounts of resources. For example, you may have a 
test server where a job has been running for several hours, is consuming much of the server resources, 
and needs to be stopped so that other jobs can continue to process in a timely manner. 

Manually killing a SQL statement will cause the transaction to be rolled back. Therefore take care 
when doing this. Ensure that you are killing the correct process. If you erroneously terminate a critical 
process, this obviously will have an adverse impact on the application and associated data. 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 
 

 

    

 

   

 

  

 

 

  

 

209 

Troubleshooting the Database 

Oracle Database 11g offers new ways of diagnosing the health of your database. This chapter contains 
several recipes that show how to use the database’s built-in diagnostic infrastructure to resolve database 
performance issues. You’ll learn how to use ADRCI, the Automatic Diagnostic Repository Command 
Interpreter, to perform various tasks such as checking the database alert log, creating a diagnostic 
package for sending to Oracle Support engineers, and running a proactive health check of the database. 

Many common Oracle database performance-related issues occur when you have space issues with 
the temporary tablespace or when you’re creating a large index or a large table with the create table as 
select (CTAS) technique. Undo tablespace space issues are another common source of trouble for many 
DBAs. This chapter has several recipes that help you proactively monitor, diagnose, and resolve 
temporary tablespace and undo tablespace–related issues. When a production database seems to hang, 
there are ways to collect critical diagnostic data for analyzing the causes, and this chapter shows you 
how to log in to an unresponsive database to collect diagnostic data. 

7-1. Determining the Optimal Undo Retention Period 

Problem 
You need to determine the optimal length of time for undo retention in your database. 

Solution 
You can specify the length of time Oracle will retain undo data after a transaction commits, by specifying 
the UNDO_RETENTION parameter. Here is how to set the undo retention to 30 minutes for an instance, by 
updating the value of the UNDO_RETENTION parameter in the SPFILE. 

SQl> alter system set undo_retention=1800 scope=both; 
 
System altered. 
 
SQL> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

210 

To determine the optimal value for the UNDO_RETENTION parameter, you must first calculate the 
actual amount of undo that the database is generating. Once you know approximately how much undo 
the database is generating, you can calculate a more precise value for the UNDO_RETENTION parameter. 
Use the following formula to calculate the value of the UNDO_RETENTION parameter: 

UNDO_RETENTION = UNDO SIZE/(DB_BLOCK_SIZE*UNDO_BLOCK_PER_SEC) 

You can calculate the actual undo that’s generated in your database by issuing the following query: 

SQL> select sum(d.bytes) "undo" 
  2  from v$datafile d, 
  3  v$tablespace t, 
  4  dba_tablespaces s 
  5  where s.contents = 'UNDO' 
  6  and s.status = 'ONLINE' 
  7  and t.name = s.tablespace_name 
  8  and d.ts# = t.ts#; 
 
 UNDO 
---------- 
 104857600 
SQL> 

You can calculate the value of UNDO_BLOCKS_PER_SEC with the following query: 

SQL> select max(undoblks/((end_time-begin_time)*3600*24)) 
  2  "UNDO_BLOCK_PER_SEC" 
  3  FROM v$undostat; 
 
UNDO_BLOCK_PER_SEC 
------------------ 
             7.625 
SQL> 

You most likely  remember the block size for your database—if not, you can look it up in the SPFILE 
or find it by issuing the command show parameter db_block_size. Let’s say the db_block_size is 8 KB 
(8,192 bytes) for your database. You can then calculate the optimal value for the UNDO_RETENTION 
parameter using the formula shown earlier in this recipe—for example, giving a result in seconds: 
1,678.69 = 104,857,600/(7.625 * 8,192). In this case, assigning a value of 1,800 seconds for the 
undo_retention parameter is appropriate, because it’s a bit more than what is indicated by our formula 
for computing the value of this parameter. 

How It Works 
Automatic undo management is the default mode for undo management starting with release 11g. If you 
create a database with the Database Configuration Assistant (DBCA), Oracle automatically creates an 
auto-extending undo tablespace named UNDOTBS1. If you’re manually creating a database, you specify 
the undo tablespace in the database creation statement, or you can add the undo tablespace at any 
point. If a database doesn’t have an explicit undo tablespace, Oracle will store the undo records in the 
SYSTEM tablespace. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

211 

Once you set the UNDO_TABLESPACE initialization parameter, Oracle automatically manages undo 
retention for you. Optionally, you can set the UNDO_RETENTION parameter to specify how long Oracle 
retains older undo data before overwriting it with newer undo data. 

The formula in the “Solution” section shows how to base the undo retention period on current 
database activity. Note that we rely on the dynamic view V$UNDOSTAT to calculate the value for the undo 
retention period. Therefore, it’s essential that you execute your queries after the database has been 
running for some time, thus ensuring that it has had the chance to process a typical workload. 

If you configure the UNDO_RETENTION parameter, the undo tablespace must be large enough to hold 
the undo generated by the database within the time you specify with the UNDO_RETENTION parameter. 
When a transaction commits, the database may overwrite its undo data with newer undo data. The undo 
retention period is the minimum time for which the database will attempt to retain older undo data. 
Oracle retains the undo data for both read consistency purposes as well as to support Oracle Flashback 
operations, for the duration you specify with the UNDO_RETENTION parameter. After it saves the undo data 
for the period you specified for the UNDO_RETENTION parameter, the database marks that undo data as 
expired and makes the space occupied by that data available to write undo data for new transactions. 

By default, the database uses the following criteria to determine how long it needs to retain  
undo data: 

• Length of the longest-running query 

• Length of the longest-running transaction 

• Longest flashback duration 

It’s somewhat difficult to understand how the Oracle database handles the retention of undo data. 
Here’s a brief summary of how things work: 

• If you don’t configure the undo tablespace with the AUTOEXTEND option, the 
database simply ignores the value you set for the UNDO_RETENTION parameter. The 
database will automatically tune the undo retention period based on database 
workload and the size of the undo tablespace. So, make sure you set the undo 
tablespace to a large value if you’re receiving errors indicating that the database is 
not retaining undo for a long enough time. Typically, the undo retention in this 
case is for a duration significantly longer than the longest-running active query in 
the database. 

• If you want the database to try to honor the settings you specify for the 
UNDO_RETENTION parameter, make sure that you enable the AUTOEXTEND option for 
the undo tablespace. This way, Oracle will automatically extend the size of the 
undo tablespace to make room for undo from new transactions, instead of 
overwriting the older undo data. However, if you’re receiving ORA-0155 (snapshot 
too old) errors, say due to Oracle Flashback operations, it means that the database 
isn’t able to dynamically tune the undo retention period effectively. In a case such 
as this, try increasing the value of the UNDO_RETENTION parameter to match the 
length of the longest Oracle Flashback operation. Alternatively, you can try going 
to a larger fixed-size undo tablespace (without the AUTOEXTEND option). 

The key to figuring out the right size for the undo tablespace or the correct setting for the 
UNDO_RETENTION parameter is to understand the nature of the current database workload. In order to 
understand the workload characteristics, it’s important to examine the V$UNDOSTAT view, because it 
contains statistics showing how the database is utilizing the undo space, as well as information such as 
the length of the longest-running queries. You can use this information to calculate the size of the undo 
space for the current workload your database is processing. Note that each row in the V$UNDOSTAT view 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

212 

shows undo statistics for a ten-minute time interval. The table contains a maximum of 576 rows, each 
for a ten-minute interval. Thus, you can review undo usage for up to four days in the past. 

Here are the key columns you should monitor in the V$UNDOSTAT view for the time period you’re 
interested in—ideally, the time period should include the time when your longest-running queries are 
executing. You can use these statistics to size both the UNDO_TABLESPACE as well as the UNDO_RETENTION 
initialization parameters. 

begin_time: Beginning of the time interval. 

end_time: End of the time interval. 

undoblks: Number of undo blocks the database consumed in a ten-minute 
interval; this is what we used in our formula for the estimation of the size of the 
undo tablespace. 

txncount: Number of transactions executed in a ten-minute interval. 

maxquerylen: This shows the length of the longest query (in seconds) executed 
in this instance during a ten-minute interval. You can estimate the size of the 
UNDO_RETENTION parameter based on the maximum value of the MAXQUERYLEN 
column. 

maxqueryid: Identifier for the longest-running SQL statement in this interval. 

nospaceerrcnt: The number of times the database didn’t have enough free 
space available in the undo tablespace for new undo data, because the entire 
undo tablespace was being used by active transactions; of course, this means 
that you need to add space to the undo tablespace. 

tuned_undoretention: The time, in seconds, for which the database will retain 
the undo data after the database commits the transaction to which the undo 
belongs. 

 The following query based on the V$UNDOSTAT view shows how Oracle automatically tunes undo 
retention (check the TUNED_UNDORETENTION column) based on the length of the longest-running query 
(MAXQUERYLEN column) in the current instance workload. 

SQL> select to_char(begin_time,'hh24:mi:ss') BEGIN_TIME, 
  2  to_char(end_time,'hh24:mi:ss') END_TIME, 
  3  maxquerylen,nospaceerrcnt,tuned_undoretention 
  4  from v$undostat; 
 
BEGIN_TI END_TIME MAXQUERYLEN NOSPACEERRCNT TUNED_UNDORETENTION 
-------- -------- ----------- ------------- ------------------- 
12:25:35 12:29:30         892             0                1673 
12:15:35 12:25:35         592             0                1492 
12:05:35 12:15:35        1194             0                2094 
11:55:35 12:05:35         592             0                1493 
11:45:35 11:55:35        1195             0                2095 
11:35:35 11:45:35         593             0                1494 
11:25:35 11:35:35        1196             0                2097 
11:15:35 11:25:35         594             0                1495 
11:05:35 11:15:35        1195             0                2096 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

213 

10:55:35 11:05:35         593             0                1495
10:45:35 10:55:35        1198             0                2098
… 
SQL> 

Note that the value of the TUNED_UNDORETENTION column fluctuates continuously, based on the value
of the maximum query length (MAXQUERYLEN) during any interval. You can see that the two columns are
directly related to each other, with Oracle raising or lowering the tuned undo retention based on the
maximum query length during a given interval (of ten minutes). The following query shows the usage of
undo blocks and the transaction count during each ten-minute interval. 

SQL> select to_char(begin_time,'hh24:mi:ss'),to_char(end_time,'hh24:mi:ss'), 
  2  maxquerylen,ssolderrcnt,nospaceerrcnt,undoblks,txncount from v$undostat 
  3  order by undoblks 
  4  / 

TO_CHAR( TO_CHAR( MAXQUERYLEN SSOLDERRCNT NOSPACEERRCNT   UNDOBLKS   TXNCOUNT
-------- -------- ----------- ----------- ------------- ---------- ---------- 
17:33:51 17:36:49         550           0             0          1         18
17:23:51 17:33:51         249           0             0         33        166
17:13:51 17:23:51         856           0             0         39        520
17:03:51 17:13:51         250           0             0         63        171
16:53:51 17:03:51         850           0             0        191        702
16:43:51 16:53:51         245           0             0        429        561 

6 rows selected. 

SQL> 

Oracle provides an easy way to help set the size of the undo tablespace as well as the undo retention
period, through the OEM Undo Advisor interface. You can specify the length of time for the advisor’s
analysis, for a period going back to a week—the advisor uses the AWR hourly snapshots to perform its
analysis. You can specify the undo retention period to support a flashback transaction query.
Alternatively, you can let the database determine the desired undo retention based on the longest query
in the analysis period. 

7-2. Finding What’s Consuming the Most Undo 

Problem 
Often, one or two user sessions seem to be hogging the undo tablespaces. You’d like to identify the user
and the SQL statement that are using up all that undo space. 

Solution 
High undo usage often involves a long-running query. Use the following query to find out which SQL
statement has run for the longest time in your database. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

214 

SQL> select s.sql_text from v$sql s, v$undostat u 
     where u.maxqueryid=s.sql_id; 

You can join the V$TRANSACTION and the V$SESSION views to find out the most undo used by a session 
for a currently executing transaction, as shown here: 

SQL> select s.sid, s.username, t.used_urec, t.used_ublk 
     from v$session s, v$transaction t 
     where s.saddr = t.ses_addr 
     order by t.used_ublk desc; 

You can also issue the following query to find out which session is currently using the most undo in 
an instance: 

SQL>select s.sid, t.name, s.value 
    from v$sesstat s, v$statname t 
    where s.statistic# = t.statistic# 
    and t.name = 'undo change vector size' 
    order by s.value desc; 

The query’s output relies on the statistic undo change vector size in the V$STATNAME view, to show 
the SID for the sessions consuming the most undo right now. The V$TRANSACTION view shows details 
about active transactions. Here’s another query that joins the  V$TRANSACTION, V$SQL and V$SESSION 
views: 

SQL> select sql.sql_text sql_text, t.USED_UREC Records, t.USED_UBLK Blocks, 
(t.USED_UBLK*8192/1024) KBytes from v$transaction t, 
  2  v$session s, 
  3  v$sql sql 
  4  where t.addr = s.taddr 
  5  and s.sql_id = sql.sql_id 
  6* and s.username ='&USERNAME' 
SQL> 

The column USED_UREC shows the number of undo records used, and the USED_UBLK column shows 
the undo blocks consumed by a transaction. 

How It Works 
You can issue the queries described in the “Solution” section to identify the sessions that are responsible 
for the most undo usage in your database, as well as the users that are responsible for those sessions. 
You can query the V$UNDOSTAT with the appropriate begin_time and end_time values to get the SQL 
identifier of the longest-running SQL statement during a time interval. The MAXQUERYID column captures 
the SQL identifier. You can use this ID to query the V$SQL view in order to find out the actual SQL 
statement. Similarly, the V$TRANSACTION and the V$SESSION views together help identify the users that are 
consuming the most undo space. If excessive undo usage is affecting performance, you might want to 
look at the application to see why the queries are using so much undo. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

215 

7-3. Resolving an ORA-01555 Error 

Problem 
You’re receiving the ORA-01555 (snapshot too old) errors during nightly runs of key production batch 
jobs. You want to eliminate these errors. 

Solution 
While setting a high value for the UNDO_RETENTION parameter can potentially minimize the possibility of 
receiving “snapshot too old” errors, it doesn’t guarantee that the database won’t overwrite older undo 
data that may be needed by a running transaction. You can move long-running batch jobs to a separate 
time interval when other programs aren’t running in the database, to avoid these errors. 

Regardless, while you can minimize the occurrence of “snapshot too old” errors with these 
approaches, you can’t completely eliminate such errors without specifying the guaranteed undo 
retention feature. When you configure guaranteed undo retention in a database, no transaction can fail 
because of the “snapshot too old” error. Oracle will keep new DML statements from executing when you 
set up guaranteed undo retention. Implementing the guaranteed undo feature is simple. Suppose you 
want to ensure that the database retains undo for at least an hour (3,600 seconds). First set the undo 
retention threshold with the alter system command shown here, and then set up guaranteed undo 
retention by specifying the retention guarantee clause to alter the undo tablespace. 

SQL> alter system set undo_retention=3600; 
System altered. 
SQL> alter tablespace undotbs1 retention guarantee; 
Tablespace altered. 
SQL> 

You can switch off guaranteed undo retention by executing the alter tablespace command with 
the retention noguarantee clause. 

■ Tip You can enable guaranteed undo retention by using the alter system command as shown in this 
recipe, as well as with the create database and create undo tablespace statements. 

How It Works 
Oracle uses the undo records stored in the undo tablespace to help roll back transactions, provide read 
consistency, and to help recover the database. In addition, the database also uses undo records to read 
data from a past point in time using Oracle Flashback Query. Undo data serves as the underpinning for 
several Oracle Flashback features that help you recover from logical errors. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

216 

Occurrence of the Error 
The ORA-01555 error (snapshot too old) may occur in various situations. The following is a case where the 
error occurs during an export. 

EXP-00008: ORACLE error 1555 encountered 
ORA-01555: snapshot too old: rollback segment number 10 with name "_SYSSMU10$" too small 
EXP-00000: Export terminated unsuccessfully 

And you can receive the same error when performing a flashback transaction: 

ERROR at line 1: 
ORA-01555: snapshot too old: rollback segment number  with name "" too small 
ORA-06512: at "SYS.DBMS_FLASHBACK", line 37 
ORA-06512: at "SYS.DBMS_FLASHBACK", line 70 
ORA-06512: at li 

The “snapshot too old” error occurs when Oracle overwrites undo data that’s needed by another 
transaction. The error is a direct result of how Oracle’s read consistency mechanism works. The error 
occurs during the execution of a long-running query when Oracle tries to read the “before image” of any 
changed rows from the undo segments. For example, if a long-running query starts at 1 a.m. and runs 
until 6 a.m., it’s possible for the database to change the data that’s part of this query during the period in 
which the query executes. When Oracle tries to read the data as it appeared at 1 a.m., the query may fail 
if that data is no longer present in the undo segments. 

If your database is experiencing a lot of updates, Oracle may not be able to fetch the changed rows, 
because the before changes recorded in the undo segments may have been overwritten. The 
transactions that changed the rows will have already committed, and the undo segments don’t have a 
record of the before change row values because the database overwrote the relevant undo data. Since 
Oracle fails to return consistent data for the current query, it issues the ORA-01555 error. The query that’s 
currently running requires the before image to construct read-consistent data, but the before image isn’t 
available. 

The ORA-01555 error may be the result of one or both of the following: too many updates to the 
database or too small an undo tablespace. You can increase the size of the undo tablespace, but that 
doesn’t ensure that the error won’t occur again. 

Influence of Extents 
The database stores undo data in undo extents, and there are three distinct types of undo extents: 

Active: Transactions are currently using these extents. 

Unexpired: These are extents that contain undo that’s required to satisfy the 
undo retention time specified by the UNDO_RETENTION initialization parameter. 

Expired: These are extents with undo that’s been retained longer than the 
duration specified by the UNDO_RETENTION parameter. 

If the database doesn’t find enough expired extents in the undo tablespace or it can’t get new undo 
extents, it’ll re-use the unexpired (but never an active undo extent) extents, and this leaves the door 
open for an ORA-01555, “snapshot too old” error. By default, the database will essentially shrink the undo 
retention period you specify, if it encounters space pressure to accommodate the undo from new 
transactions. Since the unexpired undo extents contain undo records needed to satisfy the undo 
retention period, overwriting those extents in reality means that the database is lowering the undo 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

217 

retention period you’ve set. Enabling the undo retention guarantee helps assure the success of long-
running queries as well as Oracle Flashback operations. The “guarantee” part of the undo retention 
guarantee is real—Oracle will certainly retain undo at least for the time you specify and will never 
overwrite any of the unexpired undo extents that contain the undo required to satisfy the undo retention 
period. However, there’s a stiff price attached to this guarantee—Oracle will guarantee retention even if 
it means that DML transactions fail because the database can’t find space to record the undo for those 
transactions. Therefore, you must exercise great caution when enabling the guaranteed undo retention 
capability. 

7-4. Monitoring Temporary Tablespace Usage 

Problem 
You want to monitor the usage of the temporary tablespace. 

Solution 
Execute the following query to find out the used and free space in a temporary tablespace. 

SQL> select * from (select a.tablespace_name, 
      sum(a.bytes/1024/1024) allocated_mb 
      from dba_temp_files a 
      where a.tablespace_name = upper('&&temp_tsname') group by a.tablespace_name) x, 
      (select sum(b.bytes_used/1024/1024) used_mb, 
      sum(b.bytes_free/1024/1024) free_mb 
      from v$temp_space_header b 
      where b.tablespace_name=upper('&&temp_tsname') group by b.tablespace_name); 
 
Enter value for temp_tsname: TEMP 
… 
TABLESPACE_NAME                ALLOCATED_MB    USED_MB    FREE_MB 
------------------------------ ------------ ---------- ---------- 
TEMP                             52.9921875 52.9921875          0 
SQL> 

Obviously, the temporary tablespace shown in this example is in serious need of some help from the 
DBA. 

How It Works 
Oracle uses temporary tablespaces for storing intermediate results from sort operations as well as any 
temporary tables, temporary LOBs, and temporary B-trees. You can create multiple temporary 
tablespaces, but only one of them can be the default temporary tablespace. If you don’t explicitly assign 
a temporary tablespace, that user is assigned the default temporary tablespace. 

You won’t find information about temporary tablespaces in the DBA_FREE_SPACE view. Use the 
V$TEMP_SPACE_HEADER as shown in this example to find how much free and used space there is in any 
temporary tablespace. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

218 

7-5. Identifying Who Is Using the Temporary Tablespace 

Problem 
You notice that the temporary tablespace is filling up fast, and you want to identify the user and the SQL 
statements responsible for the high temporary tablespace usage. 

Solution 
Issue the following query to find out which SQL statement is using up space in a sort segment. 

SQL> select s.sid || ',' || s.serial# sid_serial, s.username, 
     o.blocks * t.block_size / 1024 / 1024 mb_used, o.tablespace, 
     o.sqladdr address, h.hash_value, h.sql_text 
     from v$sort_usage o, v$session s, v$sqlarea h, dba_tablespaces t 
     where o.session_addr = s.saddr 
     and o.sqladdr = h.address (+) 
     and o.tablespace = t.tablespace_name 
     order by s.sid; 

The preceding query shows information about the session that issued the SQL statements well as 
the name of the temporary tablespace and the amount of space the SQL statement is using in that 
tablespace. 

You can use the following query to find out which sessions are using space in the temporary 
tablespace. Note that the information is in the summary form, meaning it doesn’t separate the various 
sort operations being run by a session—it simply gives the total temporary tablespace usage by each 
session. 

SQL> select s.sid || ',' || s.serial# sid_serial, s.username, s.osuser, p.spid, 
     s.module,s.program,  
     sum (o.blocks) * t.block_size / 1024 / 1024 mb_used, o.tablespace, 
     count(*) sorts 
     from v$sort_usage o, v$session s, dba_tablespaces t, v$process p 
     where o.session_addr = s.saddr 
     and s.paddr = p.addr 
     and o.tablespace = t.tablespace_name 
     group by s.sid, s.serial#, s.username, s.osuser, p.spid, s.module, 
     s.program, t.block_size, o.tablespace 
     order by sid_serial; 

The output of this query will show you the space that each session is using in the temporary 
tablespace, as well as the number of sort operations that session is performing right now. 

How It Works 
Oracle tries to perform sort and hash operations in memory (PGA), but if a sort operation is too large to 
fit into memory, it uses the temporary tablespace to do the work. It’s important to understand that even 
a single large sort operation has the potential to use up an entire temporary tablespace. Since all 
database sessions share the temporary tablespace, the session that runs the large sort operation could 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

219 

potentially result in other sessions receiving errors due to lack of room in that tablespace. Once the 
temporary tablespace fills up, all SQL statements that seek to use the temporary tablespace will fail with 
the ORA-1652: unable to extend temp segment error. New sessions may not be able to connect, and 
queries can sometimes hang and users may not be able to issue new queries. You try to find any blocking 
locks, but none exists. If the temporary tablespace fills up, transactions won’t complete. If you look in 
the alert log, you’ll find that the temporary tablespace ran out of space. 

Operations that use an ORDER BY or GROUP BY clause frequently use the temporary tablespace to do 
their work. You must also remember that creating an index or rebuilding one also makes use of the 
temporary tablespace for sorting the index. 

Oracle uses the PGA memory for performing the sort and hash operations. Thus, one of the first 
things you must do is to review the current value set for the PGA_AGGREGATE_TARGET initialization 
parameter and see if bumping it up will help. Nevertheless, even a larger setting for the 
PGA_AGGREGATE_TARGET parameter doesn’t guarantee that Oracle will perform a huge sort entirely in 
memory. Oracle allocates each session a certain amount of PGA memory, with the amount it allocates 
internally determined, based on the value of the PGA_AGGREGATE_TARGET parameter. Once a large 
operation uses its share of the PGA memory, Oracle will write intermediary results to disk in the 
temporary tablespace. These types of operations are called one-pass or multi-pass operations, and since 
they are performed on disk, they are much slower than an operation performed entirely in the PGA. 

If your database is running out of space in the temporary tablespace, you must increase its size by 
adding a tempfile. Enabling autoextend for a temporary tablespace will also help prevent “out of space” 
errors. Since Oracle allocates space in a temporary tablespace that you have assigned for the user 
performing the sort operation, you can assign users that need to perform heavy sorting a temporary 
tablespace that’s different from that used by the rest of the users, thus preventing the heavy sorting 
activity from hurting database performance. 

Note that unlike table or index segments, of which there are several for each object, a temporary 
tablespace has just one segment called the sort segment. All sessions share this sort segment. A single 
SQL statement can use multiple sort and hash operations. In addition, the same session can have 
multiple SQL statements executing simultaneously, with each statement using multiple sort and hash 
operations. Once a sort operation completes, the database immediately marks the blocks used by the 
operations as free and allocates them to another sort operation. The database adds extents to the sort 
segment as the sort operation gets larger, but if there’s no more free space in the temporary tablespace 
to allocate additional extents, it issues the ORA-1652:unable to extend temp segment error. The SQL 
statement that’s using the sort operation will fail as a result. 

■ Note Although you’ll receive an ORA-1652 error when a SQL statement performing a huge sort fails due to lack 
of space in the temporary tablespace, that’s not the only reason you’ll get this error. You’ll also receive this error 
when performing a table move operation (alter table …move), if the tablespace to which you’re moving the table 
doesn’t have room to hold the table. Same is the case sometimes when you're creating a large index. Please see 
Recipe 7-6 for an explanation of this error. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

220 

7-6. Resolving the “Unable to Extend Temp Segment” Error 

Problem 
While creating a large index, you receive an Oracle error indicating that the database is unable to extend 
a TEMP segment. However, you have plenty of free space in the temporary tablespace. 

Solution 
When you get an error such as the following, your first inclination may be to think that there’s no free 
space in the temporary tablespace. 

ORA-01652: unable to extend temp segment by 1024 in tablespace INDX_01 

You cannot fix this problem by adding space to the temporary tablespace. The error message clearly 
indicates the tablespace that ran out of space. In this case, the offending tablespace is INDX_01, and not 
the TEMP tablespace. Obviously, an index creation process failed because there was insufficient space in 
the INDX_01 tablespace. You can fix the problem by adding a datafile to the INDX_01 tablespace, as shown 
here: 

SQL>alter tablespace INDX_01 add datafile '/u01/app/oracle/data/indx_01_02.dbf' 
  2 size 1000m; 

How It Works 
When you receive the ORA-01652 error, your normal tendency is to check the temporary tablespace. You 
check the DBA_TEMP_FREE_SPACE view, and there’s plenty of free space in the default temporary 
tablespace, TEMP. Well, if you look at the error message carefully, it tells you that the database is unable to 
extend the temp segment in the INDX_01 tablespace. When you create an index, as in this case, you 
provide the name of the permanent tablespace in which the database must create the new index. Oracle 
starts the creation of the new index by putting the new index structure into a temporary segment in the 
tablespace you specify (INDX_01 in our example) for the index. The reason is that if your index creation 
process fails, Oracle (to be more specific, the SMON process) will remove the temporary segment from 
the tablespace you specified for creating the new index. Once the index is successfully created (or 
rebuilt), Oracle converts the temporary segment into a permanent segment within the INDX_01 
tablespace. However, as long as Oracle is still creating the index, the database deems it a temporary 
segment and thus when an index creation fails, the database issues the ORA-01652 error, which is also the 
error code for an “out of space” error for a temporary tablespace. The TEMP segment the error refers to is 
the segment that was holding the new index while it was being built.  Once you increase the size of the 
INDX_01 tablespace, the error will go away. 

■ Tip The temporary segment in an ORA-1652 error message may not be referring to a temporary segment in a 
temporary tablespace. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

221 

The key to resolving the ORA-01652 error is to understand that Oracle uses temporary segments in 
places other than a temporary tablespace. While a temporary segment in the temporary tablespace is for 
activities such as sorting, a permanent tablespace can also use temporary segments when performing 
temporary actions necessary during the creation of a table (CTAS) or an index. 

■ Tip When you create an index, the creation process uses two different temporary segments. One temporary 
segment in the TEMP tablespace is used to sort the index data. Another temporary segment in the permanent 
tablespace holds the index while it is being created. After creating the index, Oracle changes the temporary 
segment in the index’s tablespace into a permanent segment. The same is the case when you create a table with 
the CREATE TABLE…AS SELECT (CTAS) option. 

As the “Solution” section explains, the ORA-01652 error refers to the tablespace where you’re 
rebuilding an index. If you are creating a new index, Oracle uses the temporary tablespace for sorting the 
index data. When creating a large index, it may be a smart idea to create a large temporary tablespace 
and assign it to the user who’s creating the index. Once the index is created, you can re-assign the user 
the original temporary tablespace and remove the large temporary tablespace. This strategy helps avoid 
enlarging the default temporary tablespace to a very large size to accommodate the creation of a large 
index. 

If you specify autoextend for a temporary tablespace, the temp files may get very large, based on one 
or two large sorts in the database. When you try to reclaim space for the TEMP tablespace, you may get the 
following error.  

SQL> alter database tempfile '/u01/app/oracle/oradata/prod1/temp01.dbf' resize 500M; 
alter database tempfile '/u01/app/oracle/oradata/prod1/temp01.dbf' resize 500M  
*ERROR at line 1:  
ORA-03297: file contains used data beyond requested RESIZE value  

One solution is to create a new temporary tablespace, make that the default temporary tablespace, 
and then drop the larger temporary tablespace. In Oracle Database 11g, you can simplify matters by 
using the following alter tablespace command to shrink the temporary tablespace: 

SQL> alter tablespace temp shrink space; 
 
Tablespace altered. 
 
SQL> 

In this example, we shrank the entire temporary tablespace, but you can shrink a specific tempfile 
by issuing the command alter tablespace temp shrink tempfile <file_name>. The command will 
shrink the tempfile to the smallest size possible. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

222 

7-7. Resolving Open Cursor Errors 

Problem 
You are frequently getting the Maximum Open Cursors exceeded error, and you want to resolve the error. 

Solution 
One of the first things you need to do when you receive the ORA-01000: “maximum open cursors 
exceeded” error is to check the value of the initialization parameter open_cursors. You can view the 
current limit for open cursors by issuing the following command: 

SQL> sho parameter open_cursors 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- --------- 
open_cursors                         integer     300 
SQL> 

The parameter OPEN_CURSORS sets the maximum number of cursors a session can have open at once. 
You specify this parameter to control the number of open cursors. Keeping the parameter’s value too 
low will result in a session receiving the ORA-01000 error. There’s no harm in specifying a very large value 
for the OPEN_CURSORS parameter (unless you expect all sessions to simultaneously max out their cursors, 
which is unlikely), so you can usually resolve cursor-related errors simply by raising the parameter value 
to a large number. However, you may sometimes find that raising the value of the open_cursors 
parameter doesn’t “fix” the problem. In such cases, investigate which processes are using the open 
cursors by issuing the following query: 

SQL> select a.value, s.username,s.sid,s.serial#,s.program,s.inst_id 
     from gv$sesstat a,gv$statname b,gv$session s 
     where a.statistic# = b.statistic# and s.sid=a.sid 
     and b.name='opened cursors current' 

The GV$OPEN_CURSOR (or the V$OPEN_CURSOR) view shows all the cursors that each user session has 
currently opened and parsed, or cached. You can issue the following query to identify the sessions with a 
high number of opened and parsed or cached cursors. 

SQL> select saddr, sid, user_name, address,hash_value,sql_id, sql_text 
     from gv$open_cursor 
     where sid in  
     (select sid from v$open_cursor 
     group by sid having count(*)  > &threshold); 

The query lists all sessions with an open cursor count greater than the threshold you specify. This 
way, you can limit the query’s output and focus just on the sessions that have opened, parsed, or cached 
a large number of cursors. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

223 

You can get the actual SQL code and the open cursor count for a specific session by issuing the
following query: 

SQl> select sql_id,substr(sql_text,1,50) sql_text, count(*)  
     from gv$open_cursor where sid=81 
     group by sql_id,substr(sql_text,1,50) 
     order by sql_id; 

The output shows the SQL code for all open cursors in the session with the SID 81. You can examine
all SQL statements with a high open cursor count, to see why the session was keeping a large number of
cursors open. 

How It Works  
If your application is not closing open cursors, then setting the OPEN_CURSORS parameter to a higher value
won’t really help you. You may momentarily resolve the issue, but you’re likely to run into the same
issue a little later. If the application layer never closes the ref cursors created by the PL/SQL code, the
database will simply hang on to the server resources for the used cursors. You must fix the application
logic so it closes the cursors—the problem isn’t really in the database. 

If you’re using a Java application deployed on an application server such as the Oracle WebLogic
Server, the WebLogic Server’s JDBC connection pools provide open database connections for
applications. Any prepared statements in each of these connections will use a cursor. Multiple
application server instances and multiple JDBC connection pools will mean that the database needs to
support all the cursors. If multiple requests share the same session ID, the open cursor problem may be
due to implicit cursors. The only solution then is to close the connection after each request. 

A cursor leak is when the database opens cursors but doesn’t close them. You can run a 10046 trace
for a session to find out if it’s closing its cursors: 

SQL> alter session set events '10046 trace name context forever, level 12'; 

If you notice that the same SQL statement is associated with different cursors, it means that the
application isn’t closing its cursors. If the application doesn’t close its cursors after opening them, Oracle
assigns different cursor numbers for the next SQL statement it executes. If the cursor is closed, instead,
Oracle will re-use the same cursor number for the next cursor it assigns. Thus, if you see the item
PARSING IN CURSOR #nnnn progressively increase in the output for the 10046 trace, it means that the
application is not closing the cursors. Note that while leaving cursors open may be due to a faulty
application design, developers may also intentionally leave cursors open to reduce soft parsing, or when
they use the session cursor cache. 

You can use the SESSION_CACHED_CURSORS initialization parameter to set the maximum number of
cached closed cursors for each session. The default setting is 50. You can use this parameter to prevent a
session from opening an excessive number of cursors, thereby filling the library cache or forcing
excessive hard parses. Repeated parse calls for a SQL statement leads Oracle to move the session cursor
for that statement into the session cursor cache. The database satisfies subsequent parse calls by using
the cached cursor instead of re-opening the cursor. 

When you re-execute a SQL statement, Oracle will first try to find a parsed version of that statement
in the shared pool—if it finds the parsed version in the shared pool, a soft parse occurs. Oracle is forced
to perform the much more expensive hard parse if it doesn’t find the parsed version of the statement in
the shared pool. While a soft parse is much less expensive than a hard parse, a large number of soft
parses can affect performance, because they do require CPU usage and library cache latches. To reduce
the number of soft parses, Oracle caches the recent closed cursors of each session in a local session 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

224 

cache for that session—Oracle stores any cursor for which a minimum of three parse calls were made, 
thus avoiding having to cache every single session cursor, which will fill up the cursor cache. 

The default value of 50 for the SESSION_CACHED_CURSORS initialization parameter may be too low for 
many databases. You can check if the database is bumping against the maximum limit for session-
cached cursors by issuing the following statement: 

SQL> select max(value) from v$sesstat 
  2  where statistic# in (select statistic# from v$statname 
  3* where name = 'session cursor cache count'); 
 
 
MAX(VALUE) 
---------- 
        49 
 
SQL> 

The query shows the maximum number of session cursors that have been cached in the past. Since 
this number (49) is virtually the same as the default value (or the value you’ve set) for the 
SESSION_CACHED_CURSORS parameter, you must set the parameter's value  to a larger number. Session 
cursor caches use the shared pool. If you’re using automatic memory management, there’s nothing for 
you to do after you reset the SESSION_CACHED_CURSORS parameter—the database will bump up the shared 
pool size if necessary. You can find out how many cursors each session has in its session cursor cache by 
issuing the following query: 

SQL> select a.value,s.username,s.sid,s.serial# 
  2  from v$sesstat a, v$statname b,v$session s 
  3  where a.statistic#=b.statistic# and s.sid=a.sid 
  4* and b.name='session cursor cache count'; 

7-8. Resolving a Hung Database 

Problem 
Your database is hung. Users aren’t able to log in, and existing users can’t complete their transactions. 
The DBAs with SYSDBA privileges may also be unable to log in to the database. You need to find out 
what is causing the database to hang, and fix the problem. 

Solution 
Follow these general steps when facing a database that appears to be hung: 

1. Check your alert log to see if the database has reported any errors, which may 
indicate why the database is hanging. 

2. See if you can get an AWR or ASH report or query some of the ASH views, as 
explained in Chapter 5. You may notice events such as hard parses at the top of 
the Load Profile section of the AWR report, indicating that this is what is 
slowing down the database. 

3
www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

225 

3. A single ad hoc query certainly has the potential to bring an entire database to 
its knees. See if you can identify one or more very poorly performing SQL 
statements that may be leading to the hung (or a very poorly performing) 
database. 

4. Check the database for blocking locks as well as latch contention. 

5. Check the server’s memory usage as well as CPU usage. Make sure the sessions 
aren’t stalling because you’ve sized the PGA too low, as explained in Chapter 3. 

6. Don’t overlook the fact that a scary-looking database hang may be caused by 
something as simple as the filling up of all archive log destinations. If the 
archive destination is full, the database will hang, and new user connections 
will fail. You can, however, still connect as the SYS user, and once you make 
room in the archive destination by moving some of the archived redo log files, 
the database becomes accessible to the users. 

7. Check the Flash Recovery Area (FRA). A database also hangs when it’s unable 
to write Flashback Database logs to the recovery area. When the FRA fills up, 
the database won’t process new work and it won’t spawn new database 
connections. You can fix this problem by making the recovery area larger with 
the alter system set db_recovery_file_dest_size command. 

If you’re still unable to resolve the reasons for the hung database, you most likely have a truly hung 
database. While you’re investigating such a database, you may sometimes find yourself unable to 
connect and log in. In that case, use the “prelim” option to log in to the database. The prelim option 
doesn’t require a real database connection.  Here's an example that shows how to use the prelim option 
to log into a database: 

C:\app\ora\product\11.2.0\dbhome_1\bin>sqlplus /nolog 
 
SQL*Plus: Release 11.2.0.1.0 Production on Sun Mar 27 10:43:31 2011 
 
Copyright (c) 1982, 2010, Oracle.  All rights reserved. 
 
SQL> set _prelim on 
SQL> connect / as sysdba 
Prelim connection established 
SQL> 

Alternatively, you can use the command sqlplus -prelim "/ as sysdba" to log in with the -prelim 
option. Note that you use the nolog option to open a SQL*Plus session. You can’t execute the set 
_prelim on command if you’re already connected to the database. Once you establish a prelim 
connection as shown here, you can execute the oradebug hanganalyze command to analyze a hung 
database—for example: 

SQL> oradebug hanganalyze 3 
Statement processed. 
SQL> 

In an Oracle RAC environment, specify the oradebug hanganalyze command with additional options, 
as shown here: 

SQL> oradebug setinst all 
SQL> oradebug -g def hanganalyze 3 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

226 

You can repeat the oradebug hanganalyze command a couple of times to generate dump files for 
varying process states. 

In addition to the dump files generated by the hanganalyze command, Oracle Support may often 
also request a process state dump, also called a systemstate dump, to analyze hung database conditions. 
The systemstate dump will report on what the processes are doing and the resources they’re currently 
holding. You can get a systemstate dump from a non-RAC system by executing the following set of 
commands. 

SQL> oradebug setmypid 
Statement processed. 
SQL> oradebug dump systemstate 266 
Statement processed. 
SQL> 

Issue the following commands to get a systemstate dump in a RAC environment: 

SQL> oradebug setmypid 
SQL> oradebug unlimit 
SQL> oradebug -g all dump systemstate 266 

Note that unlike the oradebug hanganalyze command, you must connect to a process. The setmypid 
option specifies the process, in this case your own process. You can also specify a process ID other than 
yours, in which case you issue the command oradebug setmypid <pid> before issuing the dump 
systemstate command. If you try to issue the dump systemstate command without setting the PID, you’ll 
receive an error: 

SQL> oradebug dump systemstate 10 
ORA-00074: no process has been specified 
SQL> 

You must take the systemstate dumps a few times, with an interval of about a minute or so in 
between the dumps. Oracle Support usually requests several systemstate dumps along with the trace 
files generated by the hanganalyze command. 

How It Works 
The key thing you must ascertain when dealing with a “hung” database is whether the database is really 
hung, or just slow. If one or two users complain about a slow-running query, you need to analyze their 
sessions, using the techniques described in Chapter 5, to see if the slowness is due to a blocking session 
or to an Oracle wait event. If several users report that their work is going slowly, it could be due to 
various reasons, including CPU, memory (SGA or PGA), or other system resource issues. 

Check the server’s CPU usage as one of your first steps in troubleshooting a hung database. If your 
server is showing 100% CPU utilization, or if it’s swapping or paging, the problem may not lie in the 
database at all. As for memory, if the server doesn’t have enough free memory, new sessions can’t 
connect to the database. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

227 

■ Tip The “prelim” option shown in the “Solution” section lets you connect to the SGA without opening a 
session. You can thus “log” in to the hung database even when normal SQL*Plus logins don’t work. The oradebug 
session you start once you connect to the SGA actually analyzes what’s in the SGA and dumps it into a trace file. 

A true database hang can be due to a variety of reasons, including a system that has exhausted 
resources such as the CPU or memory, or because several sessions are stuck waiting for a resource such 
as a lock. While the database can automatically resolve deadlocks between sessions (by killing one of the 
sessions holding a needed lock), when there’s a latch or pin on an internal kernel-level resource, Oracle 
is sometimes unable to automatically detect and resolve the internal deadlock—and this leads to what 
Oracle Support calls a “true database hang.” A true database hang is thus an internal deadlock or a 
cyclical dependency among multiple processes. Oracle Support will usually ask you to provide them the 
hanganalyze trace files and multiple systemstate dumps to enable them to diagnose the root cause of 
your hang. At times like this, you may not even be able to log into the database. Your first instinct when 
you realize that you can’t even log in to a database is to try shutting down and restarting, often referred 
to as bouncing the database. Unfortunately, while shutting down and restarting the database may 
“resolve” the issue, it’ll also disconnect all users—and you’re no wiser as to what exactly caused the 
problem. If you do decide to bounce your database, quickly generate a few hanganalyze and systemstate 
dumps first. 

■ Tip As unpleasant as it may be at times, if you find that you simply can’t connect to a hung database, then 
collect any trace dumps you may need, and quickly bounce the database so that users can access their 
applications. Especially when you’re dealing with a database that’s hanging because of memory issues, bouncing 
the instance may get things going again quickly. 

If you find that the database is completely unresponsive, and you can’t even log in to the database 
with the SYSDBA privilege, you can use the prelim option to log into the database. The prelim option 
stands for preliminary connection, and it starts an Oracle process and attaches that process to the SGA 
shared memory. However, this is not a full or complete connection, but a limited connection where the 
structures for query execution are not set up—so, you cannot even query the V$ views. However, the 
prelim option lets you run oradebug commands to get error dump stacks for diagnostic purposes. The 
output of the hanganalyze command can tell Oracle Support engineers if your database is really hanging, 
because of sessions waiting for some resource. The command makes internal kernel calls to find out all 
sessions that are waiting for a resource and shows the relationship between the blocking and waiting 
sessions. The hanganalyze option that you can specify with either the oradebug command or an alter 
session statement produces details about hung sessions. Once you get the dump file, Oracle Support 
personnel can analyze it and let you know the reasons for the database hang. 

You can invoke the hanganalyze command at various levels ranging from 1 to 10. Level 3 dumps 
processes that are in a hanging (IN_HANG) state. You normally don’t need to specify a level higher than 3, 
because higher levels will produce voluminous reports with too many details about the processes. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

228 

■ Note The dump files you create with the hanganalyze and the systemstate commands are created in ADR’s 
trace directory. 

Note that we issued the oradebug command to get a systemstate dump with a level of 266. Level 266 
(combination of Level 256, which produces short stack information, and Level 10) is for Oracle releases 
9.2.0.6 and onward (earlier releases used systemstate level 10). Level 266 allows you to dump the short 
stacks for each process, which are Oracle function calls that help Oracle development teams determine 
which Oracle function is causing the problem. The short stack information also helps in matching 
known bugs in the code. On Solaris and Linux systems, you can safely specify level 266, but on other 
systems, it may take a long time to dump the short stacks. Therefore, you may want to stick with level 10 
for the other operating systems. 

If you can find out the blocking session, you can also take a dump just for that session, by using the 
command oradebug setospid nnnn, where nnnn is the blocking session’s PID, and then invoking the 
oradebug command, as shown here: 

SQL> oradebug setospid  9999 
SQL> oradebug unlimit 
SQL> oradebug dump errorstack  3 

Note that you can generate the hanganalyze and systemstate dumps in a normal session (as well as 
in a prelim session), without using the oradebug command. You can invoke the hanganalyze command 
with an alter session command, as shown here. 

SQL>alter session set  events 'immediate trace name hanganalyze level 3'; 

Similarly, you can get a systemstate dump with the following command: 

SQL> alter session set events 'immediate trace name SYSTEMSTATE level 10'; 
Session altered. 
SQL> 

The oradebug and systemstate dumps are just two of the many dumps you can collect. Use the 
oradebug dumplist command to view the various error dumps you can collect. 

SQL> oradebug dumplist 
TRACE_BUFFER_ON 
TRACE_BUFFER_OFF 
LATCHES 
PROCESSSTATE 
SYSTEMSTATE 
INSTANTIATIONSTATE 
REFRESH_OS_STATS 
CROSSIC 
CONTEXTAREA 
HANGDIAG_HEADER 
HEAPDUMP 
… 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

229 

Note that while you can read some of the dump files in an editor, these files are mainly for helping 
Oracle Support professionals troubleshoot a database hang situation. There’s not much you can do with 
the dump files, especially when a database hang situation is due to an Oracle bug or a kernel-level lock, 
except to send them along to Oracle Support for analysis. 

7-9. Invoking the Automatic Diagnostic Repository Command 
Interpreter 

Problem 
You’d like to invoke the Automatic Diagnostic Repository Command Interpreter (ADRCI) and work with 
various components of the Automatic Diagnostic Repository (ADR). 

Solution 
ADRCI is a tool to help you manage Oracle diagnostic data. You can use ADRCI commands in both an 
interactive as well as a batch mode. 

To start ADRCI in the interactive mode, type adrci at the command line, as shown here: 

 $ adrci 
 
ADRCI: Release 11.2.0.1.0 - Production on Mon Mar 14 11:41:41 2011 
 
Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All rights reserved. 
 
ADR base = "c:\app\ora" 
adrci> 

You can issue the adrci command from any directory, so long as the PATH environment variable 
includes ORACLE_HOME/bin/. You can enter each command at the adrci prompt, and when you’re done 
using the utility, you can type EXIT or QUIT to exit. You can view all the ADRCI commands available to 
you by typing HELP at the ADRCI command line, as shown here: 

adrci> HELP 
 
 HELP [topic] 
   Available Topics: 
        CREATE REPORT 
        ECHO 
        EXIT 
        HELP 
        HOST 
        IPS 
… 
        SHOW HOMES | HOME | HOMEPATH 
        SHOW INCDIR 
        SHOW INCIDENT 
        SHOW PROBLEM 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

230 

        SHOW REPORT 
        SHOW TRACEFILE 
        SPOOL 
 
 There are other commands intended to be used directly by Oracle, type 
 "HELP EXTENDED" to see the list 
 
adrci> 

You can get detailed information for an individual ADRCI command by adding the name of the 
command as an attribute to the HELP command. For example, here is how to get the syntax for the show 
tracefile command: 

adrci> help show tracefile 
 
  Usage: SHOW TRACEFILE [file1 file2 ...] [-rt | -t] 
                        [-i inc1 inc2 ...] [-path path1 path2 ...] 
 
  Purpose: List the qualified trace filenames. 
… 
  Options: 
  Examples: 
… 
adrci> 

You can also execute ADRCI commands in the batch mode by incorporating the commands in a 
script or batch file. For example, if you want to run the ADRCI commands SET HOMEPATH and SHOW ALERT 
from within an operating system script, include the following line inside a shell script: 

SET HOMEPATH diag/rdbms/orcl/orcl; SHOW ALERT -term 

Let’s say your script name is myscript.txt. You can then execute this script by issuing the following 
command inside an operating system shell script or batch file: 

$ adrci script=myscript.txt 

Note that the parameter SCRIPT tells ADRCI that it must execute the commands within the text file 
myscript.txt. If the text file is not within the same directory from where the shell script or batch file is 
running, you must provide the path for the directory where you saved the text file. 

To execute an ADRCI command directly at the command line instead of invoking ADRCI first and 
working interactively with the ADR interface, specify the parameter EXEC with the ADRCI command, as 
shown here: 

$ adrci EXEC="SHOW HOMES; SHOW INCIDENT" 

This example shows how to include two ADRCI commands—SHOW HOMES and SHOW INCIDENT—by 
executing the ADRCI command at the command line. 

How It Works 
The Automatic Diagnostic Repository is a directory structure that you can access even when the 
database is down, because it’s stored outside the database. The root directory for the ADR is called the 
ADR base and is set by the DIAGNOSTIC_DEST initialization parameter. Each Oracle product or component 
has its own ADR home under the ADR base. The location of each of the ADR homes follows the path 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

231 

diag/product_type/product_id/instance_id. Thus, the ADR home for a database named orcl1 with the 
instance name orcl1 and the ADR base set to /app/oracle will be /app/oracle/diag/rdbms/orcl1/orcl1. 
Under each of the ADR homes are the diagnostic data, such as the trace and dump files and the alert log, 
as well as other diagnostic files, for that instance of an Oracle product. 

The ADRCI utility helps you manage the diagnostic data in the ADR. ADRCI lets you perform the 
following types of diagnostic tasks: 

• View diagnostic data in the ADR (Automatic Diagnostic Repository): The ADR  
stores diagnostic data such as alert logs, dump files, trace files, health check 
reports, etc. 

• View health check reports: The diagnosability infrastructure automatically runs 
health checks to capture details about the error and adds them to other diagnostic 
data it collects for that error. You can also manually invoke a health check. 

• Package incidents and problem information for transmission to Oracle Support: A 
problem is a critical database error, and an incident is a single occurrence of a 
specific problem. An incident package is a collection of diagnostic data that you 
send to Oracle Support for troubleshooting purposes. ADRCI has special 
commands that enable you to create packages and generate zipped diagnostic 
packages to send to Oracle Support. 

You can view all ADR locations for the current database instance by querying the V$DIAG_INFO view, 
as shown here. 

SQL> select * from v$diag_info; 
 
   INST_ID           NAME                   VALUE 
-----------    ------------------     ---------------------------------------- 
1              Diag Enabled           TRUE 
1              ADR Base               c:\app\ora 
1              ADR Home               c:\app\ora\diag\rdbms\orcl1\orcl1 
1              Diag Trace             c:\app\ora\diag\rdbms\orcl1\orcl1\trace 
1              Diag Alert             c:\app\ora\diag\rdbms\orcl1\orcl1\alert 
1              Diag Incident          c:\app\ora\diag\rdbms\orcl1\orcl1\incident 
1              Diag Cdump             c:\app\ora\diag\rdbms\orcl1\orcl1\cdump 
1              Health Monitor         c:\app\ora\diag\rdbms\orcl1\orcl1\hm 
1              Default Trace File     c:\app\ora…\trace\orcl1_ora_6272.trc 
1              Active Problem Count        2 
1              Active Incident Count       3 
 
11 rows selected. 
 
SQL>  

The ADR home is the root directory for a database’s diagnostic data. All diagnostic files such as the 
alert log and the various trace files are located under the ADR home. The ADR home is located directly 
underneath the ADR base, which you specify with the DIAGNOSTIC_DEST initialization parameter. Here’s 
how to find out the location of the ADR base directory: 

adrci> show base 
ADR base is "c:\app\ora" 
adrci> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

232 

You can view all the ADR homes under the ADR base by issuing the following command: 

adrci> show homes 
ADR Homes: 
diag\clients\user_salapati\host_3975876188_76 
diag\clients\user_system\host_3975876188_76 
diag\rdbms\orcl1\orcl1 
diag\tnslsnr\miropc61\listener 
adrci> 

You can have multiple ADR homes under the ADR base, and multiple ADR homes can be current at 
any given time. Your ADRCI commands will work only with diagnostic data in the current ADR home. 
How do you know which ADR home is current at any point in time? The ADRCI homepath helps 
determine the ADR homes that are current, by pointing to the ADR home directory under the ADR base 
hierarchy of directories. 

■ Note Some ADRCI commands require only one ADR home to be current—these commands will issue an error 
if multiple ADR homes are current. 

You can use either the show homes or the show homepath command to view all ADR homes that are 
current: 

adrci> show homepath 
ADR Homes: 
diag\clients\user_salapati\host_3975876188_76 
diag\clients\user_system\host_3975876188_76 
diag\rdbms\orcl1\orcl1 
diag\tnslsnr\miropc61\listener 
adrci>  

If you want to work with diagnostic data from multiple database instances or components, you must 
ensure that all the relevant ADR homes are current. Most of the time, however, you’ll be dealing with a 
single database instance or a single Oracle product or component such as the listener, for example. An 
ADR homepath is always relative to the ADR. If you specify /u01/app/oracle/ as the value for the ADR 
base directory, for example, all ADR homes will be under the ADR_Base/diag directory. Issue the set 
homepath command to set an ADR home directory to a single home, as shown here: 

adrci> set homepath diag\rdbms\orcl1\orcl1 
 
adrci> show homepath 
 
ADR Homes: 
diag\rdbms\orcl1\orcl1 
adrci> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

233 

■ Note Diagnostic data includes descriptions of incidents and problems, health monitoring reports, and
traditional diagnostic files such as trace files, dump files, and alert logs. 

Note that before you set the homepath with the set homepath command, the show homepath
command shows all ADR homepaths. However, once you set the homepath to a specific home, the show
homepath command shows just a single homepath. It’s important to set the homepath before you execute
several ADRCI commands, as they are applicable to only a single ADR home. For example, if you don’t
set the homepath before issuing the following command, you’ll receive an error: 

adrci> ips create package 
DIA-48448: This command does not support multiple ADR homes
adrci> 

The error occurs because the ips create package command is not valid with multiple ADR homes.
The command will work fine after you issue the set homepath command to set the homepath to a single
ADR home. Commands such as the one shown here work only with a single current ADR home, but
others work with multiple current ADR homes—there are also commands that don’t need a current ADR
home. The bottom line is that all ADRCI commands will work with a single current ADR home. 

7-10. Viewing an Alert Log from ADRCI 

Problem 
You want to view an alert log by using ADRCI commands. 

Solution 
To view an alert log with ADRCI, follow these steps: 

1. Invoke ADRCI. 

$ adrci 

2. Set the ADR home with the set homepath command. 

adrci> set homepath diag\rdbms\orcl1\orcl1 

3. Enter the following command to view the alert log: 

adrci>show alert 

ADR Home = c:\app\ora\diag\rdbms\orcl1\orcl1: 
*************************************************************************
Output the results to file: c:\temp\alert_10916_7048_orcl1_1.ado 

The alert log will pop up in your default editor. The ADRCI prompt will return once you close the
text file in the editor. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

234 

You can also query the V$DIAG_INFO view to find the path that corresponds to the Diag Trace entry. 
You can change the directory to that path and open the alert_<db_name>.log file with a text editor. 

How It Works 
The alert log holds runtime information for an Oracle instance and provides information such as the 
initialization parameters the instance is using, as well as a record of key changes such as redo log file 
switches and, most importantly, messages that show Oracle errors and their details. The alert log is 
critical for troubleshooting purposes, and is usually the first place you’ll look when a problem occurs. 
Oracle provides the alert log as both a text file as well as an XML-formatted file. 

The show alert command brings up the XML-formatted alert log without displaying the XML tags. 
You can set the default editor with the SET EDITOR command, as shown here: 

adrci> set editor notepad.exe 

The previous command changes the default editor to Notepad. The show alert -term command 
shows the alert log contents in the terminal window. If you want to examine just the latest events in the 
alert log, issue the following command: 

adrci>show alert -tail 50 

The tail option shows you a set of the most recent lines from the alert log in the command window. 
In this example, it shows the last 50 lines from the alert log. If you don’t specify a value for the tail 
parameter, by default, it shows the last ten lines from the alert log. 

The following command shows a “live” alert log, in the sense that it will show changes to the alert 
log as the entries are added to the log. 

adrci> show alert -tail -f 

The previous command shows the last ten lines of the alert log and prints all new messages to the 
screen, thus offering a “live” display of ongoing additions to the alert log. The CTRL+C sequence will take 
you back to the ADRCI prompt. 

When troubleshooting, it is very useful to see if the database issued any ORA-600 errors. You can 
issue the following command to trap the ORA-600 errors. 

adrci> show alert -p "MESSAGE_TEXT LIKE '%ORA-600%'" 

Although you can view the alert log directly by going to the file system location where it’s stored, it’s 
much easier to do so through the ADRCI tool. ADRCI is especially useful for working with the trace files 
of an instance. The SHOW TRACEFILE command shows all the trace files in the trace directory of the 
instance. You can issue the SHOW TRACEFILE command with various filters—the following example looks 
for trace files that reference the background process mmon: 

$ adrci> show tracefile %mmon% 
     diag\rdbms\orcl1\orcl1\trace\orcl1_mmon_1792.trc 
     diag\rdbms\orcl1\orcl1\trace\orcl1_mmon_2340.trc 
adrci> 

This command lists all trace files with the string mmon in their file names. You can apply filters to 
restrict the output to just the trace files associated with a specific incident number, as shown here: 

adrci> show tracefile -I 43417 
          diag\rdbms\orcl1\orcl1\incident\incdir_43417\orcl1_ora_4276_i43417.trc 
adrci> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

235 

The previous command lists the trace files related to the incident number 43417. 

7-11. Viewing Incidents with ADRCI 

Problem 
You want to use ADRCI to view incidents. 

Solution 
You can view all incidents in the ADR with the show incident command (be sure to set the homepath 
first): 

$ adrci 
$ set homepath diag\rdbms\orcl1\orcl1 
 
 
adrci> show incident 
 
ADR Home = c:\app\ora\diag\rdbms\orcl1\orcl1: 
******************************************************************************* 
INCIDENT_ID          PROBLEM_KEY 
 CREATE_TIME 
-------------------- ----------------------------------------------------------- 
 43417                ORA 600 [kkqctinvvm(2): Inconsistent state space!] 
 2010-12-17 09:26:15.091000 -05:00 
43369                ORA 600 [kkqctinvvm(2): Inconsistent state space!] 
 2010-12-17 11:08:40.589000 -05:00 
79451                ORA 445 
 2011-03-04 03:00:39.246000 -05:00 
84243                ORA 445 
 2011-03-14 19:12:27.434000 -04:00 
84244                ORA 445 
 2011-03-20 16:55:54.501000 -04:00 
5 rows fetched 

You can specify the detail mode to view details about a specific incident, as shown here: 

adrci> show incident -mode detail -p "incident_id=43369" 
 
ADR Home = c:\app\ora\diag\rdbms\orcl1\orcl1: 
******************************************************************************* 
 
INCIDENT INFO RECORD 1 
******************************************************************************* 
   INCIDENT_ID                   43369 
   STATUS                        ready 
   CREATE_TIME                   2010-12-17 11:08:40.589000 -05:00 
   PROBLEM_ID                    1 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

236 

   CLOSE_TIME                    <NULL> 
   FLOOD_CONTROLLED              none 
   ERROR_FACILITY                ORA 
   ERROR_NUMBER                  600 
   ERROR_ARG1                    kkqctinvvm(2): Inconsistent state space! 
   SIGNALLING_COMPONENT          SQL_Transform 
   PROBLEM_KEY                   ORA 600 [kkqctin: Inconsistent state space!] 
   FIRST_INCIDENT                43417 
   FIRSTINC_TIME                 2010-12-17 09:26:15.091000 -05:00 
   LAST_INCIDENT                 43369 
   LASTINC_TIME                  2010-12-17 11:08:40.589000 -05:00 
   KEY_VALUE                     ORACLE.EXE.3760_3548 
   KEY_NAME                      PQ 
   KEY_NAME                      SID 
   KEY_VALUE                     71.304 
   OWNER_ID                      1 
   INCIDENT_FILE                 c:\app\ora\diag\rdbms\orcl1\orcl1\trace\orcl1_ora_3548.trc 
 
adrci> 

How It Works 
The show incident command reports on all open incidents in the database. For each incident, the 
output for this command shows the problem key, incident ID, and the time when the incident occurred. 
In this example, we first set the ADRCI homepath, so the command shows incidents from just this ADR 
home. If you don’t set the homepath, you’ll see incidents from all the current ADR homes. 

As mentioned earlier, an incident is a single occurrence of a problem. A problem is a critical error 
such as an ORA-600 (internal error) or an ORA-07445 error relating to operating system exceptions. The 
problem key is a text string that shows the problem details. For example, the problem key ORA 600 
[kkqctinvvm(2): Inconsistent state space!] shows that the problem is due to an internal error. 

When a problem occurs several times, the database creates an incident for each occurrence of the 
problem, each with a unique incident ID. The database logs the incident in the alert log and sends an 
alert to the Oracle Enterprise Manager, where they show up in the Home page. The database 
automatically gathers diagnostic data for the incident, called incident dumps, and stores them in the 
ADR trace directory. 

Since a critical error can potentially generate numerous identical incidents, the fault diagnosability 
infrastructure applies a “flood control” mechanism to limit the generation of incidents. For a given 
problem key, the database allows only 5 incidents within one hour and a maximum of 25 incidents in 
one day. Once a problem triggers incidents beyond these thresholds, the database merely logs the 
incidents in the alert log and the Oracle Enterprise Manager, but stops generating new incident dumps 
for them. You can’t alter the default threshold settings for the incident flood control mechanism. 

7-12. Packaging Incidents for Oracle Support 

Problem 
You want to send the diagnostic files related to a specific problem to Oracle Support. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

237 

Solution  
You can package the diagnostic information for one more incidents  through either Database Control or 
through commands that you can execute from the ADRCI interface. In this solution, we show you how to 
package incidents through ADRCI. You can use various IPS commands to package all diagnostic files 
related to a specific problem in a zipped format and send the file to Oracle Support. Here are the steps to 
create an incident package. 

1. Create an empty logical package as shown here: 

adrci> ips create package 
Created package 1 without any contents, correlation level typical 
adrci> 

In this example, we created an empty package, but you can also create a 
package based on an incident number, a problem number, a problem key or a 
time interval. In all these cases, the package won't be empty - it'll include the 
diagnostic information for the incident or problem that you specify. Since we 
created an empty package, we need to add diagnostic information to that 
package in the next step. 

2. Add diagnostic information to the logical package with the ips add incident 
command: 

adrci> ips add incident 43369 package 1 
Added incident 43369 to package 1 
adrci> 

At this point, the incident 43369 is associated with package 1, but there’sno 
diagnostic data in it yet. 

3. Generate the physical package. 

adrci> ips generate package 1 in \app\ora\diagnostics 
Generated package 1 in file \app\ora\diagnostics\IPSPKG_20110419131046_COM_1.zip, 
mode complete 
adrci> 

When you issue the generate package command, ADRCI gathers all relevant 
diagnostic files and adds them to a zip file in the directory you designate. 

4. Send the resulting zip file to Oracle Support. 

If you decide to add supplemental diagnostic data to an existing physical 
package (zipped file), you can do so by specifying the incremental option with 
the generate package command: 

adrci> ips generate package 1 in \app\ora\diagnostics incremental 

The incremental zip file created by this command will have the term INC in the 
file name, indicating that it is an incremental zip file. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

238 

How It Works 
A physical package is the zip file that you can send to Oracle Support for diagnosing a problem in your 
database. Since an incident is a single occurrence of a problem, adding the incident number to the 
logical package and generating the physical package rolls up all the diagnostic data for that problem 
(incident) into a single zipped file. In this example, we showed you how to first create an empty logical 
package and then associate it with an incident number. However, the ipc create package command has 
several options: you can specify the incident number or a problem number directly when you create the 
logical package, and skip the add incident command. You can also create a package that contains all 
incidents between two points in time, as shown here: 

adrci> ips create package time '2011-04-12 10:00:00.00 -06:00' to '2011-04-12 23 
:00:00.00 -06:00' 
Created package 2 based on time range 2011-04-12 12:00:00.000000 -06:00 to 2011- 
04-12 23:00:00.000000 -06:00, correlation level typical 
adrci> 

The package generated by the previous command contains all incidents that occurred between 10 
a.m. and 11 p.m. on April 12, 2011. 

Note that  you can also manually add a specific diagnostic file to an existing  package. To add a file, 
you specify the file name in the ips add file command—you are limited to adding only those 
diagnostic files that are within the ADR base directory. Here is an example: 

adrci> ips add file <ADR_BASE>/diag/rdbms/orcl1/orcl1/trace/orcl_ora12345.trc package 1 

By default, the ips generate package command generates a zip file that includes all files for a 
package. The incremental option will limit the files to those that the database has generated since you 
originally generated the zipped file for that package. The ips show files command shows all the files in 
a package and the ips show incidents command shows all the incidents in a package. You can issue the 
ips remove file command to remove a diagnostic file from a package. 

7-13. Running a Database Health Check 

Problem 
You’d like to run a comprehensive diagnostic health check on your database. You’d like to find out if 
there’s any data dictionary or file corruption, as well as any other potential problems in the database. 

Solution 
You can use the database health monitoring infrastructure to run a health check of your database. You 
can run various integrity checks, such as transaction integrity checks and dictionary integrity checks. 
You can get a list of all the health checks you can run by querying the V$HM_CHECK view: 

SQL> select name from v$hm_check where internal_check='N'; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

239 

Once you decide on the type of check, specify the name of the check in the DBMS_HM package's 
RUN_CHECK procedure, as shown here: 

 SQL> begin 
  2   dbms_hm.run_check('Dictionary Integrity Check','testrun1'); 
  3   end; 
  4  / 
 
PL/SQL procedure successfully completed. 
 
SQL> 

You can also run a health check from the Enterprise Manager. Go to Advisor Central ➤ Checkers, 
and select the specific checker from the Checkers subpage to run a health check. 

How It Works 
Oracle automatically runs a health check when it encounters a critical error. You can run a manual check 
using the procedure shown in the “Solution” section. The database stores all health check findings in the 
ADR. 

You can run most of the health checks while the database is open. You can run the Redo Integrity 
Check and the DB Structure Integrity Check only when the database is closed—you must place the 
database in the NOMOUNT state to run these two checks. 

You can view a health check’s findings using either the DBMS_HM package or through the Enterprise 
Manager. Here is how to get a health check using the DBMS_HM package: 

SQL> set long 100000 
SQL> set longchunksize 1000 
SQL> set pagesize 1000 
SQL> set linesize 512 
SQL> select dbms_hm.get_run_report('testrun1') from dual; 
 
DBMS_HM.GET_RUN_REPORT('TESTRUN1') 
----------------------------------------------------------------- 
Basic Run Information 
 Run Name                     : testrun1 
 Run Id                       : 61 
 Check Name                   : Dictionary Integrity Check 
 Mode                         : MANUAL 
 Status                       : COMPLETED 
 Start Time                   : 2011-04-19 15:46:50.313000 -04:00 
 End Time                     : 2011-04-19 15:46:54.117000 -04:00 
 Error Encountered            : 0 
 Source Incident Id           : 0 
 Number of Incidents Created  : 0 
 
Input Paramters for the Run 
 TABLE_NAME=ALL_CORE_TABLES 
 CHECK_MASK=ALL 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

240 

Run Findings And Recommendations 
 
SQL> 

In this example, fortunately, there are no findings and thus no recommendations, since the 
dictionary health check didn’t find any problems. You can also go to Advisor Central ➤ Checkers and run 
a report from the Run Detail page for any health check you have run. Use the show hm_run, create 
report, and show report commands to view health check reports with the ADRCI utility. You can use the 
views V$HM_FINDING and V$HM_RECOMMENDATION to investigate the findings as well as the recommendations 
pursuant to a health check. 

7-14. Creating a SQL Test Case 

Problem 
You need to create a SQL test case in order to reproduce a SQL failure on a different machine, either to 
support your own diagnostic efforts, or to enable Oracle Support to reproduce the failure. 

Solution 
In order to create a SQL test case, first you must export the SQL statement along with several bits of 
useful information about the statement. The following example shows how to capture the SQL 
statement that is throwing an error. In this example, the user SH is doing the export (you can’t do the 
export as the user SYS). 

First, connect to the database as SYSDBA and create a directory to hold the test case: 

SQL> conn / as sysdba 
Connected. 
SQL> create or replace directory TEST_DIR1 as 'c:\myora\diagnsotics\incidents\';  
 
Directory created. 
SQL> grant read,write on directory TEST_DIR1 to sh; 
 
Grant succeeded. 
SQL> 

Then grant the DBA role to the user through which you will create the test case, and connect as that 
user: 

SQL> grant dba to sh; 
 
Grant succeeded. 
 
SQL> conn sh/sh 
Connected. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

241 

Issue the SQL command that’s throwing the error: 

SQL> select * from  my_mv  where max_amount_sold >100000 order by 1; 

Now you’re ready to export the SQL statement and relevant information, which you can import to a 
different system later on. Use the EXPORT_SQL_TESTCASE procedure to export the data, as shown here: 

SQL> set serveroutput on 
 
SQL> declare mycase clob; 
  2  begin 
  3  dbms_sqldiag.export_sql_testcase 
  4  (directory    =>'TEST_DIR1', 
  5  sql_text      => 'select * from my_mv where max_amount_sold >100000 order by 1', 
  6  user_name     => 'SH', 
  7  exportData    =>  TRUE, 
  8  testcase      => mycase 
  9  ); 
 10  end; 
 11  / 
 
PL/SQL procedure successfully completed. 
 
SQL> 

Once the export procedure completes, you are ready to perform the import, either on the same or 
on a different server. The following example creates a new user named TEST, and imports the test case 
into that user’s schema. Here are the steps for importing the SQL statement and associated information 
into a different schema. 

SQL> conn /as sysdba 
Connected. 
SQL> create or replace directory TEST_DIR2 as 'c:\myora\diagnsotics\incidents\'; / 
 
Directory created. 
SQL> grant read,write on directory TEST_dir2 to test; 

Transfer all the files in the TEST_DIR1 directory to the TEST_DIR2 directory. Then grant the DBA role 
to user TEST, and connect as that user: 

SQL> grant dba to test; 
 
Grant succeeded. 
 
SQL> conn test/test 
Connected. 

Perform the import of the SQL data as the user TEST, by invoking the IMPORT_SQL_TESTCASE 
procedure, as shown here: 

SQL> begin 
  2  dbms_sqldiag.import_sql_testcase 
  3  (directory=>'TEST_DIR2', 
  4  filename=>'oratcb1_008602000001main.xml', 
  5  importData=>TRUE 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

242 

  6  ); 
  7  end; 
  8  / 
 
PL/SQL procedure successfully completed. 
 
SQL> 

The user TEST will now have all the objects to execute the SQL statement that you want to 
investigate. You can verify this by issuing the original select statement. It should give you the same 
output as under the SH schema. 

How It Works 
Oracle offers the SQL Test Case Builder (TCB) to reproduce a SQL failure. You can create a test case 
through Enterprise Manager or through a PL/SQL package. The “Solution” section of this recipe shows 
how create a test case using the EXPORT_SQL_TESTCASE procedure of the DBMS_SQLDIAG package. There are 
several variants of this package, and our example shows how to use a SQL statement as the source for 
creating a SQL test case. Please review the DBMS_SQLDIAG.EXPORT_TESTCASE procedure in Oracle’s PL/SQL 
Packages manual for details about other options to create test cases. 

■ Note Remember that you should run the Test Case Builder as any user, other than SYS, who has been granted 
the DBA role. 

Often, you’ll find yourself trying to provide a test case for Oracle, without which the Oracle Support 
personnel won’t be able to investigate a particular problem they are helping you with. The SQL Test Case 
Builder is a tool that is part of Oracle Database 11g, and its primary purpose is to help you quickly obtain 
a reproducible test case. The SQL Test Case Builder helps you easily capture pertinent information 
relating to a failed SQL statement and package it in a format that either a developer or an Oracle support 
person can use to reproduce the problem in a different environment. 

You access the SQL Test Case Builder through the DBMS_SQLDIAG package. To create a test case, you 
must first export the SQL statement, including all the objects that are part of the statement, and all other 
related information. The export process is very similar to an Oracle export with the EXPDP command, and 
thus uses a directory, just as EXPDP does. Oracle creates the SQL test case as a script that contains the 
statements that will re-create the necessary database objects, along with associated runtime information 
such as statistics, which enable you to reproduce the error. The following are the various types of 
information captured and exported as part of the test case creation process: 

• SQL text for the problem statement 

• Table data—this is optional, and you can export a sample or complete data. 

• The execution plan 

• Optimizer statistics 

• PL/SQL functions, procedure, and packages 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

243 

• Bind variables 

• User privileges 

• SQL profiles 

• Metadata for all the objects that are part of the SQL statement 

• Dynamic sampling results 

• Runtime information such as the degree of parallelism, for example 

In the DBMS_SQLDIAG package, the EXPORT_SQL_TESTCASE procedure exports a SQL test case for a SQL
statement to a directory. The IMPORT_SQL_TESTCASE procedure imports the test case from a directory. 

In the EXPORT_SQL_TESTCASE procedure, here is what the attributes stand for: 

DIRECTORY: The directory where you want to store the test case files 

SQL_TEXT: The actual SQL statement that’s throwing the error 

TESTCASE: The name of the test case 

EXPORTDATA: By default, Oracle doesn’t export the data. You can set this
parameter to TRUE in order to export the data. You can optionally limit the
amount of data you want to export, by specifying a value for the Sampling
Percent attribute. The default value is 100. 

The Test Case Builder automatically exports the PL/SQL package specifications but not the package
body. However, you can specify that the TCB export the package body as well. The export process creates
several files in the directory you specify. Of these files, the file in the format
oratcb1_008602000001main.xml contains the metadata for the test case. 

7-15. Generating an AWR Report 

Problem 
You’d like to generate an AWR report to analyze performance problems in your database. 

Solution 
The database automatically takes an AWR snapshot every hour, and saves the statistics in the AWR for
eight days. An AWR report contains data captured between two snapshots,  which need not be
consecutive. Thus, an AWR report lets you examine  instance performance between two points in time. 
You can generate an AWR report through Oracle Enterprise Manager. However, we show you how to
create an AWR report using Oracle-provided scripts. 

To generate an AWR report for a single instance database, execute the awrrpt.sql script as shown
here. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

244 

SQL> @?/rdbms/admin/awrrpt.sql 
 
Current Instance 
~~~~~~~~~~~~~~~~ 
 DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
 1118243965 ORCL1 1 orcl1
Specify the Report Type
~~~~~~~~~~~~~~~~~~~~~~~ 
Would you like an HTML report, or a plain text report? 
Enter 'html' for an HTML report, or 'text' for plain text 
Defaults to 'html' 
Enter value for report_type: text 
 
Type Specified:   

Select a text- or an HTML-based report. The HTML report is the default report type, and it provides 
a nice-looking, well-formatted, easy-to-read report. Press Enter to select the default HTML-type report. 

Instances in this Workload Repository schema 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 DB Id Inst Num DB Name Instance Host
------------ -------- ------------ ------------ ------------
* 1118243965 1 ORCL1 orcl1 MIROPC61

Using 1118243965 for database Id
Using 1 for instance number

You must specify the DBID for the database at this point. In our example, however, there’s only one
database and therefore one DBID, so there’s no need to enter the DBID.

Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Entering the number of days (n) will result in the most recent 
(n) days of snapshots being listed.  Pressing <return> without 
specifying a number lists all completed snapshots. 
Enter value for num_days: 1 

Enter the number of days for which you want the database to list the snapshot IDs. In this example, 
we chose 1 because we want to generate an AWR for a time period that falls in the last day. 

Listing the last day's Completed Snapshots 
                                                        Snap 
Instance     DB Name        Snap Id    Snap Started    Level 
------------ ------------ --------- ------------------ ----- 
orcl1        ORCL1             1877 17 Apr 2011 00:00      1 
                               1878 17 Apr 2011 07:47      1 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

245 

Specify a beginning and an ending snapshot for the AWR report. 

Specify the Begin and End Snapshot Ids 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Enter value for begin_snap: 1877
Begin Snapshot Id specified: 1877

Enter value for end_snap: 1878
End Snapshot Id specified: 1878

You can either accept the default name for the AWR report by pressing Enter, or enter a name for the
report.

Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~ 
The default report file name is awrrpt_1_1877_1878.txt.  To use this name, 
press <return> to continue, otherwise enter an alternative. 
 
Enter value for report_name: 
Using the report name awrrpt_1_1877_1878.html 

The database generates an AWR report in the same directory from which you invoked the 
awrrpt.sql script. For example, if you choose an HTML-based report, the AWR report will be in the 
following format: awrrpt_1_1881_1882.html. 

■ Tip You can generate an AWR report to analyze the performance of a single SQL statement by executing the 
awrsqrpt.sql script. 

How It Works 
The AWR reports that you generate show performance statistics captured between two points in time, 
each of which is called a snapshot. You can gain significant insights into your database performance by 
reading the AWR reports carefully. An AWR report takes less than a minute to run in most cases, and 
holds a treasure trove of performance information. The report consists of multiple sections. Walking 
through an AWR report usually shows you the reason that your database isn’t performing at peak levels. 

To generate an AWR report for all instances in an Oracle RAC environment, use the awrgrpt.sql 
script instead. You can generate an AWR report for a specific instance in a RAC environment by using the 
awrrpti.sql script. You can also generate an AWR report for a single SQL statement by invoking the 
awrsqrpt.sql script and providing the SQL_ID of the SQL statement. 

You can generate an AWR report to span any length of time, as long as the AWR has snapshots 
covering that period. By default, the AWR retains its snapshots for a period of eight days. 

You can generate an AWR snapshot any time you want, either through the Oracle Enterprise 
Manager or by using the DBMS_WORKLOAD_REPOSITORY package. That ability is useful when, for example, 
you want to investigate a performance issue from 20 minutes and the next snapshot is 40 minutes away. 
In that case, you must either wait 40 minutes or create a manual snapshot. Here’s an example that shows 
how to create an AWR snapshot manually: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

246 

SQL> exec dbms_workload_repository.create_snapshot(); 
 
PL/SQL procedure successfully completed. 
SQL> 

Once you create the snapshot, you can run the awrrpt.sql script. Then select the previous two 
snapshots to generate an up-to-date AWR report. 

You can generate an AWR report when your user response time increases suddenly, say from one to 
ten seconds during peak hours. An AWR report can also be helpful if a key batch job is suddenly taking 
much longer to complete. Of course, you must check the system CPU, I/O, and memory usage during 
the period as well, with the help of operating system tools such as sar, vmstat, and iosat. 

If the system CPU usage is high, that doesn’t necessarily mean that it’s the CPU that’s the culprit. 
CPU usage percentages are not always a true measure of throughput, nor is CPU usage always useful as a 
database workload metric. Make sure to generate the AWR report for the precise period that 
encompasses the time during which you noticed the performance deterioration. An AWR report that 
spans a 24-hour period is of little use in diagnosing a performance dip that occurred 2 hours ago for only 
30 minutes. Match your report to the time period of the performance problem. 

7-16. Comparing Database Performance Between Two 
Periods 

Problem 
You want to examine and compare how the database performed during two different periods. 

Solution 
Use the awrddrpt.sql script (located in the $ORACLE_HOME/rdbms/admin directory) to generate an AWR 
Compare Periods Report that compares performance between two periods. Here are the steps. 

1. Invoke the awrddrpt.sql script. 

SQL> @$ORACLE_HOME/rdbms/admin/awrddrpt.sql 

2. Select the report type (default is text). 

Enter value for report_type: html 
Type Specified:  html 

3. Specify the number of days of snapshots from which you want to select the 
beginning and ending snapshots for the first time period. 

Specify the number of days of snapshots to choose from 
Enter value for num_days: 4 

4. Choose a pair of snapshots over which you want to analyze the first period’s 
performance. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

247 

Specify the First Pair of Begin and End Snapshot Ids 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Enter value for begin_snap: 2092
First Begin Snapshot Id specified: 2092

Enter value for end_snap: 2093
First End Snapshot Id specified: 2093

5. Select the number of days of snapshots from which you want to select the pair
of snapshots for the second period. Enter the value 4 so you can select a pair of
snapshots from the previous 4 days.

Specify the number of days of snapshots to choose from
Enter value for num_days: 4

6. Specify the beginning and ending snapshots for the second period.

Specify the Second Pair of Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Enter value for begin_snap2: 2134 
Second Begin Snapshot Id specified: 2134 
 
Enter value for end_snap2: 2135 
Second End   Snapshot Id specified: 2135 

7. Specify a report name or accept the default name. 

Specify the Report Name 
~~~~~~~~~~~~~~~~~~~~~~~ 
The default report file name is awrdiff_1_2092_1_2134.html To use this name,
press <return> to continue, otherwise enter an alternative.

Enter value for report_name:
Using the report name awrdiff_1_2092_1_2134.html
Report written to awrdiff_1_2092_1_2134.html
SQL>

How It Works
Generating an AWR Compare Periods report is a process very similar to the one for generating a normal
AWR report. The big difference is that the report does not show what happened between two snapshots,
as the normal AWR report does. The AWR Compare Periods report compares performance between two
different time periods, with each time period involving a different pair of snapshots. If you want to
compare the performance of your database between 9 a.m. and 10 a.m. today and the same time period
three days ago, you can do it with the AWR Compare Periods report. You can run an AWR Compare
Periods report on one or all instances of a RAC database.

The AWR Compare Periods report is organized similarly to the normal AWR report, but it shows
each performance statistic for the two periods side by side, so you can quickly see the differences (or
similarities) in performance. Here’s a section of the report showing how you can easily review the
differences in performance statistics between the first and the second periods.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE

248

 First Second Diff
 --------------- --------------- ------
 % Blocks changed per Read: 61.48 15.44 -46.04
 Recursive Call %: 98.03 97.44 -0.59
 Rollback per transaction %: 0.00 0.00 0.00
 Rows per Sort: 2.51 2.07 -0.44
 Avg DB time per Call (sec): 1.01 0.03 -0.98

7-17. Analyzing an AWR Report

Problem
You’ve generated an AWR report that covers a period when the database was exhibiting performance
problems. You want to analyze the report.

Solution
An AWR report summarizes its performance-related statistics under various sections. The following is a
quick summary of the most important sections in an AWR report.

Session Information
You can find out the number of sessions from the section at the very top of the AWR report, as shown
here:

Snap Id Snap Time Sessions Curs/Sess
 --------- ------------------- -------- ---------
Begin Snap: 1878 17-Apr-11 07:47:33 38 1.7
 End Snap: 1879 17-Apr-11 09:00:48 34 3.7
 Elapsed: 73.25 (mins)
 DB Time: 33.87 (mins)

Be sure to check the Begin Snap and End Snap times, to confirm that the period encompasses the
time when the performance problem occurred. If you notice a very high number of sessions, you can
investigate if shadow processes are being created—for example, if the number of sessions goes up by 200
between the Begin Snap and End Snap times when you expect the number of sessions to be the same at
both times, the most likely cause is an application startup issue, which is spawning all those sessions.

Load Profile
The load profile section shows the per-second and per-transaction statistics for various indicators of
database load such as hard parses and the number of transactions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE

249

Load Profile Per Second Per Transaction
~~~~~~~~~~~~         ---------------    --------------- 
      DB Time(s):                0.5                1.4 
       DB CPU(s):                0.1                0.3 
       Redo size:            6,165.3           19,028.7 
   Logical reads:              876.6            2,705.6 
   Block changes:               99.2              306.0 
  Physical reads:               10.3               31.8 
 Physical writes:                1.9                5.9 
      User calls:                3.4               10.4 
          Parses:               10.2               31.5 
     Hard parses:                1.0                3.0 
          Logons:                0.1                0.2 
    Transactions:                0.3 

The Load Profile section is one of the most important parts of an AWR report. Of particular 
significance are the physical I/O rates and hard parses. In an efficiently performing database, you should 
see mostly soft parses and very few hard parses. A high hard parse rate usually is a result of not using 
bind variables. If you see a high per second value for logons, it usually means that your applications 
aren’t using persistent connections. A high number of logons or an unusually high number of 
transactions tells you something unusual is happening in your database. However, the only way you’ll 
know the numbers are unusual is if you regularly check the AWR reports and know what the various 
statistics look like in a normally functioning database, at various times of the day! 

Instance Efficiency Percentages 
The instance efficiency section shows several hit ratios as well as the “execute to parse” and “latch hit” 
percentages. 

Instance Efficiency Percentages (Target 100%) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 Buffer Nowait %: 100.00 Redo NoWait %: 100.00
 Buffer Hit %: 99.10 In-memory Sort %: 100.00
 Library Hit %: 95.13 Soft Parse %: 90.35
 Execute to Parse %: 70.71 Latch Hit %: 99.97
 Parse CPU to Parse Elapsd %: 36.71 % Non-Parse CPU: 83.60

 Shared Pool Statistics Begin End
 ------ ------
 Memory Usage %: 81.08 88.82
 % SQL with executions>1: 70.41 86.92
 % Memory for SQL w/exec>1: 69.60 91.98

The execute to parse ratio should be very high in a well-running instance. A low value for the % SQL
with exec>1 statistic means that the database is not re-using shared SQL statements, usually because the
SQL is not using bind variables.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE

250

Top 5 Foreground Events
The Top 5 Timed Foreground Events section shows the events that were responsible for the most waits
during the time spanned by the AWR report.

Top 5 Timed Foreground Events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                                                        Avg Wait % DB 
Event                                 Waits     Time(s)   (ms)   time Wait Class 
------------------------------ ------------ ----------- ------ ------ ---------- 
db file sequential read              13,735         475     35   23.4 User I/O 
DB CPU                                              429          21.1 
latch: shared pool                      801          96    120    4.7 Concurrenc 
db file scattered read                  998          49     49    2.4 User I/O 
control file sequential read          9,785          31      3    1.5 System I/O 

The Top 5 Timed Foreground Events section is where you can usually spot the problem, by showing 
you why the sessions are “waiting.” The Top 5 Events information shows the total waits for all sessions, 
but usually one or two sessions are responsible for most of the waits. Make sure to analyze the total waits 
and average waits (ms) separately, in order to determine if the waits are significant. Merely looking at the 
total number of waits or the total wait time for a wait event could give you a misleading idea about its 
importance. You must pay close attention to the average wait times for an event as well. In a nicely 
performing database, you should see CPU and I/O as the top wait events, as is the case here. If any wait 
events from the concurrent wait class such as latches show up at the top, investigate those waits further. 
For example, if you see events such as enq: TX - row lock contention, gc_buffer_busy (RAC), or   latch 
free, it usually indicates contention in the database. If you see an average wait of more than 2 ms for the 
log file sync event, investigate the wait event further (Chapter 5 shows how to analyze various wait 
events). If you see a high amount of waits due to the db file sequential read or the db file scattered read 
wait events, there are heavy indexed reads (this is normal) or full table scans going on. You can find out 
the SQL statement and the tables involved in these read events in the AWR report. 

Time Model Statistics 
Time model statistics give you an idea about how the database has spent its time, including the time it 
spent on executing SQL statements as against parsing statements. If parsing time is very high, or if hard 
parsing is significant, you must investigate further. 

Time Model Statistics                  DB/Inst: ORCL1/orcl1  Snaps: 1878-1879 
 
Statistic Name                                       Time (s) % of DB Time 
------------------------------------------ ------------------ ------------ 
sql execute elapsed time                              1,791.5         88.2 
parse time elapsed                                      700.1         34.5 
hard parse elapsed time                                 653.7         32.2 

Top SQL Statements 
This section of the AWR report lets you quickly identify the most expensive SQL statements. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

251 

SQL ordered by Elapsed Time            DB/Inst: ORCL1/orcl1  Snaps: 1878-1879 
-> Captured SQL account for   13.7% of Total DB Time (s):           2,032 
-> Captured PL/SQL account for   19.8% of Total DB Time (s):           2,032 
 
        Elapsed                  Elapsed Time 
        Time (s)    Executions  per Exec (s)  %Total   %CPU    %IO    SQL Id 
---------------- -------------- ------------- ------ ------ ------ ------------- 
           292.4              1        292.41   14.4    8.1   61.2 b6usrg82hwsas 
… 

You can generate an explain plan for the expensive SQL statements using the SQL ID from this part 
of the report. 

PGA Histogram 
The PGA Aggregate Target Histogram shows how well the database is executing the sort and hash 
operations—for example: 

 PGA Aggr Target Histogram               DB/Inst: ORCL1/orcl1  Snaps: 1878-1879 
-> Optimal Executions are purely in-memory operations 
 
  Low     High 
Optimal Optimal    Total Execs  Optimal Execs 1-Pass Execs M-Pass Execs 
------- ------- -------------- -------------- ------------ ------------ 
     2K      4K         13,957         13,957            0            0 
    64K    128K             86             86            0            0 
   128K    256K             30             30            0            0 

In this example, the database is performing all sorts and hashes optimally, in the PGA. If you see a 
high number of one-pass executions and even a few large multi-pass executions, that’s an indication 
that the PGA is too small and you should consider increasing it. 

How It Works 
Analyzing an AWR report should be your first step when troubleshooting database performance issues 
such as a slow-running query. An AWR report lets you quickly find out things such as the number of 
connections, transactions per second, cache-hit rates, wait event information, and the SQL statements 
that are using the most CPU and I/O. It shows you which of your SQL statements are using the most 
resources, and which wait events are slowing down the database. Most importantly, probably, the report 
tells you if the database performance is unusually different from its typical performance during a given 
time of the day (or night). The AWR report sections summarized in the “Solution” section are only a 
small part of the AWR report. Here are some other key sections of the report that you must review when 
troubleshooting performance issues: 

• Foreground Wait Events 

• SQL Ordered by Gets 

• SQL Ordered by Reads 

• SQL Ordered by Physical Reads 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7 ■ TROUBLESHOOTING THE DATABASE 

 

252 

• Instance Activity Stats 

• Log Switches 

• Enqueue Activity 

• Reads by Tablespace, Datafile, and SQL Statement 

• Segments by Table Scans 

• Segments by Row Lock Waits 

• Undo Segment Summary 

Depending on the nature of the performance issue you’re investigating, several of these sections in 
the report may turn out to be useful. In addition to the performance and wait statistics, the AWR report 
also offers advisories for both the PGA and the SGA. The AWR report is truly your best friend when you 
are troubleshooting just about any database performance issue. In a matter of minutes, you can usually 
find the underlying cause of the issue and figure out a potential fix. AWR does most of the work for you—
you just need to know what to look for! 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 

  

253 

Creating Efficient SQL 

Structured Query Language is like any other programming language in that it can be coded well, coded
poorly, and everywhere in between. Learning to create efficient SQL statements has been discussed in
countless books. This chapter zeroes in on basic SQL coding fundamentals, and addresses some
techniques to improve performance of your SQL statements. In addition, some emphasis is given to
ramifications of poorly written SQL, along with a few common pitfalls to avoid in your SQL statements
within your application. 

 Writing good SQL statements the first time is the best way to get good performance from your SQL
queries. Knowing the fundamentals is the key to accomplishing the goal of good performance. This
chapter focuses on the basics of the SQL language: 

• SELECT statement 

• WHERE clause 

• Joining tables 

• Subqueries 

• Set operators 

Then, we’ll focus on basic techniques to improve performance of your queries, as well as help
ensure your queries are not hindering the performance of other queries within your database. It’s
important to take the time to write efficient SQL statements the first time, which is easy to say, but tough
to accomplish when balancing client requirements, budgets, and project timelines. However, if you
adhere to basic coding practices and fundamentals, you can greatly improve the performance of your
SQL queries. 

■ Note Several times in this chapter, we make a distinction between ISO syntax and traditional Oracle syntax.
Specifically, we do that with respect to join syntax. However, that distinction is a bit mis-stated. With the exception
of Oracle’s use of the (+) to indicate an outer join, all of Oracle’s join syntax complies with the ISO SQL standard,
so it is all ISO syntax. However, it is common in the field to refer to the more newly implemented syntax as “ISO
syntax,” and we follow that pattern in this chapter. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

254 

8-1. Retrieving All Rows from a Table 

Problem 
You need to write a query to retrieve all rows from a given table within your database. 

Solution 
Within the SQL language, you use the SELECT statement to retrieve data from the database. Everything 
following the SELECT statement tells Oracle what data you need from the database. The first thing you 
need to determine is from which table(s) you need to retrieve data. Once this has been determined, you 
have what you need to be able to run a query to get data from the database. If we have an EMPLOYEES table 
within our Oracle database, we can perform a describe on that table in order to see the structure of the 
table. By doing this, we can see the column names for the table, and can determine which columns we 
want to select from the database. 

SQL> describe employees 
 Name                                      Null?    Type 
 ----------------------------------------- -------- ---------------------------- 
 EMPLOYEE_ID                               NOT NULL NUMBER(6) 
 FIRST_NAME                                         VARCHAR2(20) 
 LAST_NAME                                 NOT NULL VARCHAR2(25) 
 EMAIL                                     NOT NULL VARCHAR2(25) 
 PHONE_NUMBER                                       VARCHAR2(20) 
 HIRE_DATE                                 NOT NULL DATE 
 JOB_ID                                    NOT NULL VARCHAR2(10) 
 SALARY                                             NUMBER(8,2) 
 COMMISSION_PCT                                     NUMBER(2,2) 
 MANAGER_ID                                         NUMBER(6) 
 DEPARTMENT_ID                                      NUMBER(4) 

If we want to retrieve a list of all the employees’ names from our EMPLOYEES table, we now have all 
the information we need to assemble a simple query against the EMPLOYEES table in the database. We 
know we are selecting from the EMPLOYEES table, which is needed for the FROM clause. We also know we 
want to select the names of the employees, which is needed to satisfy the SELECT clause. At this point, we 
can issue the following query against the database: 

SELECT last_name, first_name 
FROM employees; 
 
LAST_NAME                 FIRST_NAME 
------------------------- -------------------- 
Abel                      Ellen 
Baer                      Hermann 
Cabrio                    Anthony 
Dilly                     Jennifer 
Ernst                     Bruce 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

255 

If we want to select all columns from the EMPLOYEES table, we can list every column from the table in 
the SELECT clause, or we can substitute listing every column with the asterisk, which indicates that we 
want to retrieve all the columns: 

SELECT * 
FROM employees; 

If our manager wants the format of the output to be a comma-delimited list of all the employees’ 
names, we can modify our query to accomplish this task: 

SELECT last_name || ', ' || first_name AS "Employee Name" 
FROM employees; 
 
Employee Name 
----------------------------------------------- 
Abel, Ellen 
Baer, Hermann 
Cabrio, Anthony 
Dilly, Jennifer 
Ernst, Bruce 

In the foregoing case, we placed the concatenation characters, which are comprised of two vertical 
bars, in the query to indicate that we are combining the contents of multiple columns into a single 
output column. At the same time, we are creating a column alias by using the AS clause, and calling the 
combined last and first names “Employee Name”. 

How It Works 
SELECT is the most fundamental statement needed to retrieve data from an Oracle database. While there 
are many clauses and features of a SELECT statement, at its most basic, there are really only two clauses 
needed to first retrieve data out of an Oracle database—and those clauses are the SELECT clause and the 
FROM clause. Normally, more is required to accurately retrieve the desired result set. You may want only a 
subset of the columns within a database table, and you may want only a subset of rows from a given 
table. Furthermore, you may want to perform manipulation on data pulled from the database. All this 
requires more sophisticated components of the SQL language than the simple SELECT statement. 
However, the SELECT and FROM clauses are the basic building blocks to assemble a query, from the most 
simple of queries to the most complex of queries. 

■ Note In order to select data from any database table, you need to either own the table or have been given the 
privilege to select data from the given set of tables. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

256 

8-2. Retrieve a Subset of Rows from a Table 

Problem 
You want to filter the data from a database SELECT query to return only a subset of rows from a database 
table. 

Solution 
The WHERE clause gives the user the ability to filter rows and return only the desired result set back from 
the database. There are various ways to construct a WHERE clause, a few of which will be reviewed within 
this recipe. The first thing that occurs within a WHERE clause is that one or more columns’ values are 
compared to some other value. See Table 8-1 for a list of comparison operators that can be used within 
the WHERE clause. One of the more common comparison operators is the equal sign, which denotes an 
equality condition: 

SELECT * 
FROM EMP 
WHERE deptno = 20; 

In the foregoing query, we are selecting all columns from the EMP table, which is denoted by using 
the asterisk, and we want only those rows for department 20, which is determined by the WHERE clause. 

Table 8-1. Comparison Operators Used in the WHERE Clause 

Operator Description 

= Equal to  

!= , <> , ^= Not equal to 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

IS NULL 

IS NOT NULL 

Checking for existence of null values 

LIKE 

NOT LIKE 

Used to search when entire column 
value is not known 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

257 

How It Works 
In many SQL statements, there can be multiple conditions in a WHERE clause. Coding multiple conditions 
is done by using the logical operators OR, AND, and IN. If you have multiple logical operators within your 
SQL statement, Oracle will first always evaluate all AND clauses prior to any of the OR clauses. If there are 
matching logical operators in the same statement, they are evaluated from left to right. This can be 
confusing when constructing a complex WHERE condition. Therefore, when coding multiple conditions 
within a WHERE clause, delimit each clause with parentheses, else you may not get the results you are 
expecting. This is good SQL coding practice, and makes SQL code simpler to read and maintain—for 
example: 

SELECT last_name, first_name, salary, email 
FROM employees 
WHERE (department_id = 20 
OR department_id = 30) 
AND commission_pct > 0; 

If we have the need for multiple OR logical operators within our statement, we can replace them with 
the IN logical operator, which can simplify our SQL statement. By rewriting the foregoing query to use 
the IN logical operator, our query would look like the following: 

SELECT last_name, first_name, salary, email 
FROM employees 
WHERE department_id IN (20,30) 
AND commission_pct > 0; 

If you want to find all the same information for all departments except department 20 or 30, the SQL 
code would look like the following: 

SELECT last_name, first_name, salary, email 
FROM employees 
WHERE (department_id != 20 
AND department_id <> 30) 
AND commission_pct > 0; 

Note that in the foregoing, for demonstration, we used two of the “not equal” comparison operators. 
It is generally good coding practice to be consistent, and use the same operators across all of your SQL 
code. This avoids confusion with others who need to look at or modify your SQL code. Even subtle 
differences like this can make someone else ponder why one piece of SQL code was done one way, and 
another piece of SQL code was done a different way. When writing SQL code, writing for efficiency is 
important, but it is equally important to write the code with an eye on maintainability.  If SQL code is 
consistent, it simply will be easier to read and maintain. 

Taking the previous SQL statement, we again will use the logical OR operator, add the NOT operand, 
and accomplish the same task: 

SELECT last_name, first_name, salary, email 
FROM employees 
WHERE department_id NOT IN(20,30) 
AND commission_pct > 0; 

The last two queries both provided the proper results, but in this case, using the IN clause simplified 
our SQL statement. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

258 

8-3. Joining Tables with Corresponding Rows 

Problem 
Within a single query, you wish to retrieve matching rows from multiple tables. These tables have at least 
one common column on which to match the data between the tables. 

Solution 
A join condition within the SQL language is used to combine data from multiple tables within a single 
query. When there are corresponding rows in all tables involved in the join process, it is called an “inner 
join.” What this means is that based on the common join columns between the tables, only data that 
matches between the two tables will be returned. 

Let’s say you want to get the city where all departments in your company are based. There are two 
different ways to approach this before writing your SQL statement. You can use either traditional Oracle 
syntax, or the newer ISO syntax. Using traditional Oracle SQL, the syntax would be as follows: 

SELECT d.location_id, department_name, city 
FROM departments d, locations l 
WHERE d.location_id = l.location_id; 

To write the same statement using ISO syntax, there are several methods that can be used: 

• Natural Join 

• JOIN ... USING clause 

• JOIN ... ON clause  

If using the NATURAL JOIN clause, you are letting Oracle determine the natural join condition and 
which columns will be joined on, and therefore there are no join clauses or conditions in the statement: 

SELECT location_id, department_name, city 
FROM departments NATURAL JOIN locations; 

If tables you are joining have common named join columns, you can specify the JOIN ... USING 
clause, and you specify this common column within parentheses: 

SELECT location_id, department_name, city 
FROM departments JOIN locations 
USING (location_id); 

It is very common for the join condition between tables to have differently named columns that are 
needed to complete the join criteria. In these cases, the JOIN ... ON clause is appropriate: 

SELECT d.loc_id, department_name, city 
FROM departments d JOIN locations l 
ON l.location_id = d.loc_id; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

259 

How It Works 
When using traditional Oracle SQL, you need to specify all join conditions in the WHERE clause. Therefore, 
the WHERE clause will contain all join conditions, along with any filtering criteria. 

With ISO SQL, a key advantage is that the join conditions are done in the FROM clause, and the WHERE 
clause is used solely for filtering criteria. This makes SQL statements easier to read and decipher. No 
longer do you need to determine within a WHERE clause which statements are join conditions and which 
are filtering criteria. The advantage of this is more evident when you are joining three or more tables. 
The filtering criteria are solely in the WHERE clause and are easily visible: 

SELECT last_name, first_name, department_name, city,  
state_province state, postal_code zip, country_name 
FROM employees 
JOIN departments USING (department_id) 
JOIN locations USING (location_id) 
JOIN countries USING (country_id) 
JOIN regions USING (region_id) 
WHERE department_id = 20; 

If you prefer to write SQL statements with traditional Oracle SQL, good practice just for readability 
and more maintainable SQL code is to place all join conditions first in the WHERE clause, and place all 
filtering criteria at the end of the WHERE clause. It also makes the code easier to read and maintain if you 
can simply line up the code. This is an optional practice, but helps anyone else who may need to look at 
your SQL code: 

SELECT last_name, first_name, department_name, city,  
state_province state, postal_code zip, country_name  
FROM employees e, departments d, locations l, countries c, regions r 
WHERE e.department_id = d.department_id 
  AND d.location_id   = l.location_id 
  AND l.country_id    = c.country_id 
  AND c.region_id     = r.region_id 
  and d.department_id = 20; 

Also, when using the JOIN ... ON or JOIN ... USING clause, it may be more clear to specify the 
optional INNER keyword, as it would immediately be known it is an inner join that is being done: 

SELECT location_id, department_name, city 
FROM departments INNER JOIN locations 
USING (location_id); 

8-4. Joining Tables When Corresponding Rows May Be 
Missing 

Problem 
You need data from two or more tables, but some of the data is missing in one or more of the tables. For 
instance, you want to get a list of all of the departments for your company, along with their base 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

260 

locations. For whatever reason, you’ve been told that there are locations listed within your company that 
do not map to a single department, in which case there are no department locations listed. 

Solution 
You need to show all locations, so an inner join will not work in this case. Instead, you can write what is 
termed an outer join. Notice the (+) syntax in the following example: 

SELECT l.location_id, city, department_id, department_name 
FROM locations l, departments d 
WHERE l.location_id = d.location_id(+) 
ORDER BY 1; 
 
LOCATION_ID CITY                 DEPARTMENT_ID DEPARTMENT_NAME 
----------- -------------------- ------------- ------------------------- 
       1100 Venice 
       1400 Southlake                       60 IT 
       1500 South San Francisco             50 Shipping 
       1700 Seattle                        170 Manufacturing 
       1700 Seattle                        240 Sales 
       1700 Seattle                        270 Payroll 
       1700 Seattle                        120 Treasury 
       1700 Seattle                        110 Accounting 
       1700 Seattle                        100 Finance 
       1700 Seattle                         30 Purchasing 
       1800 Toronto                         20 Marketing 
       2000 Beijing 
       2400 London                          40 Human Resources 
       2700 Munich                          70 Public Relations 
       3200 Mexico City 

To specify an outer join using traditional Oracle SQL, simply place a plus sign within parentheses in 
the WHERE clause join condition next to a column from the table that you know has missing data. We 
know in the foregoing case that there are locations that are not assigned to a single department. From 
the  results, we can see the locations that have no departments assigned to them. 

To execute the same query using ISO SQL syntax, you use the LEFT OUTER JOIN or RIGHT OUTER JOIN 
clauses, which can be shortened to LEFT JOIN or RIGHT JOIN—for example: 

SELECT location_id, city, department_id, department_name 
FROM locations LEFT JOIN departments d 
USING (location_id) 
ORDER BY 1; 

Now let’s say you must execute a query in which either table, on either side of the join, could be 
missing one or more corresponding rows. One approach is to create a union of two outer join queries: 

SELECT last_name, first_name, department_name 
FROM employees e, departments d 
WHERE e.manager_id = d.manager_id(+)  
UNION 
SELECT last_name, first_name, department_name 
FROM employees e, departments d 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

261 

WHERE e.manager_id(+) = d.manager_id  
ORDER BY department_name, last_name, first_name; 
 
 
LAST_NAME                 FIRST_NAME           DEPARTMENT_NAME 
------------------------- -------------------- ------------------------- 
Gietz                     William              Accounting 
                                               Administration 
                                               Benefits 
Cambrault                 Gerald               Executive 
Chen                      John                 Finance 
                                               Government Sales 
                                               Human Resources 
Pataballa                 Valli                IT 
                                               Manufacturing 
Fay                       Pat                  Marketing 
                                               Payroll 
                                               Public Relations 
Tobias                    Sigal                Purchasing 
Tucker                    Peter                Sales 
                                               Shareholder Services 
Sarchand                  Nandita              Shipping 
                                               Treasury 
Lee                       Linda 
Morse                     Steve 

From the foregoing results, we can see all employees that manage departments, all employees that 
do not manage departments, as well as those departments with no assigned manager. 

In order to do the same query using ISO SQL syntax, use the FULL OUTER JOIN clause, which can be 
shortened to FULL JOIN: 

SELECT last_name, first_name, department_name 
FROM employees FULL JOIN departments 
USING (manager_id); 

How It Works 
There are really three outer joins that can be done based on your circumstances. Table 8-2 describes all 
the possible join conditions. SQL statements using traditional syntax or ISO SQL syntax are both 
perfectly acceptable. However, it is generally easier to write, read, and maintain ISO SQL than traditional 
Oracle SQL. 

One of the main advantages of the ISO syntax is that for multiple table joins, all the join conditions 
are specified in the FROM clause, and are therefore isolated and easy to see. In Oracle SQL, the join 
conditions are specified in the WHERE clause, along with any other filtering criteria needed for the query. 
If you inherited poorly structured SQL code, it is simply harder to read longer and more complex SQL 
statements that have join conditions and filtering criteria interspersed within a single WHERE clause. 

One other type of join not already mentioned is the cross join, which is a Cartesian join. While this 
type of join is rarely useful, it can be occasionally beneficial. As a DBA, let’s say you are gathering 
database size information for your enterprise of databases, and are placing the results in a single 
spreadsheet. You need to get database and host information for each query. You can execute the 
following query: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

262 

  SELECT d.name, i.host_name, round(sum(f.bytes)/1048576) megabytes 
  FROM v$database d 
  CROSS JOIN v$instance i 
  CROSS JOIN v$datafile f 
  GROUP BY d.name, i.host_name; 
 
NAME      HOST_NAME                       MEGABYTES 
--------- ------------------------------ ---------- 
ORCL      DREGS-PC                             2333 

In this case, the v$instance and v$database views contain only a single row, so there is no harm in 
doing a Cartesian join. The foregoing join could also be written with traditional Oracle SQL: 

SELECT d.name, i.host_name, round(sum(f.bytes)/1048576) megabytes 
FROM v$database d, v$instance i, v$datafile f 
GROUP BY d.name, i.host_name; 

Table 8-2. Oracle Join Conditions 

Join Type Traditional Join Syntax ISO Join Syntax Description 

Inner join WHERE clause, with one 
clause specified for each 
join condition 

FROM clause, along with: 

NATURAL JOIN 

JOIN ... USING 

JOIN … ON 

There are corresponding rows in 
each table matching the 
condition. 

Left outer join WHERE clause, the 3-
character sequence of (+) 
placed next to column from 
table with missing data 

FROM clause, along with: 

LEFT OUTER JOIN 

LEFT JOIN 

There may not be corresponding 
rows in the table on the right side 
of the join condition. 

Right outer 
join 

WHERE clause, the 3-
character sequence of (+) 
placed next to table with 
missing data 

FROM clause, along with: 

RIGHT OUTER JOIN 

RIGHT JOIN 

This means there may not be 
corresponding rows on table on 
the left side of the join condition. 

Full outer join Two SELECT statements 
with union condition 
specified, with one side of 
the outer join specified on 
first part of the union, and 
the other side of the outer 
join specified on second 
part of the union 

FROM clause, along with: 

FULL OUTER JOIN 

FULL JOIN 

This means there may not always 
be corresponding rows in both 
tables. It cannot be specified 
natively with traditional Oracle 
SQL syntax, and must be 
constructed with a UNION, while 
ISO SQL has the syntax built in. 

Cross join WHERE clause; there are no 
join conditions between the 
joined tables. 

FROM clause, along with: 

CROSS JOIN 

This means a Cartesian join is 
indicated. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

263 

8-5. Constructing Simple Subqueries 

Problem 
You need to retrieve data from the database, but cannot get the data you need using a single query. 

Solution 
It is common that data needs from a relational database are complex enough that the data cannot be
retrieved within a single SQL SELECT statement. Rather than having to run two or more queries serially, it
is possible to construct several SQL SELECT statements and place them within a single query. These
additional SELECT statements are called subqueries, sub-selects, or nested selects. 

Let’s say you want to get the name of the employee with the highest salary in your company so you
can ask your boss for a raise. Since you don’t know what the highest salary is, you first have to run a
query to determine the following: 

SELECT MAX(salary) FROM employees; 

MAX(SALARY)
----------- 
      24000 

Then, knowing what the highest salary is, you could run a second query to get the employee(s) with
that salary: 

SELECT last_name, first_name
FROM employees 
WHERE salary = 24000; 

LAST_NAME                 FIRST_NAME
------------------------- -------------------- 
King                      Steven 

It’s very simple to combine the foregoing two queries, and construct a single SQL statement with a
subquery to accomplish the same task: 

SELECT last_name, first_name 
FROM employees 
WHERE salary = 
(SELECT MAX(salary) FROM employees); 

LAST_NAME                 FIRST_NAME
------------------------- -------------------- 
King                      Steven 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

264 

How It Works 
Within a SQL statement, a subquery can be placed within the SELECT, WHERE, or HAVING clauses. You can 
also place a query within the FROM clause, which is also called an inline view, which is addressed in a 
different recipe. There are several kinds of subqueries that can be constructed: 

• Single-row or scalar subquery 

• Multiple-row subquery 

• Multiple-column subquery 

• Correlated subquery (addressed in a different recipe) 

The subquery itself is also called an inner query. Except for correlated subqueries, the inner query is 
executed first, and then the results of the inner query are passed to the outer query, which is then 
executed. 

Single-Row Subqueries 
Single-row subqueries return a single column of a single row. The example shown in the “Solution” 
section is a single-row subquery. Use caution and be certain that the subquery can return only a single 
value; otherwise you can get an error from your subquery: 

SELECT last_name, first_name 
FROM employees 
WHERE salary = 
(SELECT salary FROM employees WHERE department_id = 30); 
 
(SELECT salary FROM employees WHERE department_id = 30) 
 * 
ERROR at line 4: 
ORA-01427: single-row subquery returns more than one row 

In the foregoing example, there are multiple employees in department 30, so the subquery would 
return all of the matching rows. 

If you want to see how your salary stacks up against the average salaries of employees in your 
company, you can issue a subquery in the SELECT clause to accomplish this: 

SELECT last_name, first_name, salary, ROUND((SELECT AVG(salary) FROM employees)) avg_sal 
FROM employees 
WHERE last_name = 'King'; 
 
LAST_NAME                 FIRST_NAME               SALARY    AVG_SAL 
------------------------- -------------------- ---------- ---------- 
King                      Steven                    24000       6462 

Let’s say you want to know which departments overall had a higher salary than the average for your 
company. By placing the subquery in the HAVING clause, you can get the desired results: 

column avg_sal format 99999.99 
 
SELECT department_id, ROUND(avg(salary),2) avg_sal 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

265 

FROM employees 
GROUP BY department_id 
HAVING avg(salary) > (SELECT AVG(salary) FROM employees) 
ORDER BY 2; 
 
DEPARTMENT_ID   AVG_SAL 
------------- --------- 
           40   6500.00 
          100   8600.00 
           80   8955.88 
           20   9500.00 
           70  10000.00 
          110  10150.00 
           90  19333.33 
 
8 rows selected. 

Multiple-Row Subqueries 
If you know the desired subquery is going to return multiple rows, you can use the IN, ANY, ALL, and SOME 
operators. The IN operator is the same as having multiple OR conditions in a select statement. For 
example, in the following SQL statement, we are getting the DEPARTMENT_NAME for departments 20, 30,  
and 40. 

SELECT department_id, department_name 
FROM departments 
WHERE department_id = 20 
OR department_id = 30 
OR department_id = 40; 
 
DEPARTMENT_ID DEPARTMENT_NAME 
------------- ------------------------------ 
           20 Marketing 
           30 Purchasing 
           40 Human Resources 

Using the IN operator, we can simplify our SQL statement and achieve the same result: 

SELECT department_id, department_name 
FROM departments 
WHERE department_id IN (20,30,40); 

The ANY and SOME operators function identically. They are used to compare a value retrieved from 
the database to each value shown in the list of values in the query. They are used with the comparison 
operators =, !=, <>, <, <=, >, or >=. Use care with ANY or SOME, as it evaluates each value separately, without 
regard to the entire list of values. For example, using the same query to get the department name for 
departments 20, 30, or 40, if we modify this query to use ANY or SOME, we can see how Oracle evaluates 
each value in the ANY clause. Because we used the ANY clause, departments 10, 20, and 30 were included 
in the result, even though departments 20 and 30 were within our ANY clause. This is because each value 
is evaluated separately before the result set is returned. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

266 

SELECT department_id, department_name 
FROM departments 
WHERE department_id < ANY (20,30,40); 
 
SELECT department_id, department_name 
FROM departments 
WHERE department_id < SOME (20,30,40); 
 
DEPARTMENT_ID DEPARTMENT_NAME 
------------- ------------------------------ 
           10 Administration 
           20 Marketing 
           30 Purchasing 

The ALL operator essentially uses a logical AND operator to do the comparison of values shown in the 
query. While with the ANY operator, each value was compared individually to see if there was a match, 
the ALL operator needs to compare every value in the list before determining if there is a match. Using 
our department table as an example, see the following query. In this query, we are retrieving the 
department names from the table if the DEPARTMENT_ID value is less than or equal to all values in the list: 

SELECT department_id, department_name 
FROM departments 
WHERE department_id <= ALL (20,30,40); 
 
DEPARTMENT_ID DEPARTMENT_NAME 
------------- ------------------------------ 
           10 Administration 
           20 Marketing 

Multiple-Column Subqueries 
At times, you need to match data based on multiple columns. If placed within the WHERE clause, the 
column list needs to be placed within parentheses. As an example, if you want to get a list of the 
employees with the highest salary in their respective departments, you can write a multiple-column 
subquery such as the following: 

SELECT last_name, first_name, department_id, salary 
FROM employees 
WHERE (department_id, salary) IN 
(SELECT department_id, max(salary) 
FROM employees 
GROUP BY department_id) 
ORDER BY department_id; 
 
LAST_NAME                 FIRST_NAME           DEPARTMENT_ID     SALARY 
------------------------- -------------------- ------------- ---------- 
Whalen                    Jennifer                        10       4400 
Hartstein                 Michael                         20      13000 
Raphaely                  Den                             30      11000 
Mavris                    Susan                           40       6500 
Fripp                     Adam                            50       8200 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

267 

Hunold                    Alexander                       60       9000 
Baer                      Hermann                         70      10000 
Russell                   John                            80      14000 
King                      Steven                          90      24000 
Greenberg                 Nancy                          100      12000 
Higgins                   Shelley                        110      12000 
 
11 rows selected. 

8-6. Constructing Correlated Subqueries 

Problem 
You are writing a subquery to retrieve data from a given set of tables from your database, but in order to 
retrieve the proper results, you really need to reference the outer query from inside the inner query. 

Solution 
The correlated subquery is a powerful component of the SQL language. The reason it is called 
“correlated” is that it allows you to reference the outer query from within the inner query. For example, 
we want to see all the jobs each current employee has ever held in the company: 

SELECT employee_id, job_id 
FROM job_history h 
WHERE job_id in 
(SELECT job_id FROM employees e 
WHERE e.job_id = h.job_id) 
ORDER BY 1; 
 
EMPLOYEE_ID JOB_ID 
----------- ---------- 
        101 AC_ACCOUNT 
        101 AC_MGR 
        102 IT_PROG 
        114 ST_CLERK 
        122 ST_CLERK 
        176 SA_REP 
        176 SA_MAN 
        200 AD_ASST 
        200 AC_ACCOUNT 
        201 MK_REP 
 
10 rows selected. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

268 

How It Works 
Because you reference the outer query from inside the inner query, the process of executing a correlated 
subquery is essentially the opposite compared to a simple subquery. In a correlated subquery, the outer 
query is executed first, as the inner query needs the data from the outer query in order to be able to 
process the query and retrieve the results.  The steps to execute a correlated subquery are as follows. 
These steps repeat for each row in the outer query: 

1. Retrieve row from the outer query. 

2. Execute the inner query. 

3. The outer query compares the value returned from the inner query. 

4. If there is a value match in step 3, the row is returned to the user. 

Another type of correlated subquery is to use the EXISTS clause in a subquery. When you use EXISTS, 
a test is done to see if the inner query returns at least one row. This is the important test that occurs 
when using the EXISTS operator. As you can see from the following example, the column list of the 
SELECT clause within the inner query is irrelevant. Something is included there simply to have proper 
SQL syntax only. If we want to see which of our employees are also managers, we can use the EXISTS 
operator with a self-join back to the employees table to determine this information: 

SELECT employee_id, last_name, first_name 
FROM employees e 
WHERE EXISTS 
(SELECT 'ANY LITERAL WILL DO HERE' 
FROM employees m 
WHERE e.employee_id = manager_id); 
 
EMPLOYEE_ID LAST_NAME                 FIRST_NAME 
----------- ------------------------- -------------------- 
        100 King                      Steven 
        101 Kochhar                   Neena 
        102 De Haan                   Lex 
        103 Hunold                    Alexander 
        108 Greenberg                 Nancy 
        114 Raphaely                  Den 
        120 Weiss                     Matthew 
        121 Fripp                     Adam 
        122 Kaufling                  Payam 
        123 Vollman                   Shanta 
        124 Mourgos                   Kevin 
        145 Russell                   John 
        146 Partners                  Karen 
        147 Errazuriz                 Alberto 
        148 Cambrault                 Gerald 
        149 Zlotkey                   Eleni 
        201 Hartstein                 Michael 
        205 Higgins                   Shelley 
 
18 rows selected. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

269 

You can also use NOT EXISTS if you want to test the opposite condition within a query. For example, 
your CEO wants to determine the manager-to-employee ratio within your company. Using the query 
from the previous example, we can first use the EXISTS operator to determine the number of managers 
within the company: 

SELECT count(*) 
FROM employees e 
WHERE EXISTS 
(SELECT 'TESTING 1,2,3' 
FROM employees m 
WHERE e.employee_id = manager_id); 
 
  COUNT(*) 
---------- 
        18 

If we convert EXISTS to NOT EXISTS, we can determine the number of non-managers within the 
company: 

SELECT count(*) 
FROM employees e 
WHERE NOT EXISTS 
(SELECT 'X' 
FROM employees m 
WHERE e.employee_id = manager_id); 
 
 COUNT(*) 
--------- 
       89 

8-7. Comparing Two Tables to Finding Missing Rows 

Problem 
You need to compare data for a subset of columns between two tables. You need to find rows in one 
table that are missing from the other. 

Solution 
You can use the Oracle MINUS set operator to compare two sets of data, and show data missing from one 
of the tables. When using any of the Oracle set operators, the SELECT clauses must be identical in terms of 
number of columns, and the datatypes of each column. 

As an example, you work for a cable television company, and you want to find out what channels are 
offered free of charge. To test this out, you could first simply get a list of the channels offered by your 
company: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

270 

SELECT channel_id FROM channels; 
 
CHANNEL_ID 
---------- 
         2 
         3 
         4 
         5 
         9 

Then, you can run a query to find out which channels have costs associated with them by querying 
the COSTS table: 

SELECT DISTINCT channel_id FROM costs 
ORDER BY channel_id; 
 
CHANNEL_ID 
---------- 
         2 
         3 
         4 

By quickly doing a visual examination of the results, the free channels are channels 5 and 9. By using 
a set operator, in this case, MINUS, you can get this result from a single query: 

SELECT channel_id 
FROM channels 
MINUS 
SELECT channel_id 
FROM costs; 
 
CHANNEL_ID 
---------- 
         5 
         9 

How It Works 
It is also very common to use set operators in queries to get more information about the missing data. 
For instance, you have gotten the free channel list, but you really need to get more information about 
those free channels, and would like to accomplish everything within a single query: 

SELECT channel_id, channel_desc FROM channels 
WHERE channel_id IN 
(SELECT channel_id 
FROM channels 
MINUS 
SELECT channel_id 
FROM costs); 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

271 

CHANNEL_ID CHANNEL_DESC 
---------- -------------------- 
         5 Catalog 
         9 Tele Sales 

8-8. Comparing Two Tables to Finding Matching Rows 

Problem 
You need to compare data for a subset of columns between two tables. You need to see all matching 
rows from those tables. 

Solution 
You can use the Oracle INTERSECT set operator to compare two sets of data, and show the matching data 
between the two tables. Again, when using any of the Oracle set operators, the SELECT clauses must be 
identical in terms of number of columns, and the datatypes of each column. 

Using the example of the free channels, we now want to see which channels are not free, and have 
costs associated with them. By using the INTERSECT set operator, we will see only the matching rows 
between the two tables: 

SELECT channel_id 
FROM channels 
INTERSECT 
SELECT channel_id 
FROM costs; 
 
CHANNEL_ID 
---------- 
         2 
         3 
         4 

How It Works 
When using INTERSECT, think of it as the overlapping data between two tables, based on the column list 
in the SELECT statement. 

8-9. Combining Results from Similar SELECT Statements 

Problem 
You need to combine the results between two similar SELECT statements, and would like to accomplish it 
within a single query. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

272 

Solution 
You can use the Oracle set operators UNION or UNION ALL to combine results from two like queries. The 
difference between using UNION and UNION ALL is that UNION will automatically eliminate any duplicate 
rows, and each row of the result set will be unique. When using UNION ALL, it will show all matching rows, 
including duplicate rows. Using UNION ALL may yield better performance than UNION, because a sort to 
eliminate duplicates is avoided. If your application can eliminate duplicates during processing, it may be 
worth the performance gained from using UNION ALL. 

In Oracle’s sample schemas, we have the SCOTT.EMP table and the HR.EMPLOYEES table. If we want to 
see all the employees on both tables, we can use a UNION set operator to get the results: 

SELECT empno, hiredate FROM scott.emp 
UNION 
SELECT employee_id, hire_date FROM hr.employees; 
 
     EMPNO HIREDATE 
---------- --------- 
       100 17-JUN-87 
       101 21-SEP-89 
       102 13-JAN-93 
       ... 
      7902 03-DEC-81 
      7934 23-JAN-82 
      7997 15-AUG-11 
 
122 rows selected. 

How It Works 
You are running two queries where you have a nearly identical column list, but let’s say you have one 
additional column on one table. In this case, we have the COMM column on the SCOTT.EMP table, which is 
the commission amount an employee has earned. You don’t have an equivalent column on the 
HR.EMPLOYEES table. By using NULL in the missing column, you can still use a set operator such as UNION as 
long as you account for any missing columns on either side of the operation: 

SELECT empno, mgr, hiredate, sal, deptno, comm 
FROM scott.emp 
UNION 
SELECT employee_id, manager_id, hire_date, salary, department_id, NULL 
FROM hr.employees; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

273 

     EMPNO        MGR HIREDATE         SAL     DEPTNO       COMM
---------- ---------- --------- ---------- ---------- ---------- 
       100            17-JUN-87      24000         90 
       101        100 21-SEP-89      17000         90 
       102        100 13-JAN-93      17000         90 
       ... 
      7369       7902 17-DEC-80        800         20 
      7499       7698 20-FEB-81       1600         30        300 
      7521       7698 22-FEB-81       1250         30        500 
      7566       7839 02-APR-81       2975         20 
      7654       7698 28-SEP-81       1250         30       1400 

After examining the HR.EMPLOYEES table, there is a column named COMMISSION_PCT. We can derive the
actual commission based on this column, and add it to the previous query. Also, our manager has told us
that he or she wants to see a value in the commission column for all employees, even if they earn no
commission: 

SELECT empno, mgr, hiredate, sal, deptno, nvl(comm,0) 
FROM scott.emp 
UNION 
SELECT employee_id, manager_id, hire_date, salary, department_id,
nvl(salary*commission_pct/100,0) 
FROM hr.employees; 

     EMPNO        MGR HIREDATE         SAL     DEPTNO NVL(COMM,0)
---------- ---------- --------- ---------- ---------- ----------- 
       100            17-JUN-87      24000         90           0 
       101        100 21-SEP-89      17000         90           0 
       102        100 13-JAN-93      17000         90           0 
       ... 
       147        100 10-MAR-97      12000         80          36 
       148        100 15-OCT-99      11000         80          33 
       149        100 29-JAN-00      10500         80          21 
       ... 
      7499       7698 20-FEB-81       1600         30         300 
      7521       7698 22-FEB-81       1250         30         500 
      7566       7839 02-APR-81       2975         20           0 

One point to stress again is that the datatypes for each column also must be the same. For example,
we are doing a union between the SCOTT.EMP table and the HR.DEPARTMENTS table, and want to see a
combined list of the department numbers, along with their locations. However, based on the datatype
list, we cannot use an Oracle set operator such as UNION for this, as the location column for each table is
different: 

SQL> desc scott.dept 
 Name                                      Null?    Type 
 ----------------------------------------- -------- ------------------------ 

 DEPTNO                                    NOT NULL NUMBER(2) 
 DNAME                                              VARCHAR2(14) 
 LOC                                                VARCHAR2(13) 

SQL> desc hr.departments 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

274 

 Name                                      Null?    Type 
 ----------------------------------------- -------- ------------------------ 
 
 DEPARTMENT_ID                             NOT NULL NUMBER(4) 
 DEPARTMENT_NAME                           NOT NULL VARCHAR2(30) 
 MANAGER_ID                                         NUMBER(6) 
 LOCATION_ID                                        NUMBER(4) 
 
SQL> l 
  1  SELECT deptno, loc FROM scott.dept 
  2  UNION 
  3* select department_id, location_id from hr.departments 
SQL> / 
SELECT deptno, loc FROM scott.dept 
               * 
ERROR at line 1: 
ORA-01790: expression must have same datatype as corresponding expression 

8-10. Searching for a Range of Values 

Problem 
You need to retrieve data from your database based on a range of values for a given column. 

Solution 
The BETWEEN clause is commonly used to retrieve a range of values from a database. It is most commonly 
used with dates, timestamps, and numbers, but can also be used with alphanumeric data. It is an 
efficient way of retrieving data from the database when an exact set of values is not known for a column 
within the WHERE clause. For instance, if we wanted to see all employees that were hired between the year 
2000 and through the year 2010, the query could be written as follows: 

SELECT last_name, first_name, hire_date 
FROM employees 
WHERE hire_date BETWEEN '2000-01-01' and '2010-12-31' 
ORDER BY hire_date; 

When using the BETWEEN clause, it is an efficient way to find a range of values for a column, and 
works for a multitude of datatypes. If you want to get a range of values for a NUMBER datatype as in the 
SALARY column, a range can be given: 

SELECT last_name, first_name, salary 
FROM employees 
WHERE salary BETWEEN 20000 and 30000 
ORDER BY salary; 

If you want to add to the foregoing query and get only those employees whose last names are in the 
first half of the alphabet, you can supply a range to satisfy this request. In order to guarantee all values, 
we filled out the possible values to the 25-character length of the last_name column: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

275 

SELECT last_name, first_name, salary 
FROM employees 
WHERE salary BETWEEN 20000 and 30000 
AND last_name BETWEEN 'Aaaaaaaaaaaaaaaaaaaaaaaaa' 
AND 'Mzzzzzzzzzzzzzzzzzzzzzzzz' 
ORDER BY salary; 

How It Works 
One common pitfall when using the BETWEEN clause is with the use of date-based columns, whether it be 
the DATE datatype, the TIMESTAMP datatype, or any other date-based datatype. If not constructed carefully, 
desired rows can be missed from the result set. 

One way this occurs is that often queries on dates are done using a combination of year, month, and 
day. It is important to remember that even though the format of the date-based fields on an Oracle 
database usually defaults to a year, month, and day type of format, the element of time must always be 
accounted for, else rows can be missed from a query. In this first example, we have an employee, Sarah 
Bell, who was hired February 4, 1996: 

SELECT hire_date FROM employees 
WHERE email = 'SBELL'; 
 
HIRE_DATE 
---------- 
1996-02-04 

If we query the database, and don’t consider the time element for any date column, we can omit 
critical rows from our result set. Therefore it is important to know whether the time portion of the 
column is included in the makeup of the data. In this case, there is indeed a time element present in the 
hire_date column: 

SELECT last_name, first_name, hire_date 
FROM employees 
WHERE hire_date = '1996-02-04'; 
 
no rows selected 

Sometimes, when rows are inserted into the database, the time portion of a date or timestamp can 
be truncated. However, when coding efficient SQL, it is important to always assume there is a time 
element present for any and all date-based columns. Based on that assumption, we can modify the 
foregoing query to consider the time element in the hire_date column: 

SELECT last_name, first_name, to_char(hire_date,'yyyy-mm-dd:hh24:mi:ss') hire_date 
FROM employees 
WHERE hire_date 
BETWEEN TO_DATE('1996-02-04:00:00:00','yyyy-mm-dd:hh24:mi:ss') 
AND TO_DATE('1996-02-04:23:59:59','yyyy-mm-dd:hh24:mi:ss'); 
 
LAST_NAME                 FIRST_NAME           HIRE_DATE 
------------------------- -------------------- ------------------- 
Bell                      Sarah                1996-02-04:12:30:46 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

276 

Here is a similar case, where we are performing a SELECT to retrieve all data for a given month 
specified in the query. In this case, we are retrieving all employees who were hired in the month of 
September, 1997. If we omit the time element from the BETWEEN clause, we can actually omit data that 
meets the criteria for our query: 

SELECT last_name, first_name, hire_date 
FROM employees 
WHERE hire_date 
BETWEEN '1997-09-01' and '1997-09-30'; 
 
LAST_NAME                 FIRST_NAME           HIRE_DATE 
------------------------- -------------------- ---------- 
Chen                      John                 1997-09-28 
 
 
SELECT last_name, first_name, hire_date  
FROM employees 
WHERE hire_date  
BETWEEN TO_DATE('1997-09-01:00:00:00','yyyy-mm-dd:hh24:mi:ss') 
AND TO_DATE('1997-09-30:23:59:59','yyyy-mm-dd:hh24:mi:ss'); 
 
LAST_NAME                 FIRST_NAME           HIRE_DATE 
------------------------- -------------------- ---------- 
Chen                      John                 1997-09-28 
Sciarra                   Ismael               1997-09-30 

If you are using a BETWEEN clause in your query, and there is an index on the column specified in the 
WHERE clause, the Oracle optimizer can use the index to retrieve the data. You would need to perform an 
explain plan to validate if this is the case, but using BETWEEN means an index can often be used  if one is 
present, and can be an efficient manner of selecting data from the database using a range of values: 

SELECT last_name, first_name, salary 
FROM employees 
WHERE last_name between 'Ba' and 'Bz' 
ORDER BY salary; 
 
---------------------------------------------------- 
| Id  | Operation                    | Name        | 
---------------------------------------------------- 
|   0 | SELECT STATEMENT             |             | 
|   1 |  SORT ORDER BY               |             | 
|   2 |   TABLE ACCESS BY INDEX ROWID| EMPLOYEES   | 
|   3 |    INDEX RANGE SCAN          | EMP_NAME_IX | 
---------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

277 

8-11. Handling Null Values 

Problem 
You have null values in some of your database data, and need to understand the ramifications of dealing 
with null values in data. You also need to write queries to correctly deal with such nulls. 

Solution 
Null values have to be dealt with in a certain manner, depending on whether you are searching for null 
values in your data in the SELECT clause, or you are attempting to make a determination of what to do 
when a null value is found in the WHERE clause. 

Handling Nulls in the SELECT Clause 
Within the SELECT clause, if you are dealing with data within a column that contains null values, there are 
two Oracle-provided functions you can use within SQL to transform a null value into a more usable 
form. The two functions are NVL and NVL2. 

■ Note Actually, there are more than just the two functions NVL and NVL2. However, those are widely used, and 
are a good place to begin. 

With NVL, you simply pass in the column name, along with the value you want to give the output 
based on whether that value is null in the database. For instance, in our employees table, not all 
employees get a commission based on their jobs, and the value in that column for these employees is 
null: 

SELECT ename , sal , comm 
FROM emp 
ORDER BY ename; 
 
ENAME             SAL       COMM 
---------- ---------- ---------- 
ADAMS            1100 
ALLEN            1600        300 
BLAKE            2850 
KING             5000 
MARTIN           1250       1400 

If we simply want to see a zero in the commission column for employees not eligible for a 
commission, we can use the NVL function to accomplish this: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

278 

SELECT ename , sal , NVL(comm,0) comm 
FROM emp 
ORDER BY ename; 
 
ENAME             SAL       COMM 
---------- ---------- ---------- 
ADAMS            1100          0 
ALLEN            1600        300 
BLAKE            2850          0 
KING             5000          0 
MARTIN           1250       1400 

If we decide to perform arithmetic on a null value, the result will always be null; therefore if we want 
to compute “Total Compensation” as salary plus commission, we must apply the NVL function to 
properly compute this with consideration of the null values. In the following example, we compute the 
sum of these columns, both with and without the NVL function. Without using NVL, we get an incorrect 
result, which can be seen in the TOTAL_COMP_NO_NVL output field: 

SELECT ename , sal , nvl(comm,0) comm, sal+comm total_comp_no_nvl, 
       sal+NVL(comm,0) total_comp_nvl 
FROM emp 
ORDER BY ename; 
 
ENAME             SAL       COMM TOTAL_COMP_NO_NVL TOTAL_COMP_NVL 
---------- ---------- ---------- ----------------- -------------- 
ADAMS            1100          0                             1100 
ALLEN            1600        300              1900           1900 
BLAKE            2850          0                             2850 
KING             5000          0                             5000 
MARTIN           1250       1400              2650           2650 

The NVL2 is similar to NVL, except that NVL2 takes in three arguments—the value or column, the value 
to return if the column is not null, and finally the value to return if the column is null. For instance, if we 
use the same foregoing example when determining if an employee gets a commission, we simply want to 
assign a value to each employee stating whether he or she is a “commissioned” or “non-commissioned” 
employee. We can accomplish this with the NVL2 function: 

SELECT ename , sal , 
NVL2(comm,'Commissioned','Non-Commissioned') comm_status 
FROM emp 
ORDER BY ename; 
 
ENAME             SAL COMM_STATUS 
---------- ---------- ---------------- 
ADAMS            1100 Non-Commissioned 
ALLEN            1600 Commissioned 
BLAKE            2850 Non-Commissioned 
KING             5000 Non-Commissioned 
MARTIN           1250 Commissioned 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

279 

Handling Nulls in the WHERE Clause 
Within the WHERE clause, if you simply want to check a column to see if it contains a null value, use IS 
NULL or IS NOT NULL as the comparison operator—for example: 

SELECT ename , sal 
FROM emp 
WHERE comm IS NULL 
ORDER BY ename; 
 
ENAME             SAL 
---------- ---------- 
ADAMS            1100 
BLAKE            2850 
KING             5000 

 

SELECT ename , sal 
FROM emp 
WHERE comm IS NOT NULL 
ORDER BY ename; 
 
ENAME             SAL 
---------- ---------- 
ALLEN            1600 
MARTIN           1250 

You can also use the NVL or NVL2 function in the WHERE clause just as it was used in the SELECT 
statement: 

SELECT ename , sal 
FROM emp 
WHERE NVL(comm,0) = 0 
ORDER BY ename; 
 
ENAME             SAL 
---------- ---------- 
ADAMS            1100 
BLAKE            2850 
KING             5000 

How It Works 
It is best to always explicitly handle the possibility of null values, so if a column of a table is nullable, 
assume nulls exist, else output results can be undesired or unpredictable. One quick check that can be 
made to determine if a column has null values is to compare a count of rows in the table (COUNT *) to a 
count of rows for that column (COUNT <column_name>).  A count on a nullable column will count only 
those rows that do not have null values. Here’s an example: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

280 

SELECT count(*) FROM emp; 
 
  COUNT(*) 
---------- 
        14 
 
SELECT count(comm) FROM emp; 
 
COUNT(COMM) 
----------- 
          4 

This technique of comparing row count to a count of values in a column is a handy way to check if 
nulls exist in a column.  

Another very useful function that can be used in the handling of null values is the COALESCE function. 
With COALESCE, you can pass in a series of values, and the function will return the first non-NULL value. If 
all values within COALESCE are NULL, a NULL value is returned. Here is a simple example: 

SELECT coalesce(NULL,'ABC','DEF') FROM dual; 
 
COA 
--- 
ABC 

Let’s say you wanted to get the shipping address for your customers, and if none were present, you 
would then get the billing address. Using COALESCE, you could achieve this as shown in the following 
example: 

SELECT COALESCE( 
(SELECT shipping_address FROM customers 
WHERE cust_id = 9342), 
(SELECT billing_address FROM customers 
WHERE cust_id = 9342)) 
FROM dual; 

All arguments used in a statement with COALESCE must be with the same datatype, else you will 
receive an error, as shown here: 

SELECT coalesce(NULL,123,'DEF') FROM dual; 
                         * 
ERROR at line 1: 
ORA-00932: inconsistent datatypes: expected NUMBER got CHAR 

8-12. Searching for Partial Column Values 

Problem 
You need to search for a string from a column in the database, but do not know the exact value of the 
column data. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

281 

Solution 
When you are unsure of the data values in the columns you are filtering on in your WHERE clause, you can 
utilize the LIKE operator. Unlike the normal comparison operators such as the equal sign, the BETWEEN 
clause, or the IN clause, the LIKE operator allows you to search for matches based on a partial string of 
the column data. When you use the LIKE clause, you need to also use the “%” symbol or the “_” symbol 
within the data itself in order to search for the data you need. The percent sign is used to replace one to 
many characters. For example, if you want to see the list of employees that were hired in 1995, regardless 
of the exact date, the LIKE clause can be used to search for any matches within hire_date that contain 
the string 1995. When using LIKE with a date or timestamp datatype, you need to ensure that the date 
format you are using is compatible with your search criteria in your LIKE statement. For instance, if the 
default date format for your database is DD-MON-YY, then the string 1995 is not compatible with that 
format and a match would never be found. In order to search in this manner, set your date format within 
your session before issuing your query: 

alter session set nls_date_format = 'yyyy-mm-dd'; 
 
Session altered. 
 
SELECT employee_id, last_name, first_name, hire_date 
FROM employees 
WHERE hire_date LIKE '%1995%' 
ORDER BY hire_date; 
 
EMPLOYEE_ID LAST_NAME                 FIRST_NAME           HIRE_DATE 
----------- ------------------------- -------------------- ---------- 
        122 Kaufling                  Payam                1995-05-01 
        115 Khoo                      Alexander            1995-05-18 
        137 Ladwig                    Renske               1995-07-14 
        141 Rajs                      Trenna               1995-10-17 

An easy way to remedy having to worry about the date format of your session is to simply use the 
TO_CHAR function within the query. The advantage of this method is it is very easy to code, without having 
to worry about your session’s date format. See the following example: 

SELECT employee_id, last_name, first_name, hire_date 
FROM employees 
WHERE to_char(hire_date,'yyyy') = '1995' 
ORDER BY hire_date; 

The underscore symbol (“_”) is used to replace exactly one character. Let’s say you were looking for 
an employee that had a last name of “Olsen” or “Olson,” but were unsure of the spelling. In a single 
query, you can use the underscore in conjunction with the LIKE clause to find all employees with that 
name variation in your database: 

SELECT last_name, first_name, phone_number 
FROM employees 
WHERE last_name like 'Ols_n'; 
 
LAST_NAME                 FIRST_NAME           PHONE_NUMBER 
------------------------- -------------------- -------------------- 
Olsen                     Christopher          011.44.1344.498718 
Olson                     TJ                   650.124.8234 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

282 

How It Works 
The LIKE clause is extremely useful for finding data within your database when you are unsure of the 
exact column values stored within the data. There are performance ramifications that need to be 
considered when using the LIKE clause. The primary consideration is that when the LIKE clause is used, 
the chances of the optimizer using an index to aid in retrieving the data are reduced. Since an index is 
based on a complete value for a column, having to search for only a portion of the complete value of a 
column is problematic for the optimizer to be able to use an index. 

Using our foregoing example of finding employees that started during the year 1995, here is the 
explain plan for that query: 

--------------------------------------- 
| Id  | Operation         | Name      | 
--------------------------------------- 
|   0 | SELECT STATEMENT  |           | 
|   1 |  TABLE ACCESS FULL| EMPLOYEES | 
--------------------------------------- 

Since an index is based on an entire value, the optimizer can recognize that an index can be used if 
the first part of the value is intact in the search criteria. By placing the percent signs on both sides of the 
value, it is the same as saying “contains.” If we place the percent sign on only the trailing end of the 
value, it is the same as “starts with.” Since the leading edge of the value is intact, the optimizer will be 
able to effectively compare the value based on the value in the LIKE clause with an existing index, and 
can therefore use such an index, if one is present on that column: 

SELECT employee_id, last_name, first_name, hire_date 
FROM employees 
WHERE hire_date LIKE '1995%'; 
 
EMPLOYEE_ID LAST_NAME                 FIRST_NAME           HIRE_DATE 
----------- ------------------------- -------------------- ---------- 
        115 Khoo                      Alexander            1995-05-18 
        122 Kaufling                  Payam                1995-05-01 
        137 Ladwig                    Renske               1995-07-14 
        141 Rajs                      Trenna               1995-10-17 
 
--------------------------------------------------- 
| Id  | Operation                   | Name        | 
--------------------------------------------------- 
|   0 | SELECT STATEMENT            |             | 
|   1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES   | 
|   2 |   INDEX RANGE SCAN          | EMP_NAME_IX | 
--------------------------------------------------- 

Sometimes it is very possible for an underscore to be part of the data that is being searched. In these 
cases, it is important to preface the underscore with the escape character. If you are a DBA, and are 
searching for a tablespace name in your database, which easily can contain the underscore character, 
make sure you consider that underscore is a wildcard symbol, and must be considered. See the following 
example: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

283 

SELECT tablespace_name FROM dba_tablespaces
WHERE tablespace_name like '%EE_DATA'; 

TABLESPACE_NAME
------------------------------ 
EMPLOYEE_DATA 
EMPLOYEE1DATA 

It is very possible that the underscore is searched as data, not as a substitution character for the LIKE
clause. If you insert an escape character within the query, you can avoid getting undesired results. By
inserting the escape character directly in front of the underscore, then the underscore will be considered
as part of the data, rather than a substitution character: 

SELECT tablespace_name FROM dba_tablespaces 
WHERE tablespace_name LIKE '%EE^_DATA' ESCAPE '^'; 

TABLESPACE_NAME
------------------------------ 
EMPLOYEE_DATA 

The benefit of the LIKE clause is the flexibility it gives you in finding data based on a partial value of
the column data. The likely trade-off is performance. Queries using the LIKE clause are often much less
likely to use an index. As an alternative to LIKE, the BETWEEN clause, although not as simple to code within
your SQL statement, can generally be more likely to use an index. Sometimes, however, the LIKE clause
can be perceived as a clause to avoid because of the performance ramifications, but if the leading
percent sign is avoided, often the optimizer will use an index, if available. 

In the TO_CHAR example of the “Solution” section, you will note that the TO_CHAR function is placed
on the left side of the comparison operator. Generally, when this occurs, it means no index on the
filtering column will be used (see Recipe 8-14 for more discussion on this topic). However, with certain
Oracle functions and the manner in which they are translated, an index still may be used. The only way
to be certain is to simply run an explain plan on your query. For our foregoing query using TO_CHAR, it still
used an index even though the function was placed on the left side of the comparison operator: 

SELECT employee_id, last_name, first_name, hire_date
FROM employees 
WHERE to_char(hire_date,'yyyy') = '1995' 
ORDER BY hire_date; 

---------------------------------------------------- 
| Id  | Operation                   | Name         |
---------------------------------------------------- 
|   0 | SELECT STATEMENT            |              |
|   1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES    |
|   2 |   INDEX FULL SCAN           | EMPLOYEES_I1 |
---------------------------------------------------- 

y
www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

284 

8-13. Re-using SQL Statements Within the Shared Pool 

Problem 
You are getting an excessive amount of hard-parsing for your SQL statements, and want to lower the 
number of SQL statements that go through the hard parse process. 

Solution 
Implementing bind variables within an application can tremendously improve the efficiency and 
performance of queries. Essentially, bind variables are called substitution variables, and replace literals 
within a query. By placing bind variables within your SQL statements, the statements can be re-used in 
memory, and do not have to go through the entire expensive SQL parsing process. 

 Here is an example of a normal SQL statement, with literal values shown in the WHERE clause: 

SELECT employee_id, last_name || ', ' || first_name employee_name 
FROM employees 
WHERE employee_id = 115; 
 
EMPLOYEE_ID EMPLOYEE_NAME 
----------- ------------------------- 
        115 Khoo, Alexander 

There are a couple of ways to define bind variables within Oracle. First, you can simply use SQL 
Plus. To accomplish this within SQL Plus, you first need to define a variable, along with a datatype to the 
variable. Then, you can use the exec command, which actually will run a PL/SQL command to populate 
the variable with the desired value. Notice that when referencing a bind variable in SQL Plus, it is 
prefaced with a colon: 

SQL> variable g_emp_id number 
SQL> exec :g_emp_id := 115; 
 
PL/SQL procedure successfully completed. 

After you have defined a variable and assigned a value to it, you can simply substitute the variable 
name within your SQL statement. Again, since it is a bind variable, you need to preface it with a colon: 

SELECT employee_id, last_name || ', ' || first_name employee_name 
FROM employees 
WHERE employee_id = :g_emp_id; 
 
EMPLOYEE_ID EMPLOYEE_NAME 
----------- ------------------------- 
        115 Khoo, Alexander 

You can also assign variables within PL/SQL. The nice advantage of PL/SQL is that just by using 
variables in PL/SQL, they are automatically bind variables, so there is no special coding required. And, 
unlike SQL Plus, no colon is required when referencing a variable that was defined within the PL/SQL 
block: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

285 

SQL> set serveroutput on 
  1  DECLARE 
  2    v_emp_id employees.employee_id%TYPE := 200; 
  3    v_last_name employees.last_name%TYPE; 
  4    v_first_name employees.first_name%TYPE; 
  5  BEGIN 
  6    SELECT last_name, first_name 
  7    INTO v_last_name, v_first_name 
  8    FROM employees 
  9    WHERE employee_id = v_emp_id; 
 10  dbms_output.put_line('Employee Name = ' || v_last_name || ', ' || v_first_name); 
 11* END; 
SQL> / 
Employee Name = Whalen, Jennifer 

How It Works 
When bind variables are used, their use increases the likelihood that a SQL statement can be re-used 
within the shared pool. Oracle uses a hashing algorithm to assign a value to every unique SQL statement. 
If literals are used within a SQL statement, the hash values between two otherwise identical statements 
will be different. By using the bind variables, the statements will have the same hash value within the 
shared pool, and part of the expensive parsing process can be avoided. 

Re-use Is Efficient 
Re-use is efficient because Oracle does not have to go through the entire parsing process for those SQL 
statements. If you do not use bind variables within your SQL statements, and instead use literals, the 
statements need to be completely parsed. 

See Table 8-3 for a review of the steps taken to process a SQL statement. A statement that is “hard-
parsed” must execute all of the steps. If a statement is “soft parsed,” the optimizer generally does not 
execute the optimization and row source generation steps. 

Table 8-3. Steps to Execute a SQL Statement 

Step Description 

Syntax checking Determines if SQL statement is syntactically correct 

Semantic checking Determines if objects referenced in SQL statement exist and user 
has proper privileges to those objects 

Check shared pool Oracle uses hashing algorithm to generate hash value for SQL 
statement and checks shared pool for existence of that statement in 
the shared pool. 

Optimization The Oracle optimizer chooses what it perceives as the best 
execution plan for the SQL statement based on gathered statistics. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

286 

Continued 

Step Description 

Row source 
generation 

This is an Oracle program that received the execution plan from the 
optimization step and generates a query plan. When you generate 
an explain plan for a statement, it shows the detailed query plan. 

Execution Each step of the query plan is executed, and the result set is 
returned to the user. 

Hard-Parsing Can Be Avoided 
By using bind variables, a hard parse can be avoided and can help the performance of SQL queries, as 
well as reduce the amount of memory thrashing that can occur in the shared pool. The TKPROF utility is 
one way to verify whether SQL statements are being re-used in the shared pool. Later, there are 
examples of PL/SQL code that use bind variables, and PL/SQL code that does not use bind variables. 

By using the TKPROF utility, we can see how these statements are processed. In order to see this 
information with the TKPROF utility, we first must turn tracing on within our session: 

alter session set sql_trace=true; 

The trace file gets generated in the location specified by the diagnostic_dest or user_dump_dest 
parameter settings. The following PL/SQL block updates the employees table and gives all employees a 
3% raise. Since all PL/SQL variables are treated as bind variables, we can see with the TKPROF output that 
the update statement was parsed only once, but executed 107 times: 

BEGIN 
FOR i IN 100..206 
LOOP 
UPDATE employees 
SET salary=salary*1.03 
WHERE employee_id = i; 
END LOOP; 
COMMIT; 
END; 

Here is an excerpt from the TKPROF-generated report, which summarizes information about the 
session on which tracing was enabled: 

SQL ID : f7mtnudzhm2py 
UPDATE EMPLOYEES SET SALARY=SALARY*1.03  
WHERE 
 EMPLOYEE_ID = :B1  
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

287 

call     count       cpu    elapsed       disk      query    current        rows 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
Parse        1      0.00       0.00          0          0          0           0 
Execute    107      0.01       0.00          0        107        112         107 
Fetch        0      0.00       0.00          0          0          0           0 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
total      108      0.01       0.00          0        107        112         107 

In the following example, we do the same thing using dynamic SQL with the execute immediate 
command: 

BEGIN 
FOR i IN 100..206 
LOOP 
execute immediate 'UPDATE employees SET salary=salary*1.03 WHERE employee_id = ' || i; 
END LOOP; 
COMMIT; 
END; 

Since the entire statement is assembled together prior to execution, the variable is converted to a 
literal before execution. We can see with the TKPROF output that the statement was parsed with each 
execution: 

SQL ID : 67776qbqqz5wc 
UPDATE employees SET salary=salary*:"SYS_B_0"  
WHERE 
 employee_id = :"SYS_B_1" 
 
 
call     count       cpu    elapsed       disk      query    current        rows 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
Parse      107      0.00       0.00          0          0          0           0 
Execute    107      0.00       0.04          0        107        112         107 
Fetch        0      0.00       0.00          0          0          0           0 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
total      214      0.00       0.05          0        107        112         107 

Bind Variables Are Usable with EXECUTE IMMEDIATE 
If we want to use the execute immediate command more efficiently, we can convert that execute 
immediate command to use a bind variable with the USING clause, and specify a bind variable within the 
execute immediate statement. The result shows that the statement was parsed only one time: 

BEGIN 
FOR i IN 100..206 
LOOP 
execute immediate 'UPDATE employees SET salary=salary*1.03 WHERE employee_id = :empno' USING 
i; 
END LOOP; 
COMMIT; 
END; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

288 

SQL ID : 4y09bqzjngvq4 
update employees set salary=salary*1.03  
where 
 employee_id = :empno 
 
 
call     count       cpu    elapsed       disk      query    current        rows 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
Parse        1      0.00       0.00          0          0          0           0 
Execute    107      0.01       0.01          0        107        112         107 
Fetch        0      0.00       0.00          0          0          0           0 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
total      108      0.01       0.01          0        107        112         107 

■ Tip Hard-parsing always occurs for DDL statements. 

8-14. Avoiding Accidental Full Table Scans 

Problem 
You have queries that should be using indexes, but instead are doing full table scans. You want to avoid 
doing full table scans when the optimizer could be using an index to retrieve the data. 

Solution 
When constructing a SQL statement, a fundamental rule to try to always observe, if possible, is to avoid 
using functions on the left side of the comparison operator. A function essentially turns a column into a 
literal value, and therefore the Oracle optimizer does not recognize that converted value as a column any 
longer, but as a value instead. 

Here, we’re trying to get a list of all the employees that started since the year 1999. Because we 
placed a function on the left side of the comparison operator, the optimizer is forced to do a full table 
scan, even though the HIRE_DATE column is indexed: 

SELECT employee_id, salary, hire_date 
FROM employees 
WHERE TO_CHAR(hire_date,'yyyy-mm-dd') >= '2000-01-01'; 
 
--------------------------------------- 
| Id  | Operation         | Name      | 
--------------------------------------- 
|   0 | SELECT STATEMENT  |           | 
|   1 |  TABLE ACCESS FULL| EMPLOYEES | 
--------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

289 

By moving the function to the right side of the comparison operator and leaving HIRE_DATE as a 
pristine column in the WHERE clause, the optimizer can now use the index on HIRE_DATE: 

SELECT employee_id, salary, hire_date 
FROM employees 
WHERE hire_date >= TO_DATE('2000-01-01','yyyy-mm-dd'); 
 
------------------------------------------------- 
| Id  | Operation                   | Name      | 
------------------------------------------------- 
|   0 | SELECT STATEMENT            |           | 
|   1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 
|   2 |   INDEX RANGE SCAN          | EMP_I5    | 
------------------------------------------------- 

How It Works 
Functions are wonderful tools to convert a value or return the desired value based on what you need 
from the database, but they can be a performance killer if used incorrectly within a SQL statement. Make 
sure all functions are on the right side of the comparison operator, and the optimizer will be able to use 
any indexes on columns specified in the WHERE clause. This rule holds true for any function. In certain 
cases, it is possible Oracle will still use an index even if a function is on the left side of the comparison 
operator, but this is usually the exception. See Recipe 8-12 for an example of this. 

Keep in mind that the datatype for a given column in the WHERE clause may change how the SQL 
statement needs to be modified to move the function to the right side of the comparison operator. With 
the following example, we had to change the comparison operator in order to effectively move the 
function: 

SELECT last_name, first_name 
FROM employees 
WHERE SUBSTR(phone_number,1,3) = '515'; 
 
--------------------------------------- 
| Id  | Operation         | Name      | 
--------------------------------------- 
|   0 | SELECT STATEMENT  |           | 
|   1 |  TABLE ACCESS FULL| EMPLOYEES | 
--------------------------------------- 

In order to effectively get all numbers in the 515 area code, we can use a BETWEEN clause and capture 
all possible values. We can also use a LIKE clause, as long as the wildcard character is on the trailing end 
of the condition. By using either of these methods, the optimizer changed the execution plan to use an 
index: 

SELECT last_name, first_name 
FROM employees 
WHERE phone_number BETWEEN '515.000.0000' and '515.999.9999'; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

290 

SELECT last_name, first_name 
FROM employees 
WHERE phone_number LIKE'515%'; 

 

------------------------------------------------- 
| Id  | Operation                   | Name      | 
------------------------------------------------- 
|   0 | SELECT STATEMENT            |           | 
|   1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 
|   2 |   INDEX RANGE SCAN          | EMP_I6    | 
------------------------------------------------- 

8-15. Creating Efficient Temporary Views 

Problem 
You need a table or a view of data that does not exist to construct a needed query, and do not have the 
authority to create such a table or view on your database. 

Solution 
At times, within a single SQL statement, you want to create a table “on the fly” that is used solely for your 
query, and will never be used again. In the FROM clause of your query, you normally place the name of 
your table or view on which to retrieve the data. In cases where a needed view of the data does not exist, 
you can create a temporary view of that data with what is called an “inline view,” where you specify the 
characteristics of that view right in the FROM clause of your query: 

SELECT last_name, first_name, department_name dept, salary 
FROM employees e join 
       ( SELECT department_id, max(salary) high_sal 
         FROM employees 
         GROUP BY department_id ) m 
USING (department_id) join departments 
USING (department_id) 
WHERE e.salary = m.high_sal 
ORDER BY SALARY desc; 
 
LAST_NAME                 FIRST_NAME           DEPT                     SALARY 
------------------------- -------------------- -------------------- ---------- 
King                      Steven               Executive                 24000 
Russell                   John                 Sales                     14000 
Hartstein                 Michael              Marketing                 13000 
Greenberg                 Nancy                Finance                   12000 
Higgins                   Shelley              Accounting                12000 
Raphaely                  Den                  Purchasing                11000 
Baer                      Hermann              Public Relations          10000 
Hunold                    Alexander            IT                         9000 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

291 

Fripp                     Adam                 Shipping                   8200 
Mavris                    Susan                Human Resources            6500 
Whalen                    Jennifer             Administration             4400 

In the foregoing query, we are getting the employees with the highest salary for each department. 
There isn’t such a view in our database. Moreover, there isn’t a way to directly join the employees table 
to the departments table to retrieve this data within a single query. Therefore, the inline view is created 
as part of the SQL statement, and holds only the key information we needed—it has the high salary and 
department information, which now can easily be joined to the employees table based on the employee 
with that matching salary. 

How It Works 
Inline views, as with many components of the SQL language, need to be used carefully. While extremely 
useful, if misused or overused, inline views can cause database performance issues, especially in terms 
of the use of the temporary tablespace. Since inline views are created and used only for the duration of a 
query, their results are held in the program global memory area, and if too large, the temporary 
tablespace. Before using an inline view, the following questions should be considered: 

1. Most importantly, how often will the SQL containing the inline view be run? (If 
only once or rarely, then it might be best to simply execute the query and not 
worry about any potential performance impact). 

2. How many rows will be contained in the inline view? 

3. What will the row length be for the inline view? 

4. How much memory is allocated for the pga_aggregate_target or 
memory_target setting? 

5. How big is the temporary tablespace that is used by your Oracle user or 
schema? 

If you have a simple ad hoc query you are doing, this kind of analysis may not be necessary. If you 
are creating a SQL statement that will run in a production environment, it is important to perform this 
analysis, as if all the temporary tablespace is consumed by an inline view, it affects not only the 
completion of that query, but also the successful completion of any processing for any user that may use 
that specific temporary tablespace. In many database environments, there is only a single temporary 
tablespace. Therefore, if one user process consumes all the temporary space with a single operation, this 
affects the operations for every user in the database. 

Consider the following query: 

WITH service_info AS 
(SELECT 
product_id, 
geographic_id, 
sum(qty) quantity 
FROM services 
GROUP BY 
product_id, 
geographic_id), 
product_info AS 
(SELECT product_id, product_group, product_desc 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

292 

FROM products 
WHERE source_sys = 'BILLING'), 
billing_info AS 
(SELECT journal_date, billing_date, product_id 
FROM BILLING 
WHERE journal_date = TO_DATE('2011-08-15', 'YYYY-MM-DD')) 
SELECT 
product_group, 
product_desc, 
journal_date, 
billing_date, 
sum(service_info.quantity) 
FROM service_info JOIN product_info 
ON service_info.product_id = product_info.product_id JOIN billing_info 
ON  service_info.product_id = billing_info.product_id 
WHERE 
service_info.quantity > 0 
GROUP BY 
product_group, 
product_desc, 
journal_date, 
billing_date; 

In this query, there are three inline views created: the SERVICE_INFO view, the PRODUCT_INFO view, and 
the BILLING_INFO view. Each of these queries will be processed and the results stored in the program 
global area or the temporary tablespace before finally processing the true end-user query, which starts 
with the final SELECT statement shown in the query. While efficient in that the desired results can be 
done by executing a single query, the foregoing query, depending on the size of the data within the 
tables, can be tremendously inefficient to process, as storing potentially millions of rows in the 
temporary tablespace uses critical resources needed by an entire community of users that use the 
database. In examples such as these, it is generally more efficient at the database level to create tables 
that hold the data defined by the inline views—in this case, three separate tables. Then, the final query 
can be extracted from joining the three permanent tables to generate the results. While this may be more 
upfront work by the development team and the DBA, it could very well pay dividends if the query is run 
on a regular basis. Furthermore, as complexity increases with a SQL statement, ease of maintenance 
decreases. So, overall, it is more efficient, and usually more maintainable, to break a complex statement 
into chunks. 

Inline views provide great benefit. However, do the proper analysis and investigation prior to 
implementing the use of such a view in a production environment. 

■ Caution   Large inline views can easily consume a large amount of temporary tablespace✎ 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

293 

8-16. Avoiding the NOT Clause 

Problem 
You have queries that use the NOT clause that are not performing adequately, and wish to modify them to
improve performance. 

Solution 
Just as often as we query our database for equality conditions, we will query our database for non-
equality conditions. It is the nature of retrieving data from a database and the nature of the SQL
language to allow users to do this. 

There are performance drawbacks in using the NOT clause within your SQL statements, as they
trigger full table scans. Here’s an example query from a previous recipe: 

SELECT last_name, first_name, salary, email
FROM employees_big 
WHERE department_id NOT IN(20,30) 
AND commission_pct > 0; 

----------------------------------------------------------------------------------- 
| Id  | Operation         | Name          | Rows  | Bytes | Cost (%CPU)| Time  |
----------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |               |   697K|    21M|  4480   (1)| 00:00:54 |
|*  1 |  TABLE ACCESS FULL| EMPLOYEES_BIG |   697K|    21M|  4480   (1)| 00:00:54 |
----------------------------------------------------------------------------------- 

Even though we have an index on the department_id column, by using the NOT clause we cause
Oracle to bypass the use of that index in order to properly search and ensure all rows were not those in
department 20 or 30.  Note the overall cost of 4480 that Oracle assigned to this query. 

It is possible to enable the use of the index by rewriting the query. For instance, let’s issue a
subquery to get a list of all the department_id values that are not 20 or 30, and then pass that list to the
parent query. By doing this, we are moving the NOT clause to the much smaller departments table, so the
table scan on that table will be fast. Those values get passed the parent query, and the parent query can
use an index because it no longer needs the NOT clause. 

Here’s the new query, and the resulting execution plan. 

SELECT last_name, first_name, salary, email
FROM employees_big 
WHERE department_id IN 
(SELECT department_id FROM departments 
WHERE department_id NOT IN (20,30)) 
AND commission_pct > 0; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

294 

--------------------------------------------------------------------------------- 
| Id  | Operation          | Name       | Rows  | Bytes | Cost (%CPU)| Time  | 
--------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |            |    33 |  1188 |     3   (0)| 00:00:01 | 
|   1 |  NESTED LOOPS      |            |    33 |  1188 |     3   (0)| 00:00:01 | 
|*  2 |   TABLE ACCESS FULL| EMPLOYEES  |    34 |  1088 |     3   (0)| 00:00:01 | 
|*  3 |   INDEX UNIQUE SCAN| DEPT_ID_PK |     1 |     4 |     0   (0)| 00:00:01 | 
--------------------------------------------------------------------------------- 

Note now that after our change, the query now uses an index, and the overall cost that Oracle 
assigned dropped from 4480 to 3. 

How It Works 
You can effectively use the NOT clause several ways: 

• Comparison operators ('<>', '!=', '^=') 

• NOT IN 

• NOT LIKE 

By using NOT, each of the following queries has the same basic effect in that it will negate the use of 
any possible index on the columns to which NOT applies: 

SELECT last_name, first_name, salary, email 
FROM employees 
WHERE department_id != 20 
AND commission_pct > 0; 
 
SELECT last_name, first_name, salary, email 
FROM employees 
WHERE department_id NOT IN(20,30) 
AND commission_pct > 0; 
 
SELECT last_name, first_name, salary, email 
FROM employees 
WHERE hire_date NOT LIKE '2%' 
AND commission_pct > 0; 
 
--------------------------------------- 
| Id  | Operation         | Name      | 
--------------------------------------- 
|   0 | SELECT STATEMENT  |           | 
|   1 |  TABLE ACCESS FULL| EMPLOYEES | 
--------------------------------------- 

At times, a full table scan is simply required. Even if an index is present, if you need to read more 
than a certain percentage of rows of a table, the Oracle optimizer may perform a full table scan 
regardless of whether an index is present. Still, if you simply try to avoid using NOT where possible, you 
may be able to improve performance on your queries. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

295 

All this said, you can try to use NOT EXISTS as an alternative that may improve performance in these 
conditions. Using the foregoing query and modifying it to use NOT EXISTS, you can still use an index to 
improve performance of the query: 

SELECT last_name, first_name, salary, email 
FROM employees 
WHERE NOT EXISTS 
(SELECT department_id FROM departments  
WHERE department_id in(20,30)) 
AND commission_pct > 0; 
 
------------------------------------------ 
| Id  | Operation           | Name       | 
------------------------------------------ 
|   0 | SELECT STATEMENT    |            | 
|   1 |  FILTER             |            | 
|   2 |   TABLE ACCESS FULL | EMPLOYEES  | 
|   3 |   INLIST ITERATOR   |            | 
|   4 |    INDEX UNIQUE SCAN| DEPT_ID_PK | 
------------------------------------------ 

8-17. Controlling Transaction Sizes 

Problem 
You are performing a series of DML activities, and want to better manage the units of work and the 
recoverability of your transactions. 

Solution 
With the use of savepoints, you can split up transactions more easily into logical chunks, and can 
manage them more effectively upon failure. With the use of savepoints, you can roll back a series of DML 
statements to an incremental savepoint you have created. Within your SQL session, simply create a 
savepoint at an appropriate place during your processing that allows you to more easily isolate a “logical 
unit of work.” The following is an example showing how to create a savepoint: 

SQL> savepoint A; 
 
Savepoint created. 

If you have an online bookstore, for instance, and you have a customer placing an online order, 
when he or she submits an order, a logical unit of work for this transaction would be as follows: 

• Adding a row to the orders table 

• Adding one to many rows to the orderitems table 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

296 

When processing this online order, you will want to commit all the information for the order and all 
items for an order as one transaction. This represents multiple database DML statements, but needs to 
be processed one at a time to preserve the integrity of a customer order; therefore it can be regarded as 
one “logical unit of work.” By using savepoints, you can more easily process multiple DML statements as 
logical units of work. When a savepoint is created, it is essentially creating an alias based on a system 
change number (SCN). After creating a savepoint, you then have the luxury to roll back a transaction to 
that SCN based on the savepoint you created. 

How It Works 
Let’s say your company has established two new departments, as well as employees for those 
departments. You need to insert rows in the corresponding DEPT and EMP tables, but you need to do this 
in one transaction per department. In case of an error, you can roll back to the point the last logical 
transaction completed. First, we can see a current picture of the DEPT table: 

SELECT * FROM dept; 
 
    DEPTNO DNAME          LOC 
---------- -------------- ------------- 
        10 ACCOUNTING     NEW YORK 
        20 RESEARCH       DALLAS 
        30 SALES          CHICAGO 
        40 OPERATIONS     BOSTON 

We first insert the information for the first department into the DEPT and EMP tables, and then create 
a savepoint: 

INSERT INTO dept VALUES (50,'PAYROLL','LOS ANGELES'); 
 
1 row created. 
 
INSERT INTO emp VALUES (7997,'EVANS','ACCTNT',7566,'2011-08-15',900,0,50); 
 
1 row created. 
 
savepoint A; 
 
Savepoint created. 

We then start processing information for the second department. Let’s say in the middle of the 
transaction, an unknown error occurs between the insert into the DEPT table and the insert into the EMP 
table. In this case, we know this transaction of inserting the information into the recruiting department 
must be rolled back. At the same time, we wish to commit the transaction to the payroll department. 
Using the savepoint we created, we can commit a portion of the transaction, while rolling back the 
portion of the transaction we do not want to keep: 

INSERT INTO dept VALUES (60,'RECRUITING','DENVER'); 
 
1 row created. 
 
ROLLBACK to savepoint A; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8 ■ CREATING EFFICIENT SQL 

 

297 

Rollback complete. 
 
COMMIT; 
 
Commit complete. 

Because of the savepoint, our rollback rolled back the incomplete transaction only for department 
60, and the subsequent commit wrote the complete transaction for department 50 to the database in 
both the DEPT and EMP tables: 

SELECT * FROM dept; 
 
    DEPTNO DNAME          LOC 
---------- -------------- ------------- 
        10 ACCOUNTING     NEW YORK 
        20 RESEARCH       DALLAS 
        30 SALES          CHICAGO 
        40 OPERATIONS     BOSTON 
        50 PAYROLL        LOS ANGELES 
 
SELECT * FROM emp 
WHERE empno = 7997; 
 
     EMPNO ENAME      JOB              MGR HIREDATE    SAL       COMM  DEPTNO 
---------- ---------- --------- ---------- ---------- ---- ---------- ------- 
      7997 EVANS      ACCTNT          7566 2011-08-15  900          0      50 

There are many similar mechanisms or coding techniques you can use in programming languages 
such as PL/SQL.  The SAVEPOINT command in the SQL language is a simple way to manage 
transactions without having to code more complex programming structures.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 
 

 

    

 

   

 

  

 

 

  

 

299 

Manually Tuning SQL 

It has been said many times in books, articles, and other publications that over 90% of all performance 
problems on a database are due to poorly written SQL. Often, database administrators are given the task 
of “fixing the database” when queries are not performing adequately. The database administrator is 
often guilty before proven innocent—and often has the task of proving that a performance problem is 
not the database itself, but rather, simply, SQL statements that are not written efficiently. The goal, of 
course, is to have SQL statements written efficiently the first time. This chapter’s focus is to help monitor 
and analyze existing queries to help show why they may be underperforming, as well as show some steps 
to improve queries. 

If you have SQL code that you are maintaining or that needs help to improve performance, some of 
the questions that need to be asked first include the following: 

• Has the query run before successfully? 

• Was the query performance acceptable in the past? 

• Are there any metrics on how long the query has run when successful? 

• How much data is typically returned from the query? 

• When was the last time statistics were gathered on the objects referenced in the 
query? 

Once these questions are answered, it helps to direct the focus to where the problem may lie. You 
then may want to run an explain plan for the query to see if the execution plan is reasonable at first 
glance. The skill of reading an explain plan takes time and improves with experience. Sometimes, 
especially if there are views on top of the objects being queried, an explain plan can be lengthy and 
intimidating. Therefore, it’s important to simply know what to look for first, and then dig as you go. 

At times, poorly running SQL can expose database configuration issues, but normally, poorly 
performing SQL queries occur due to poorly written SQL statements. Again, as a database administrator 
or database developer, the best approach is to take time up front whenever possible to tune the SQL 
statements prior to ever running in a production environment. Often, a query’s elapsed time is a 
benchmark for efficiency, which is an easy trap in which to fall. Over time, database characteristics 
change, more historical data may be stored for an application, and a query that performed well on initial 
install simply doesn’t scale as an application matures. Therefore, it’s important to take the time to do it 
right the first time, which is easy to say, but tough to accomplish when balancing client requirements, 
budgets, and project timelines. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

300 

9-1. Displaying an Execution Plan for a Query 

Problem 
You want to quickly retrieve an execution plan from within SQL Plus for a query. 

Solution 
From within SQL Plus, you can use the AUTOTRACE feature to quickly retrieve the execution plan for a 
query. This SQL Plus utility is very handy at getting the execution plan, along with getting statistics for 
the query’s execution plan. In the most basic form, to enable AUTOTRACE within your session, execute the 
following command within SQL Plus: 

SQL> set autotrace on 

Then, you can run a query using AUTOTRACE, which will show the execution plan and query execution 
statistics for your query: 

SELECT last_name, first_name 
FROM employees NATURAL JOIN departments 
WHERE employee_id = 101; 
 
LAST_NAME                 FIRST_NAME 
------------------------- -------------------- 
Kochhar                   Neena 
 
-------------------------------------------------------------------------------------------- 
| Id  | Operation                    | Name          | Rows  | Bytes | Cost (%CPU)| Time   | 
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |               |     1 |    33 |     2   (0)| 00:00:01 
|   1 |  NESTED LOOPS                |               |     1 |    33 |     2   (0)| 00:00:01 
|   2 |   TABLE ACCESS BY INDEX ROWID| EMPLOYEES     |     1 |    26 |     1   (0)| 00:00:01 
|*  3 |    INDEX UNIQUE SCAN         | EMP_EMP_ID_PK |     1 |       |     0   (0)| 00:00:01 
|*  4 |   TABLE ACCESS BY INDEX ROWID| DEPARTMENTS   |    11 |    77 |     1   (0)| 00:00:01 
|*  5 |    INDEX UNIQUE SCAN         | DEPT_ID_PK    |     1 |       |     0   (0)| 00:00:01 
-------------------------------------------------------------------------------------------- 
 
Statistics 
---------------------------------------------------------- 
          0  recursive calls 
          0  db block gets 
          4  consistent gets 
          0  physical reads 
          0  redo size 
        490  bytes sent via SQL*Net to client 
        416  bytes received via SQL*Net from client 
          2  SQL*Net roundtrips to/from client 
          0  sorts (memory) 
          0  sorts (disk) 
          1  rows processed 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

301 

How It Works 
There are several options to choose from when using AUTOTRACE, and the basic factors are as follows: 

1. Do you want to execute the query? 

2. Do you want to see the execution plan for the query? 

3. Do you want to see the execution statistics for the query? 

As you can see from Table 9-1, you can abbreviate each command, if so desired. The portions of the 
words in brackets are optional. 

Table 9-1. Options of AUTOTRACE Within SQL Plus 

AUTOTRACE Option Execution Plan 
Shown 

Statistics 
Shown 

Query Executed 

AUTOT[RACE] OFF No 

 

No Yes 

AUTOT[RACE] ON Yes Yes Yes 

 

AUTOT[RACE] ON EXP[LAIN] Yes No Yes 

 

AUTOT[RACE] ON STAT[ISTICS] No Yes Yes 

 

AUTOT[RACE] TRACE[ONLY] Yes Yes Yes, but query output is 
suppressed. 

AUTOT[RACE] TRACE[ONLY] 
EXP[LAIN] 

Yes No No 

 
The most common use for AUTOTRACE is to get the execution plan for the query, without running the 

query. By doing this, you can quickly see whether you have a reasonable execution plan, and can do this 
without having to execute the query: 

SQL> set autot trace exp 
 
SELECT l.location_id, city, department_id, department_name 
  FROM locations l, departments d 
  WHERE l.location_id = d.location_id(+) 
  ORDER BY 1; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

302 

----------------------------------------------------------------------------------- 
| Id  | Operation           | Name        | Rows  | Bytes | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT    |             |    27 |   837 |     8  (25)| 00:00:01 | 
|   1 |  SORT ORDER BY      |             |    27 |   837 |     8  (25)| 00:00:01 | 
|*  2 |   HASH JOIN OUTER   |             |    27 |   837 |     7  (15)| 00:00:01 | 
|   3 |    TABLE ACCESS FULL| LOCATIONS   |    23 |   276 |     3   (0)| 00:00:01 | 
|   4 |    TABLE ACCESS FULL| DEPARTMENTS |    27 |   513 |     3   (0)| 00:00:01 | 
----------------------------------------------------------------------------------- 

For the foregoing query, if you wanted to see only the execution statistics for the query, and did not 
want to see all the query output, you would do the following: 

SQL> set autot trace stat 
SQL> / 
 
43 rows selected. 
 
 
Statistics 
---------------------------------------------------------- 
          0  recursive calls 
          0  db block gets 
         14  consistent gets 
          0  physical reads 
          0  redo size 
       1862  bytes sent via SQL*Net to client 
        438  bytes received via SQL*Net from client 
          4  SQL*Net roundtrips to/from client 
          1  sorts (memory) 
          0  sorts (disk) 
         43  rows processed 

Once you are done using AUTOTRACE for a given session and want to turn it off and run other queries 
without using AUTOTRACE, run the following command from within your SQL Plus session: 

SQL> set autot off 

The default for each SQL Plus session is AUTOTRACE OFF, but if you want to check to see what your 
current AUTOTRACE setting is for a given session, you can do that by executing the following command: 

SQL> show autot 
autotrace OFF 

9-2. Customizing Execution Plan Output 

Problem 
You want to configure the explain plan output for your query based on your specific needs. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

303 

Solution 
The Oracle-provided PL/SQL package DBMS_XPLAN has extensive functionality to get explain plan 
information for a given query. There are many functions within the DBMS_XPLAN package. The DISPLAY 
function can be used to quickly get the execution plan for a query, and also to customize the information 
that is presented to meet your specific needs. The following is an example that invokes the basic display 
functionality: 

explain plan for 
SELECT last_name, first_name 
FROM employees JOIN departments USING(department_id) 
WHERE employee_id = 101; 
 
Explained. 
 
SELECT * FROM table(dbms_xplan.display); 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
Plan hash value: 1833546154 
 
-------------------------------------------------------------------------------------------- 
| Id  | Operation                   | Name          | Rows  | Bytes | Cost (%CPU)| Time    | 
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT            |               |     1 |    22 |     1   (0)| 00:00:01| 
|*  1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES     |     1 |    22 |     1   (0)| 00:00:01| 
|*  2 |   INDEX UNIQUE SCAN         | EMP_EMP_ID_PK |     1 |       |     0   (0)| 00:00:01| 
-------------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   1 - filter("EMPLOYEES"."DEPARTMENT_ID" IS NOT NULL) 
   2 - access("EMPLOYEES"."EMPLOYEE_ID"=101) 

The DBMS_XPLAN.DISPLAY procedure is very flexible in configuring how you would like to see output. 
If you wanted to see only the most basic execution plan output, using the foregoing query, you could 
configure the DBMS_XPLAN.DISPLAY function to get that output: 

SELECT * FROM table(dbms_xplan.display(null,null,'BASIC')); 
 
----------------------------------------------------- 
| Id  | Operation                   | Name          | 
----------------------------------------------------- 
|   0 | SELECT STATEMENT            |               | 
|   1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES     | 
|   2 |   INDEX UNIQUE SCAN         | EMP_EMP_ID_PK | 
----------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

304 

How It Works 
The DBMS_XPLAN.DISPLAY function has a lot of built-in functionality to provide customized output based
on your needs. The function provides four basic levels of output detail: 

• BASIC 

• TYPICAL (default) 

• SERIAL 

• ALL 

Table 9-2 shows the format options that are included within each level of detail option. 

Table 9-2. DBMS_XPLAN.DISPLAY Options 

Format Option BASIC TYPICAL SERIAL ALL Description 

Basic (ID, Operation,
Object Name 

X X X X  

ALIAS (Section)    X Information on object aliases and query
block information 

BYTES (Column)  X X X Estimated bytes 

COST (Column)  X X X Displays optimizer cost 

NOTE (Section) X X X Shows NOTE section of the explain plan 

PARALLEL (Detail within
plan) 

 X  X Show parallelism information related to
the explain plan 

PARTITION (Columns)  X X X Displays partition pruning information 

PREDICATE (Section)  X X X Shows PREDICATE section of the explain
plan 

PROJECTION (Section)    X Shows PROJECTION section of the explain
plan 

REMOTE (Detail within
plan) 

X Shows information for distributed
queries 

ROWS (Column)  X X X Shows estimated number of rows 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

305 

If you simply want the default output format, there is no need to pass in any special format options: 

SELECT * FROM table(dbms_xplan.display); 

If you want to get all available output for a query, use the ALL level of detail format output option: 

SELECT * FROM table(dbms_xplan.display(null,null,'ALL')); 

 

-------------------------------------------------------------------------------------------- 
| Id  | Operation                   | Name          | Rows  | Bytes | Cost (%CPU)| Time    | 
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT            |               |     1 |    22 |     1   (0)| 00:00:01| 
|*  1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES     |     1 |    22 |     1   (0)| 00:00:01| 
|*  2 |   INDEX UNIQUE SCAN         | EMP_EMP_ID_PK |     1 |       |     0   (0)| 00:00:01| 
-------------------------------------------------------------------------------------------- 
 
Query Block Name / Object Alias (identified by operation id): 
------------------------------------------------------------- 
 
   1 - SEL$38D4D5F3 / EMPLOYEES@SEL$1 
   2 - SEL$38D4D5F3 / EMPLOYEES@SEL$1 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   1 - filter("EMPLOYEES"."DEPARTMENT_ID" IS NOT NULL) 
   2 - access("EMPLOYEES"."EMPLOYEE_ID"=101) 
 
Column Projection Information (identified by operation id): 
----------------------------------------------------------- 
 
   1 - "EMPLOYEES"."FIRST_NAME"[VARCHAR2,20], "EMPLOYEES"."LAST_NAME"[VARCHAR2,25] 
   2 - "EMPLOYEES".ROWID[ROWID,10] 
 
Note 
----- 
   - rule based optimizer used (consider using cbo) 

One of the very nice features of the DBMS_XPLAN.DISPLAY function is after deciding the base level of 
detail you need, you can add individual options to be displayed in addition to the base output for that 
level of detail. For instance, if you want just the most basic output information, but also want to know 
cost information, you can format the DBMS_XPLAN.DISPLAY as follows: 

SELECT * FROM table(dbms_xplan.display(null,null,'BASIC +COST')); 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

306 

-------------------------------------------------------------------------------- 
| Id  | Operation                    | Name                       | Cost (%CPU)| 
-------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |                            |     1   (0)| 
|   1 |  RESULT CACHE                | 0fnzzb94z0dj2b5vzkmq4f4xcu |            | 
|   2 |   TABLE ACCESS BY INDEX ROWID| EMPLOYEES                  |     1   (0)| 
|   3 |    INDEX UNIQUE SCAN         | EMP_EMP_ID_PK              |     0   (0)| 
-------------------------------------------------------------------------------- 

You can also do the reverse, that is, subtract information you do not want to see. If you wanted to 
see the output using the TYPICAL level of output, but did not want to see the ROWS or BYTES information, 
you could issue the following query to display that level of output: 

SELECT * FROM table(dbms_xplan.display(null,null,'TYPICAL -BYTES -ROWS')); 
 
----------------------------------------------------------------------------- 
| Id  | Operation                   | Name          | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT            |               |     1   (0)| 00:00:01 | 
|*  1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES     |     1   (0)| 00:00:01 | 
|*  2 |   INDEX UNIQUE SCAN         | EMP_EMP_ID_PK |     0   (0)| 00:00:01 | 
----------------------------------------------------------------------------- 

9-3. Graphically Displaying an Execution Plan 

Problem 
You want to quickly view an execution plan without having to run SQL statements to retrieve the 
execution plan. You would like to use a GUI to view the plan, so that you can just click your way to it. 

Solution 
From within Enterprise Manager, you can quickly find the execution plan for a query. In order to use this 
functionality, you will have to have Enterprise Manager configured within your environment. This can 
be either Database Control, which manages a single database, or Grid Control, which manages an 
enterprise of databases. In order to see the execution plan for a given query, you will need to navigate to 
the Top Sessions screen of Enterprise Manager. (Refer to the Oracle Enterprise Manager documentation 
for your specific release.) Once on the Top Sessions screen, you can drill down into session specific 
information. First, find your session. Then, click the SQL ID shown under Current SQL. From there, you 
can click Plan, and the execution plan will appear, such as the one shown in Figure 9-1. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

307 

 

Figure 9-1. Sample execution plan output from within Enterprise Manager 

How It Works 
Using Enterprise Manager makes it very easy to find the execution plan for currently running SQL 
operations within your database. If a particular SQL statement isn’t performing as expected, this method 
is one of the fastest ways to determine the execution plan for a running query or other SQL operation. In 
order to use this feature, you must be licensed for the Tuning Pack of Enterprise Manager. 

9-4. Reading an Execution Plan 

Problem 
You have run an explain plan for a given SQL statement, and want to understand how to read the plan. 

Solution 
The execution plan for a SQL operation tells you step-by-step exactly how the Oracle optimizer will 
execute your SQL operation. Using AUTOTRACE, let’s get an explain plan for the following query: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

308 

set autotrace trace explain 
 
SELECT ename, dname 
FROM emp JOIN dept USING (deptno); 
 
---------------------------------------------------------------------------------------- 
| Id  | Operation                    | Name    | Rows  | Bytes | Cost (%CPU)| Time     | 
---------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |         |    14 |   308 |     6  (17)| 00:00:01 | 
|   1 |  MERGE JOIN                  |         |    14 |   308 |     6  (17)| 00:00:01 | 
|   2 |   TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    52 |     2   (0)| 00:00:01 | 
|   3 |    INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00:00:01 | 
|*  4 |   SORT JOIN                  |         |    14 |   126 |     4  (25)| 00:00:01 | 
|   5 |    TABLE ACCESS FULL         | EMP     |    14 |   126 |     3   (0)| 00:00:01 | 
---------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO") 
       filter("EMP"."DEPTNO"="DEPT"."DEPTNO") 
 
Note 
----- 
   - automatic DOP: Computed Degree of Parallelism is 1 because of parallel threshold 
 

Once you have an explain plan to interpret, you can tell which steps are executed first because the 
innermost or most indented steps are executed first, and are executed from the inside out, in top-down 
order. In the foregoing query, we are joining the EMP and DEPT tables. Here are the steps of how the query 
is processed based on the execution plan: 

1. The PK_DEPT index is scanned (ID 3). 

2. All EMP table rows are scanned (ID 5). 

3. Rows are retrieved from the DEPT table based on the matching entries in the 
PK_DEPT index (ID 2). 

4. Resulting data from the EMP table is sorted (ID 4). 

5. Data from the EMP and DEPT tables are then joined via a MERGE JOIN (ID 1). 

6. The resulting data from the query is returned to the user (ID 0). 

 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

309 

How It Works 
When first looking at an explain plan and wanting to quickly get an idea of the steps in which the query 
will be executed, do the following: 

1. Look for the most indented rows in the plan (the right-most rows). These will 
be executed first. 

2. If multiple rows are at the same level of indentation, they will be executed in 
top-down fashion in the plan, with the highest rows in the plan first moving 
downward in the plan. 

3. Look at the next most indented row or rows and continue working your way 
outward. 

4. The top of the explain plan corresponds with the least indented or left-most 
part of the plan, and usually is where the results are returned to the user. 

Once you have an explain plan for a query, and can understand the sequence of how the query will 
be processed, you then can move on and perform some analysis to determine if the explain plan you are 
looking at is efficient. When looking at your explain plan, answer these questions and consider these 
factors when determining if you have an efficient plan: 

• What is the access path for the query (is the query performing a full table scan or is 
the query using an index)? 

• What is the join method for the query (if a join condition is present)? 

• Look at the columns within the filtering criteria found within the WHERE clause of 
the query, and determine if they are indexed. 

• Get the volume or number of rows for each table in the query. Are the tables small, 
medium-sized, or large? This may help you determine the most appropriate join 
method. See Table 9-3 for a synopsis of the types of join methods. 

• When were statistics last gathered for the objects involved in the query? 

• Look at the COST column of the explain plan to get a starting cost. 

By looking at our original explain plan, we determined that the EMP table is larger in size, and also 
that there is no index present on the DEPTNO column, which is used within a join condition between the 
DEPT and EMP tables. By placing an index on the DEPTNO column on the EMP table and gathering statistics 
on the EMP table, the plan now uses an index: 

--------------------------------------------------------------------------------------- 
| Id  | Operation                    | Name   | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |        |    14 |   280 |     6  (17)| 00:00:01 | 
|   1 |  MERGE JOIN                  |        |    14 |   280 |     6  (17)| 00:00:01 | 
|   2 |   TABLE ACCESS BY INDEX ROWID| EMP    |    14 |    98 |     2   (0)| 00:00:01 | 
|   3 |    INDEX FULL SCAN           | EMP_I2 |    14 |       |     1   (0)| 00:00:01 | 
|*  4 |   SORT JOIN                  |        |     4 |    52 |     4  (25)| 00:00:01 | 
|   5 |    TABLE ACCESS FULL         | DEPT   |     4 |    52 |     3   (0)| 00:00:01 | 
--------------------------------------------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

310 

Table 9-3. Join Methods 

Method Description 

Hash Most appropriate if at least one table involved in the query is large 

Nested 
loop 

Appropriate for smaller tables 

Sort 
merge 

Appropriate for pre-sorted data 

Cartesian Signifies either no join condition or a missing join condition; usually signifies an unwanted 
condition and query needs to be scrutinized to ensure there is a join condition for each and 
every table in the query 

 
For information on parallel execution plans, see Chapter 15. 

■ Tip One of the most common reasons for a sub-optimal explain plan is the lack of current statistics on one or 
more objects involved in a query. 

9-5. Monitoring Long-Running SQL Statements 

Problem 
You have a SQL statement that runs a long time, and you want to be able to monitor the progress of the 
statement and find out when it will finish. 

Solution 
By viewing information for a long-running query in the V$SESSION_LONGOPS data dictionary view, you can 
gauge about when a query will finish. Let’s say you are running the following query, with join conditions, 
against a large table: 

SELECT last_name, first_name FROM employees_big 
WHERE last_name = 'EVANS'; 

With a simple query against the V$SESSION_LONGOPS view, you can quickly get an idea of how long the 
query will execute, and when it will finish: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

311 

SELECT username, target, sofar blocks_read, totalwork total_blocks, 
round(time_remaining/60) minutes 
FROM v$session_longops 
WHERE sofar <> totalwork 
and username = 'HR'; 
 
USERNAME     TARGET               BLOCKS_READ TOTAL_BLOCKS    MINUTES 
------------ -------------------- ----------- ------------ ---------- 
HR           HR.EMPLOYEES_BIG           81101      2353488         10 

As the query progresses, you can see the BLOCKS_READ column increase, as well as the MINUTES 
column decrease. It is usually necessary to place the WHERE clause to eliminate rows that have been 
completed, which is why in the foregoing query it asked for rows where the SOFAR column did not equal 
TOTALWORK. 

How It Works 
In order to be able to monitor a query within the V$SESSION_LONGOPS view, the following requirements 
apply: 

• The query must run for six seconds or greater. 

• The table being accessed must be greater than 10,000 database blocks. 

• TIMED_STATISTICS must be set or SQL_TRACE must be turned on. 

• The objects within the query must have been analyzed via DBMS_STATS or ANALYZE. 

This view can contain information on SELECT statements, DML statements such as UPDATE, as well as 
DDL statements such as CREATE INDEX.  Some common operations that find themselves in the 
V$SESSION_LONGOPS view include table scans, index scans, join operations, parallel operations, RMAN 
backup operations, sort operations, and Data Pump operations. 

9-6. Identifying Resource-Consuming SQL Statements That 
Are Currently Executing 

Problem 
You have contention issues within your database, and want to identify the SQL statement consuming the 
most system resources. 

■ Note Recipe 9-9 shows how to examine the historical record to find resource-consuming SQL statements that 
have executed in the past, but that are not currently executing. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

312 

Solution 
Look at the V$SQLSTATS view, which gives information about currently or recently run SQL statements. If 
you wanted to get the top five recent SQL statements that performed the highest disk I/O, you could 
issue the following query: 

SELECT sql_text, disk_reads FROM  
  (SELECT sql_text, buffer_gets, disk_reads, sorts, 
   cpu_time/1000000 cpu, rows_processed, elapsed_time 
   FROM v$sqlstats 
   ORDER BY disk_reads DESC) 
WHERE rownum <= 5; 

If you wanted to see the top five SQL statements by CPU time, sorts, loads, invalidations, or any 
other column, simply replace the disk_reads column in the foregoing query with your desired column. 
The SQL_TEXT column can make the results look messy, so another alternative is to substitute the 
SQL_TEXT column with SQL_ID, and then, based on the statistics shown, you can run a query to simply get 
the SQL_TEXT based on a given SQL_ID. 

How It Works 
The V$SQLSTATS view is meant to help more quickly find information on resource-consuming SQL 
statements. V$SQLSTATS has the same information as the V$SQL and V$SQLAREA views, but V$SQLSTATS has 
only a subset of columns of the other views. However, data is held within the V$SQLSTATS longer than 
either V$SQL or V$SQLAREA. 

Sometimes, there are SQL statements that are related to the database background processing of 
keeping the database running, and you may not want to see those statements, but only the ones related 
to your application. If you join V$SQLSTATS to V$SQL, you can see information for particular users. See the 
following example: 

SELECT schema, sql_text, disk_reads, round(cpu,2) FROM 
  (SELECT s.parsing_schema_name schema, t.sql_id, t.sql_text, t.disk_reads, 
  t.sorts, t.cpu_time/1000000 cpu, t.rows_processed, t.elapsed_time 
   FROM v$sqlstats t join v$sql s on(t.sql_id = s.sql_id) 
  WHERE parsing_schema_name = 'SCOTT' 
  ORDER BY disk_reads DESC) 
WHERE rownum <= 5; 

Keep in mind that V$SQL represents SQL held in the shared pool, and is aged out faster than the data 
in V$SQLSTATS, so this query will not return data for SQL that has been already aged out of the shared 
pool. 

9-7. Seeing Execution Statistics for Currently Running SQL 

Problem 
You want to view execution statistics for SQL statements that are currently running. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

313 

Solution 
You can use the V$SQL_MONITOR view to see real-time statistics of currently running SQL, and see the 
resource consumption used for a given query based on such statistics as CPU usage, buffer gets, disk 
reads, and elapsed time of the query. Let’s first find a current executing query within our database: 

SELECT sid, sql_text FROM v$sql_monitor 
WHERE status = 'EXECUTING'; 
 
       SID SQL_TEXT 
---------- ----------------------------------------------------------------- 
       100 select department_name, city, avg(salary) 
           from employees_big join departments using(department_id) 
           join locations using (location_id) 
           group by department_name, city 
           having avg(salary) > 2000 
           order by 2,1 

For the foregoing executing query found in V$SQL_MONITOR, we can see the resource utilization for 
that statement as it executes: 

SELECT sid, buffer_gets, disk_reads, round(cpu_time/1000000,1) cpu_seconds 
FROM v$sql_monitor 
WHERE SID=100 
AND status = 'EXECUTING'; 
 
       SID BUFFER_GETS DISK_READS CPU_SECONDS 
---------- ----------- ---------- ----------- 
       100      149372       4732        39.1 

The V$SQL_MONITOR view contains currently running SQL statements, as well as recently run SQL 
statements. If you wanted to see the top five most CPU-consuming queries in your database, you could 
issue the following query: 

SELECT * FROM ( 
  SELECT sid, buffer_gets, disk_reads, round(cpu_time/1000000,1) cpu_seconds 
  FROM v$sql_monitor 
  ORDER BY cpu_time desc) 
WHERE rownum <= 5; 
 
       SID BUFFER_GETS DISK_READS CPU_SECONDS 
---------- ----------- ---------- ----------- 
        20     1332665      30580       350.5 
       105      795330      13651       269.7 
        20      259324       5449        71.6 
        20      259330       5485        71.3 
       100      259236       8188        67.9 

 
 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

314 

How It Works 
SQL statements are monitored in V$SQL_MONITOR under the following conditions: 

• Automatically for any parallelized statements 

• Automatically for any DML or DDL statements 

• Automatically if a particular SQL statement has consumed at least five seconds of
CPU or I/O time 

• Monitored for any SQL statement that has monitoring set at the statement level 

To turn monitoring on at the statement level, a hint can be used. See the following example: 

SELECT /*+ monitor */ ename, dname
FROM emppart JOIN dept USING (deptno); 

If, for some reason, you do not want certain statements monitored, you can use the NOMONITOR hint
in the statement to prevent monitoring from occurring for a given statement. 

Statistics in V$SQL_MONITOR are updated near real-time, that is, every second. Any currently executing
SQL statement that is being monitored can be found in V$SQL_MONITOR. Completed queries can be found
there for at least one minute after execution ends, and can exist there longer, depending on the space
requirements needed for newly executed queries. One key advantage of the V$SQL_MONITOR view is it has
detailed statistics for each and every execution of a given query, unlike V$SQL, where results are
cumulative for several executions of a SQL statement. In order to drill down, then, to a given execution of
a SQL statement, you need three columns from V$SQL_MONITOR: 

1. SQL_ID 

2. SQL_EXEC_START 

3. SQL_EXEC_ID 

If we wanted to see all executions for a given query (based on the SQL_ID column), we can get that
information by querying on the three necessary columns to drill to a given execution of a SQL query: 

SELECT * FROM ( 
  SELECT sql_id, to_char(sql_exec_start,'yyyy-mm-dd:hh24:mi:ss') sql_exec_start, 
         sql_exec_id, sum(buffer_gets) buffer_gets, 
         sum(disk_reads) disk_reads, round(sum(cpu_time/1000000),1) cpu_secs 
  FROM v$sql_monitor 
  WHERE sql_id = 'fcg00hyh7qbpz' 
  GROUP BY sql_id, sql_exec_start, sql_exec_id 
  ORDER BY 6 desc)
WHERE rownum <= 5; 

SQL_ID        SQL_EXEC_START      SQL_EXEC_ID BUFFER_GETS DISK_READS CPU_SECS
------------- ------------------- ----------- ----------- ---------- -------- 
fcg00hyh7qbpz 2011-05-21:12:28:10    16777222      259324       5449     71.6
fcg00hyh7qbpz 2011-05-21:12:29:24    16777223      259330       5485     71.3
fcg00hyh7qbpz 2011-05-21:12:26:08    16777220      213823       4502     58.4
fcg00hyh7qbpz 2011-05-21:12:27:09    16777221      211752       4579     58.1
fcg00hyh7qbpz 2011-05-21:12:25:37    16777219      107973       2414     29.4 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

315 

Keep in mind that if a statement is running in parallel, one row will appear for each parallel thread 
for the query, including one for the query coordinator. However, they will share the same SQL_ID, 
SQL_EXEC_START, and SQL_EXEC_ID values. In this case, you could perform an aggregation on a particular 
statistic, if desired. See the following example for a parallelized query, along with parallel slave 
information denoted by the PX_SERVER# column: 

SELECT sql_id, sql_exec_start, sql_exec_id, px_server# px#, disk_reads, 
       cpu_time/1000000 cpu_secs, buffer_gets 
FROM v$sql_monitor 
WHERE status = 'EXECUTING' 
ORDER BY px_server#; 
 
SQL_ID        SQL_EXEC_S SQL_EXEC_ID PX# DISK_READS CPU_SECS BUFFER_GETS 
------------- ---------- ----------- --- ---------- -------- ----------- 
0gzf8010xdasr 2011-05-21    16777216   1       4306     38.0      136303 
0gzf8010xdasr 2011-05-21    16777216   2       4625     40.6      146497 
0gzf8010xdasr 2011-05-21    16777216   3       4774     41.6      149717 
0gzf8010xdasr 2011-05-21    16777216   4       4200     37.6      132167 
0gzf8010xdasr 2011-05-21    16777216              6     92.2          53 

Then, to perform a simple aggregation for a given query, in this case, our parallelized query, the 
aggregation is done on the three key columns that make up a single execution of a given SQL statement: 

SELECT sql_id,sql_exec_start, sql_exec_id, sum(buffer_gets) buffer_gets, 
       sum(disk_reads) disk_reads, round(sum(cpu_time/1000000),1) cpu_seconds 
FROM v$sql_monitor 
WHERE sql_id = '0gzf8010xdasr' 
GROUP BY sql_id, sql_exec_start, sql_exec_id; 
 
SQL_ID        SQL_EXEC_S SQL_EXEC_ID BUFFER_GETS DISK_READS CPU_SECONDS 
------------- ---------- ----------- ----------- ---------- ----------- 
0gzf8010xdasr 2011-05-21    16777216      642403      20351       283.7 

If you wanted to perform an aggregation for one SQL statement, regardless of the number of times is 
has been executed, simply run the aggregate query only on the SQL_ID column, as shown here: 

SELECT sql_id, sum(buffer_gets) buffer_gets, 
       sum(disk_reads) disk_reads, round(sum(cpu_time/1000000),1) cpu_seconds 
FROM v$sql_monitor 
WHERE sql_id = '0gzf8010xdasr' 
GROUP BY sql_id; 

■ Note Initialization parameter STATISTICS_LEVEL must be set to TYPICAL or ALL, and 
CONTROL_MANAGEMENT_PACK_ACCESS must be set to DIAGNOSTIC+TUNING for SQL monitoring to occur. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

316 

9-8. Monitoring Progress of a SQL Execution Plan 

Problem 
You want to see the progress a query is making from within the execution plan used. 

Solution 
There are a couple of ways to get information to see where a query is executing in terms of the execution 
plan. First, by querying the V$SQL_PLAN_MONITOR view, you can get information for all queries that are in 
progress, as well as recent queries that are complete. If we are joining two tables to get employee and 
department information, our query would look like this: 

SELECT ename, dname 
FROM emppart JOIN dept USING (deptno); 
 
-------------------------------------------- 
| Id  | Operation               | Name     | 
-------------------------------------------- 
|   0 | SELECT STATEMENT        |          | 
|   1 |  PX COORDINATOR         |          | 
|   2 |   PX SEND QC (RANDOM)   | :TQ10001 | 
|   3 |    HASH JOIN            |          | 
|   4 |     BUFFER SORT         |          | 
|   5 |      PX RECEIVE         |          | 
|   6 |       PX SEND BROADCAST | :TQ10000 | 
|   7 |        TABLE ACCESS FULL| DEPT     | 
|   8 |     PX BLOCK ITERATOR   |          | 
|   9 |      TABLE ACCESS FULL  | EMPPART  | 
-------------------------------------------- 

To see information for the foregoing query while it is currently running, you can issue a query like 
the one shown here (some rows have been removed for conciseness): 

column operation format a25 
column plan_line_id format 9999 heading 'LINE' 
column plan_options format a10 heading 'OPTIONS' 
column status format a10 
column output_rows heading 'ROWS' 
break on sid on sql_id on status 
 
SELECT sid, sql_id, status, plan_line_id, 
plan_operation || ' ' || plan_options operation, output_rows 
FROM v$sql_plan_monitor 
WHERE status not like '%DONE%' 
ORDER BY 1,4; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

317 

       SID SQL_ID        STATUS      LINE OPERATION                       ROWS 
---------- ------------- ---------- ----- ------------------------- ---------- 
        18 36bdwxutr5n75 EXECUTING      0 SELECT STATEMENT             3929326 
                                        1 PX COORDINATOR               3929326 
        27 36bdwxutr5n75 EXECUTING      0 SELECT STATEMENT                   0 
                                        2 PX SEND QC (RANDOM)          1752552 
                                        3 HASH JOIN                    1752552 
                                        8 PX BLOCK ITERATOR            1752552 
                                        9 TABLE ACCESS FULL            1752552 
       101 36bdwxutr5n75 EXECUTING      0 SELECT STATEMENT                   0 
                                        2 PX SEND QC (RANDOM)          2148232 
                                        3 HASH JOIN                    2148232 
                                        8 PX BLOCK ITERATOR            2148232 
                                        9 TABLE ACCESS FULL            2148232 

In this particular example, the EMPPART table has a parallel degree of 2, and we can see that for SIDs 
27 and 101, these are the parallel slaves that are getting the data. As these processes pass data back to the 
query coordinator and then back to the user, we can see that when we look at SID 18. If we simply run 
subsequent queries against the V$SQL_PLAN_MONITOR view, we can see the progress of the query as it is 
executing. In the foregoing example, we simply see the output row values increasing as the query 
progresses. 

Another method of seeing the progress of a query via the execution plan is by using the 
DBMS_SQLTUNE.REPORT_SQL_MONITOR function. If we use the same query against the EMPPART and DEPT tables 
used in the previous example, we can run the REPORT_SQL_MONITOR function to get a graphical look at the 
progress. See the following example of how to generate the file that would produce the HTML file that 
could be, in turn, used to view our progress. Figure 9-2 shows portions of the resulting report. 

set pages 9999 
set long 1000000 
SELECT DBMS_SQLTUNE.REPORT_SQL_MONITOR(sql_id=> '36bdwxutr5n75',type=>'HTML') FROM dual; 

 

 
Figure 9-2. Sample HTML report from DBMS_SQLTUNE.REPORT_SQL_MONITOR 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

318 

How It Works 
The V$SQL_PLAN_MONITOR is populated from the V$SQL_MONITOR view (see Recipe 9-7). Both of these views 
are new as of Oracle 11g, and are updated every second that a statement executes. The V$SQL_MONITOR 
view is populated each time a SQL statement is monitored. 

The DBMS_SQLTUNE.REPORT_SQL_MONITOR function can be invoked in several ways. The level of detail, 
as well as the type of detail you wish to see in the report, can be changed based on the parameters 
passed into the function. The output can be viewed in several formats, including plain text, HTML, and 
XML. The default output format is plain text. As an example, let’s say we wanted to see the output for our 
join against the EMPPART and DEPT tables. In this instance, we want the output in text format. We want the 
detail aggregated, and we want to see just the most basic level of detail. Our query would then be run as 
follows: 

SELECT DBMS_SQLTUNE.REPORT_SQL_MONITOR 
(sql_id=>'36bdwxutr5n75',event_detail=>'NO',report_level=>'BASIC') FROM dual; 
 
SQL Monitoring Report 
 
SQL Text 
------------------------------ 
select ename, dname from emppart join dept using (deptno) 
 
Global Information 
------------------------------ 
 Status              :  EXECUTING 
 Instance ID         :  1 
 Session             :  SCOTT (27:229) 
 SQL ID              :  36bdwxutr5n75 
 SQL Execution ID    :  16777225 
 Execution Started   :  05/15/2011 14:56:16 
 First Refresh Time  :  05/15/2011 14:56:16 
 Last Refresh Time   :  05/15/2011 15:09:47 
 Duration            :  812s 
 Module/Action       :  SQL*Plus/- 
 Service             :  SYS$USERS 
 Program             :  sqlplus@ora 
 Fetch Calls         :  6131367 
 
Global Stats 
========================================================================================== 
| Elapsed |   Cpu   |    IO    | Concurrency |  Other   | Fetch | Buffer | Read | Read  | 
| Time(s) | Time(s) | Waits(s) |  Waits(s)   | Waits(s) | Calls |  Gets  | Reqs | Bytes | 
========================================================================================= 
|     398 |     235 |     6.45 |        0.04 |      156 |    6M |   556K | 17629|   4GB | 
========================================================================================= 

Refer to the Oracle PL/SQL Packages and Types Reference for a complete list of all the parameters 
that can be used to execute the REPORT_SQL_MONITOR function. It is a very robust function, and there are a 
myriad of permutations to report on, based on your specific need. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

319 

9-9. Identifying Resource-Consuming SQL Statements That 
Have Executed in the Past 

Problem 
You want to view information on previously run SQL statements to aid in identifying resource-intensive 
operations. 

■ Note Recipe 9-6 shows how to identify currently executing statements that are resource-intensive. 

Solution 
The DBA_HIST_SQLSTAT and DBA_HIST_SQLTEXT views are two of the views that can be used to get historical 
information on SQL statements and their resource consumption statistics. For example, to get historical 
information on what SQL statements are incurring the most disk reads, you can issue the following 
query against DBA_HIST_SQLSTAT: 

SELECT * FROM ( 
  SELECT sql_id, sum(disk_reads_delta) disk_reads_delta, 
                 sum(disk_reads_total) disk_reads_total, 
                 sum(executions_delta) execs_delta, 
                 sum(executions_total) execs_total 
  FROM dba_hist_sqlstat 
  GROUP BY sql_id 
  ORDER BY 2 desc) 
WHERE rownum <= 5; 
 
SQL_ID        DISK_READS_DELTA DISK_READS_TOTAL EXECS_DELTA EXECS_TOTAL 
------------- ---------------- ---------------- ----------- ----------- 
36bdwxutr5n75          6306401         10933153          13          24 
0bx1z9rbm10a1          1590538          1590538           2           2 
0gzf8010xdasr           970292          1848743           1           3 
1gtkxf53fk7bp           969785           969785           7           7 
4h81qj5nspx6s           869588           869588           2           2 

Since the actual text of the SQL isn’t stored in DBA_HIST_SQLSTAT, you can then look at the associated 
DBA_HIST_SQLTEXT view to get the SQL text for the query with the highest number of disk reads: 

SELECT sql_text FROM dba_hist_sqltext 
WHERE sql_id = '36bdwxutr5n75'; 
 
SQL_TEXT 
---------------------------------------- 
select ename, dname 
from emppart join dept using (deptno) 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

320 

How It Works 
There are many useful statistics to get from the DBA_HIST_SQLSTAT view regarding historical SQL 
statements, including the following: 

• CPU utilization 

• Elapsed time of execution 

• Number of executions 

• Total disk reads and writes 

• Buffer get information 

• Parallel server information 

• Rows processed 

• Parse calls 

• Invalidations 

Furthermore, this information is separated by two views of the data. There is a set of “Total” 
information in one set of columns, and there is a “Delta” set of information in another set of columns. 
The “Total” set of columns is calculated based on instance startup. The “Delta” columns are based on 
the values seen in the BEGIN_INTERVAL_TIME and END_INTERVAL_TIME columns of the DBA_HIST_SNAPSHOT 
view. 

If you want to see explain plan information for historical SQL statements, there is an associated view 
available to retrieve that information for a given query. You can access the DBA_HIST_SQL_PLAN view to get 
the explain plan information for historical SQL statements. See the following example: 

SELECT id, operation || ' ' || options operation, object_name, cost, bytes 
FROM dba_hist_sql_plan 
WHERE sql_id = '0gzf8010xdasr' 
ORDER BY 1; 
 
        ID OPERATION                 OBJECT_NAME        COST      BYTES 
---------- ------------------------- ------------ ---------- ---------- 
         0 SELECT STATEMENT                            73679 
         1 PX COORDINATOR 
         2 PX SEND QC (RANDOM)       :TQ10001          73679 3506438144 
         3 HASH JOIN                                   73679 3506438144 
         4 BUFFER SORT 
         5 PX RECEIVE                                      3         52 
         6 PX SEND BROADCAST         :TQ10000              3         52 
         7 TABLE ACCESS FULL         DEPT                  3         52 
         8 PX BLOCK ITERATOR                           73550 1434451968 
         9 TABLE ACCESS FULL         EMPPART           73550 1434451968 
 
10 rows selected. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

321 

9-10. Comparing SQL Performance After a System Change 

Problem 
You are making a system change, and want to see the impact that change will have on performance of a 
SQL statement. 

Solution 
By using the Oracle SQL Performance Analyzer, and specifically the DBMS_SQLPA package, you can 
quantify the performance impact a system change will have on one or more SQL statements. A system 
change can be an initialization parameter change, a database upgrade, or any other change to your 
environment that could affect SQL statement performance. 

Let’s say you are going to be performing a database upgrade, and want to see the impact the 
upgrade is going to have on a series of SQL statements run within your database. Using the DBMS_SQLPA 
package, the basic steps to get the information needed to perform the analysis generally are as follows: 

1. Create an analysis task based on a single or series of SQL statements. 

2. Run an analysis for those statements based on your current configuration. 

3. Perform the given change to your environment (like a database upgrade). 

4. Run an analysis for those statements based on the new configuration. 

5. Run a “before and after” comparison to determine what impact the change has 
on the performance of your SQL statement(s). 

6. Generate a report to view the output of the comparison results. 

Using the foregoing steps, see the following example for a single query. First, we need to create an 
analysis task. For the database upgrade example, this would be done on an appropriate test database 
that is Oracle 11g. In this case, within SQL Plus, we will do the analysis for one specific SQL statement: 

variable g_task varchar2(100); 
 
EXEC :g_task := DBMS_SQLPA.CREATE_ANALYSIS_TASK(sql_text => 'select ename, dname from emppart 
join dept using(deptno)'); 

In order to properly simulate this scenario, on our Oracle 11g database, we then set the 
optimizer_features_enable parameter back to Oracle 10g. We then run an analysis for our query using 
the “before” conditions—in this case, with a previous version of the optimizer: 

alter session set optimizer_features_enable='10.2.0.4'; 
 
EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name=>:g_task,execution_type=>'test 
execute',execution_name=>'before_change'); 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

322 

After completing the before analysis, we set the optimizer to the current version of our database, 
which, for this example, represents the version to which we are upgrading our database: 

alter session set optimizer_features_enable='11.2.0.1'; 
 
EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name=>:g_task,execution_type=>'test 
execute',execution_name=>'after_change'); 

Now that we have created our analysis task based on a given SQL statement, and have run “before” 
and “after” analysis tasks for that statement based on the changed conditions, we can now run an 
analysis task to compare the results of the two executions of our query. There are several metrics that 
can be compared. In this case, we are comparing “buffer gets”: 

EXEC DBMS_SQLPA.EXECUTE_ANALYSIS_TASK(task_name=>:g_task,execution_type=>'COMPARE 
PERFORMANCE',execution_name=>'compare change',execution_params => 
dbms_advisor.arglist('comparison_metric','buffer_gets'));  

Finally, we can now use the REPORT_ANALYSIS_TASK function of the DBMS_SQLPA package in order to 
view the results. In the following example, we want to see output only if the execution plan has changed. 
The output can be in several formats, the most popular being HTML and plain text. For our example, we 
produced text output: 

set long 100000 longchunksize 100000 linesize 200 head off feedback off echo off  
spool compare_report.txt  
 
SELECT DBMS_SQLPA.REPORT_ANALYSIS_TASK(:g_task, 'TEXT', 'CHANGED_PLANS', 'ALL') 
FROM DUAL; 
 
General Information 
-------------------------------------------------------------------------------------------- 
 Task Information:                              Workload Information: 
----------------------------------------------  -------------------------------------------- 
  Task Name    : TASK_1383 
  Task Owner   : SCOTT 
  Description  : 
 
Execution Information: 
-------------------------------------------------------------------------------------------- 
  Execution Name  : compare change         Started             : 05/28/2011 17:28:07 
  Execution Type  : COMPARE PERFORMANCE    Last Updated        : 05/28/2011 17:28:08 
  Description     :                        Global Time Limit   : UNLIMITED 
  Scope           : COMPREHENSIVE          Per-SQL Time Limit  : UNUSED 
  Status          : COMPLETED              Number of Errors    : 0 
 
Analysis Information: 
-------------------------------------------------------------------------------------------- 
 Comparison Metric: BUFFER_GETS 
 ------------------ 
 Workload Impact Threshold: 1% 
 -------------------------- 
 SQL Impact Threshold: 1% 
 ---------------------- 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

323 

Before Change Execution:                       After Change Execution: 
 ---------------------------------------------  -------------------------------------------- 
  Execution Name      : before_change            Execution Name      : after_change 
  Execution Type      : TEST EXECUTE             Execution Type      : TEST EXECUTE 
  Description         :                          Description         : 
  Scope               : COMPREHENSIVE            Scope               : COMPREHENSIVE 
  Status              : COMPLETED                Status              : COMPLETED 
  Started             : 05/28/2011 17:19:47      Started             : 05/28/2011 17:23:43 
  Last Updated        : 05/28/2011 17:23:37      Last Updated        : 05/28/2011 17:28:07 
  Global Time Limit   : UNLIMITED                Global Time Limit   : UNLIMITED 
  Per-SQL Time Limit  : UNUSED                   Per-SQL Time Limit  : UNUSED 
  Number of Errors    : 0                        Number of Errors    : 0 
-------------------------------------------------------------------------------------------- 
 
Execution Statistics: 
-------------------------------------------------------------------------------------------- 
|              | Impact on | Value    | Value    | Impact  | % Workload | % Workload | 
| Stat Name    | Workload  | Before   | After    | on SQL  |   Before   |   After    | 
------------------------------------------------------------------------------------- 
| elapsed_time |   -12.24% |  230.819 |  259.072 | -12.24% |       100% |100%        | 
| parse_time   |    -4100% |        0 |     .041 |   -4.1% |         0% |100%        | 
| cpu_time     |    -1.62% |  198.948 |  202.177 |  -1.62% |       100% |100%        | 
| buffer_gets  |        0% | 16882239 | 16882239 |      0% |       100% |100%        | 
| cost         |        0% | 16812553 | 16812553 |      0% |       100% |100%        | 
| reads        |    -34.9% |    77791 |   104939 |  -34.9% |       100% |100%        | 
| writes       |        0% |        0 |        0 |      0% |         0% |  0%        | 
| rows         |         % | 16777222 | 16777222 |       % |          % |   %        | 
------------------------------------------------------------------------------------- 
 
Findings (1): 
----------------------------- 
 1. The structure of the SQL execution plan has changed. 
 
Execution Plan Before Change: 
----------------------------- 
---------------------------------------------------------------------------------------- 
| Id  | Operation                      | Name    | Rows     | Bytes     | Cost   | Time | 
------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT               |         | 16777222 | 671088880 | 16793338 |      | 
|   1 |   NESTED LOOPS                 |         | 16777222 | 671088880 | 16793338 |      | 
|   2 |    PARTITION RANGE ALL         |         | 16777222 | 335544440 |    16116 |      | 
|   3 |     TABLE ACCESS FULL          | EMPPART | 16777222 | 335544440 |    16116 |      | 
|   4 |    TABLE ACCESS BY INDEX ROWID | DEPT    |        1 |        20 |        1 |      | 
| * 5 |     INDEX UNIQUE SCAN          | PK_DEPT |        1 |           |          |      | 
------------------------------------------------------------------------------------------- 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

324 

Execution Plan After Change: 
----------------------------- 
-------------------------------------------------------------------------------------------- 
| Id  | Operation                      | Name    | Rows     | Bytes     | Cost   | Time    |
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT               |         | 16777222 | 352321662 | 16812553| 6:02:31|
|   1 |   NESTED LOOPS                 |         |          |           |         |        |
|   2 |    NESTED LOOPS                |         | 16777222 | 352321662 | 16812553|56:02:31|
|   3 |     PARTITION RANGE ALL        |         | 16777222 | 150994998 |    29013|00:05:49|
|   4 |      TABLE ACCESS FULL         | EMPPART | 16777222 | 150994998 |    29013|00:05:49|
| * 5 |     INDEX UNIQUE SCAN          | PK_DEPT |        1 |           |        0|00:00:01|
|   6 |    TABLE ACCESS BY INDEX ROWID | DEPT    |        1 |        12 |        1|00:00:01|
-------------------------------------------------------------------------------------------- 

In the foregoing example output, we can see the before and after execution statistics, as well as the
before and after execution plans. We can also see an estimated workload impact and SQL impact
percentages, which are very useful in order to see, at a quick glance, if there is a large impact by making
the system change being made. In this example, we can see there would be a 1% change, and by looking
at the execution plans, we see a negligible difference. So, for the foregoing query, the database upgrade
will essentially have minimal or no impact on the performance of our query. If you see an impact
percentage of 10% or greater, it may mean more analysis and tuning need to occur to proactively tune
the query or the system prior to making the change to your production environment. In order to get an
accurate comparison, it is also recommended to export production statistics and import them into your
test environment prior to performing the analysis using DBMS_SQLPA. 

■ Tip In SQL Plus, remember to SET LONG and SET LONG CHUNKSIZE in order for output to be displayed
properly. 

How It Works 
The SQL Performance Analyzer and the DBMS_SQLPA package can be used to analyze a SQL workload,
which can be defined as any of the following: 

• A SQL statement 

• A SQL ID stored in cache 

• A SQL tuning set (see Chapter 11 for information on SQL tuning sets) 

• A SQL ID based on a snapshot from the Automatic Workload Repository (see
Chapter 4 for more information) 

In normal circumstances, it is easiest to gather information on a series of SQL statements, rather
than one single statement. Getting information via Automatic Workload Repository (AWR) snapshots or
via SQL tuning sets is the easiest way to get information for a series of statements. The AWR snapshots
will contain information based on a specific time period, while SQL tuning sets will contain information
on a specifically targeted set of SQL statements. Some of the possible key reasons to consider doing a
“before and after” performance analysis include the following: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9 ■ MANUALLY TUNING SQL 

 

325 

• Initialization parameter changes 

• Database upgrades 

• Hardware changes 

• Operating system changes 

• Application schema object additions or changes 

• The implementation of SQL baselines or profiles 

There is an abundance of information available for comparison. When reporting on the information 
gathered in your analysis, it may be beneficial to show only the output for SQL statements affected 
adversely by the system change. For instance, you may want to narrow down the information shown 
from the REPORT_ANALYSIS_TASK function to show information only on SQL statements such as the 
following: 

• Those statements that show regressed performance 

• Those statements with a changed execution plan 

• Those statements that show errors in the SQL statements 

It may be beneficial to flush the shared_pool and/or the buffer_cache prior to gathering information 
on each of your tasks, which will aid in getting the best possible information for comparison. 
Information on analysis tasks is stored in the data dictionary. You can reference any of the data 
dictionary views prefaced with “DBA_ADVISOR” to get information on performance analysis tasks you have 
created, executions performed, as well as execution statistics, execution plans, and report information. 
Refer to the Oracle PL/SQL Packages and Types Reference for your version of the database for a 
complete explanation of the DBMS_SQLPA package, which is new as of version Oracle 11g. 

■ Note The ADVISOR system privilege is needed to perform the analysis tasks using DBMS_SQLPA. 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 
 

 

    

 

   

 

  

 

 

  

 

327 

Tracing SQL Execution 

Tracing session activity is at the heart of most SQL performance tuning exercises. Oracle provides a rich 
set of tools to trace SQL activity. This chapter introduces the Oracle SQL trace facility and shows you how 
to set up SQL tracing in your environment. Oracle provides numerous “events” that help you perform 
various types of traces.  

Although there are several tracing methods available, Oracle now recommends that you use the 
DBMS_MONITOR package for most types of tracing. The chapter contains several recipes that explain how to 
use this package to generate traces. In addition, we show how to trace sessions by setting various Oracle 
events, the setting of which is often requested by Oracle Support. You'll learn how to trace a single SQL 
statement, a session as well as an entire instance, as well as how to trace parallel queries. There are 
recipes that show how to trace another user's session and how to use a trigger to start a session trace. 
You'll also learn how to trace the Oracle optimizer's execution path. 

Oracle provides the TKPROF utility as well as the freely downloadable profiler named Oracle Trace 
Analyzer. This chapter shows how to use both of these profilers to analyze the raw trace files you 
generate. 

10-1. Preparing Your Environment 

Problem 
You want to make sure your database is set up correctly for tracing SQL sessions. 

Solution 
You must do three things before you can start tracing SQL statements: 

1. Enable timed statistics collection. 

2. Specify a destination for the trace dump file. 

3. Adjust the trace dump file size. 

You can enable the collection of timed statistics by setting the timed_statistics parameter to true. 
Check the current value of this parameter first: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

328 

SQL> sho parameter statistics 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- ----------- 
… 
statistics_level                     string      TYPICAL 
timed_statistics                     boolean     TRUE 
SQL> 

If the value of the timed_statistics parameter is false, you set it to true with the following 
statement. 

SQL> alter system set timed_statistics=true scope=both; 
 
System altered. 
 
SQL> 

You can also set this parameter at the session level with the following statement: 

SQL> alter session set timed_statistics=true 

You can find the location of the trace directory (which was referred to as the user dump directory in 
pre-Oracle Database 11g releases) with the following command: 

SQL> select name,value from v$diag_info 
  2* where name='Diag Trace' 
SQL> / 
 
NAME                                              VALUE 
-----------------------------    ---------------------------------------- 
 
Diag Trace                       c:\app\ora\diag\rdbms\orcl1\orcl1\trace 
 
 
SQL> 

In Oracle Database 11g, the default value of the max_dump_file_size parameter is unlimited, as you 
can verify by issuing the following command: 

SQL> sho parameter dump 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- ---------- 
… 
max_dump_file_size                   string      unlimited 

An unlimited dump file size means that the file can grow as large as the operating system permits 

How It Works 
Before you can trace any SQL sessions, ensure that you’ve set the timed_statistics initialization 
parameter to true. If the value for this parameter is false, SQL tracing is disabled. Setting the 
timed_statistics parameter to true enables the database to collect statistics such as the CPU and 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

329 

elapsed times and store them in various dynamic performance tables. The default value of this 
parameter, starting with the Oracle 11.1.0.7.0 release, depends on the value of the initialization 
parameter statistics_level. If you set the statistics_level parameter to basic, the default value of the 
timed_statistics parameter is false. If you set statistics_level to the value typical or all, the default 
value of the timed_statistics parameter is true. The timed_statistics parameter is dynamic, meaning 
you don’t have to restart the database to turn it on—you can turn this parameter on for the entire 
database without a significant overhead. You can also turn the parameter on only for an individual 
session. 

When you trace a SQL session, Oracle generates a trace file that contains diagnostic data that’s very 
useful in troubleshooting SQL performance issues. Starting with Oracle Database 11g, the database 
stores all diagnostic files under a dedicated diagnostic directory that you specify through the 
diagnostic_dest initialization parameter. The structure of the diagnostic directory is as follows: 

<diagnostic_dest>/diag/rdbms/<dbname>/<instance> 

The diagnostic directory is called the ADR Home. If your database name is prod1 and the instance 
name is prod1 as well, then the ADR home directory will be the following: 

<diagnostic_dest>/diag/rdbms/prod1/prod1 

The ADR home directory contains trace files in the <ADR Home>/trace subdirectory. Trace files 
usually have the extension .trc. You’ll notice that several trace files have a corresponding trace map file 
with the .trm extension. The .trm files contain structural information about trace files, which the 
database uses for searching and navigation. You can view the diagnostic directory setting for a database 
with the following command: 

SQL> sho parameter diagnostic_dest 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- ----------- 
diagnostic_dest                      string      C:\APP\ORA 
SQL> 

 The V$DIAG_INFO view shows the location of the various diagnostic directories, including the trace 
directory, which is listed in this view under the name Diag Trace. Although the new database 
diagnosability infrastructure in Oracle Database 11g ignores the user_dump_dest initialization parameter, 
the parameter still exists, and points to the same directory as the 
$ADR_BASE\diag\rdbms\<database>\<instance>\trace directory, as the following command shows: 

SQL> show parameter user_dump_dest 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- ------------------------------ 
user_dump_dest                       string      c:\app\ora\diag\rdbms\orcl1\or 
                                                 cl1\trace 
SQL> 

In Oracle Database 11g, you don’t have to set the max_dump_file_size parameter to specify the 
maximum size of a trace file.  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

330 

10-2. Tracing a Specific SQL Statement 

Problem 
You want to trace a specific SQL statement, in order to find out where the database is spending its time 
during the execution of the statement. 

Solution 
In an Oracle 11.1or higher release, you can use the enhanced SQL tracing interface to trace one or more 
SQL statements. Here are the steps to tracing a set of SQL statements. 

1. Issue the alter session set events statement, as shown here, to set up the 
trace. 

SQL> alter session set events 'sql_trace level 12'; 
 
Session altered. 
SQL> 

2. Execute the SQL statements. 

SQL> select count(*) from sales; 

3. Set tracing off. 

SQL> alter session set events 'sql_trace off'; 
 
Session altered. 
 
SQL> 

You can choose to trace specific SQL statements by specifying the SQL ID of a statement in the alter 
session set events statement. Here are the steps: 

1. Find the SQL ID of the SQL statement by issuing this statement: 

 SQL> select sql_id,sql_text 
      from v$sql 
      where sql_text='select sum(quantity_sold) from sales'; 
 
SQL_ID                       SQL_TEXT 
----------------           ------------------------------------ 
fb2yu0p1kgvhr              select sum(quantity_sold) from sales 
 
SQL> 
 
 
 
 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

331 

2. Set tracing on for the specific SQL statement whose SQL ID you’ve retrieved. 

SQL> alter session set events 'sql_trace [sql:fb2yu0p1kgvhr] level 12'; 
 
Session altered. 
 
SQL> 

3. Execute the SQL statement. 

SQL> select sum(quantity_sold) from sales; 
 
SUM(QUANTITY_SOLD) 
------------------ 
            918843 

4. Turn off tracing. 

SQL> alter session set events 'sql_trace[sql:fb2yu0p1kgvhr] off'; 
 
Session altered. 
 
SQL> 

You can trace multiple SQL statements by separating the SQL IDs with the pipe (|) character, as 
shown here: 

SQL> alter session set events ‘sql_trace [sql: fb2yu0p1kgvhr|4v433su9vvzsw]‘; 

You can trace a specific SQL statement running in a different session by issuing an alter system 
set events statement: 

SQL> alter system set events 'sql_trace[sql:fb2yu0p1kgvhr] level 12'; 
 
System altered. 
SQL> 

You can get the SQL ID for the statement by querying the V$SQL view as shown earlier in this recipe, 
or you can get it through the Oracle Enterprise Manager. Once the user in the other session completes 
executing the SQL statement, turn off tracing with the following command: 

SQL> alter system set events 'sql_trace[sql:fb2yu0p1kgvhr] off'; 
 
System altered. 
 
SQL> 

How It Works 
In Oracle Database 11g, you can set the Oracle event SQL_TRACE to trace the execution of one or more 
SQL statements. You can issue either an alter session or an alter system statement for tracing a 
specific SQL statement. Here’s the syntax of the command: 

alter session/system set events ‘sql_trace [sql:<sql_id>|<sql_id>] … event specification‘; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

332 

Even if you execute multiple SQL statements before you turn the tracing off, the trace file will show 
just the information pertaining to the SQL_ID or SQL_IDs you specify. 

10.3. Enabling Tracing in Your Own Session 

Problem 
You want to trace your own session. 

Solution 
Normal users can use the DBMS_SESSION package to trace their sessions, as shown in this example: 

SQL>execute dbms_session.session_trace_enable(waits=>true, binds=> false); 

To disable tracing, the user must execute the session_trace_disable procedure, as shown here: 

SQL> execute dbms_session.session_trace_disable(); 

How It Works 
The DBMS_MONITOR package, which Oracle recommends for all tracing, is executable only by a user with 
the DBA role. If you don’t have the DBA role, you can use the dbms_session.session_trace_enable 
procedure to trace your own session. 

10-4. Finding the Trace Files 

Problem 
You’d like to find a way to easily identify your trace files. 

Solution 
Issue the following statement to set an identifier for your trace files, before you start generating the trace: 

SQL> alter session set tracefile_identifier='MyTune1';  

To view the most recent trace files the database has created, in Oracle Database 11.1 and newer 
releases, you can query the Automatic Diagnostic Repository (ADR) by executing the following 
command (see Chapter 5 for details on the adrci utility): 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

333 

adrci> show tracefile -t 
08-MAY-11 19:01:48  diag\rdbms\orcl1\orcl1\trace\orcl1_p000_8652_MyTune1.trc 
08-MAY-11 19:01:48  diag\rdbms\orcl1\orcl1\trace\orcl1_p001_6424_MyTune1.trc 
08-MAY-11 19:01:48  diag\rdbms\orcl1\orcl1\trace\orcl1_p002_5980_MyTune1.trc 
adrci> 

To find out the path to your current session’s trace file, issue the following command: 

SQL>  select value from v$diag_info 
      where name = 'Default Trace File'; 
 
VALUE 
----------------------------------------------------------------------- 
 
c:\app\ora\diag\rdbms\orcl1\orcl1\trace\orcl1_ora_11248_My_Tune1.trc 
 
SQL> 

To find all trace files for the current instance, issue the following query: 

SQL> select value from v$diag_info where name = 'Diag Trace' 

How It Works 
Often, it’s hard to find the exact trace file you’re looking for, because there may be a bunch of other trace 
files in the trace directory, all with similar-looking file names. A best practice during SQL tracing is to 
associate your trace files with a unique identifier. Setting an identifier for the trace files you’re going to 
generate makes it easy to identify the SQL trace files from among the many trace files the database 
generates in the trace directory. 

You can confirm the value of the trace identifier with the following command: 

SQL> sho parameter tracefile_identifier 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- --------------- 
tracefile_identifier                 string      MyTune1 
SQL> 

The column TRACEID in the V$PROCESS view shows the current value of the tracefile_identifier 
parameter as well. The trace file identifier you set becomes part of the trace file name, making it easy to 
pick the correct file name for a trace from among a large number of trace files in the trace directory. You 
can modify the value of the tracefile_identifier parameter multiple times for a session. The trace file 
names for a process will contain information to indicate that they all belong to the same process. 

Once you set the tracefile_identifier parameter, the trace files will have the following format, 
where sid is the Oracle SID, pid is the process ID, and traceid is the value you’ve set for the 
tracefile_identifier initialization parameter. 

sid_ora_pid_traceid.trc 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

334 

10-5. Examining a Raw SQL Trace File 

Problem 

You want to examine a raw SQL trace file. 

Solution 
Open the trace file in a text editor to inspect the tracing information. Here are portions of a raw SQL 
trace generated by executing the dbms_monitor.session_trace_enable procedure: 

PARSING IN CURSOR #3 len=490 dep=1 uid=85 oct=3 lid=85 tim=269523043683 hv=672110367 
ad='7ff18986250' sqlid='bqasjasn0z5sz' 
 
PARSE #3:c=0,e=647,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=1,plh=0,tim=269523043680 
EXEC #3:c=0,e=1749,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=1,plh=3969568374,tim=269523045613 
WAIT #3: nam='Disk file operations I/O' ela= 15833 FileOperation=2 fileno=4 filetype=2 obj#=-1 
tim=269523061555 
FETCH #3:c=0,e=19196,p=0,cr=46,cu=0,mis=0,r=1,dep=1,og=1,plh=3969568374,tim=269523064866 
STAT #3 id=3 cnt=12 pid=2 pos=1 obj=0 op='HASH GROUP BY (cr=46 pr=0 pw=0 time=11 us cost=4 
size=5317 card=409)' 
STAT #3 id=4 cnt=3424 pid=3 pos=1 obj=89079 op='TABLE ACCESS  FULL DEPT (cr=16 pr=0 pw=0 
time=246 us cost=3 size=4251 card=327)' 

As you can see from this excerpt of the raw trace file, you can glean useful information, such as 
parse misses, waits, and the execution plan of the SQL statement. 

How It Works 
The usual practice after getting a session trace file is to analyze it using a tool such as TKPROF. However, 
you can examine a trace file by visually reading the trace output. The raw trace files capture information 
for each of the following three steps of SQL statement processing: 

Parse: During this stage, the database converts the SQL statement into an execution plan, and 
checks for authorization and the existence of tables and other objects. 

Execute: The database executes the SQL statement during this phase. For a SELECT statement, the 
execute phase identifies the rows the database must retrieve. The database modifies the data for 
DML statements such as insert, update, and delete. 

Fetch: This step applies only for a SELECT statement. During this phase, the database retrieves the 
selected rows. 

A SQL trace file will contain detailed statistics for each of the three phases of execution, in addition 
to wait event information. You usually format the raw trace files with a utility such as TKPROF. However, 
there are times when a raw trace file can show you useful information very quickly, by a simple scroll 
through the file. A locking situation is a good example where you can visually inspect a raw trace file. 
TKPROF doesn’t provide you details about latches and locks (enqueues). If you suspect that a query was 
waiting on a lock, digging deep into a raw trace file shows you exactly where and why a query was 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

335 

waiting. In the WAIT line, the elapsed time (ela) shows the amount of time waited (in microseconds). In
our example, elapsed wait time for “Disk file operations I/O” is 15,833 microseconds. Since 1
second=1,000,000 microseconds, this is not a significant wait time. The raw trace file clearly shows if an
I/O wait event, as is true in this case, or another type of wait event held up the query. If the query was
waiting on a lock, you’ll see something similar to the following: WAIT #2: nam='enqueue ela-300…. 

We’ve purposefully kept the discussion short in this recipe, because tools such as TKPROF and the
Oracle Trace Analyzer provide you sophisticated diagnostic information by profiling the raw trace files. 

10-6. Analyzing Oracle Trace Files 

Problem 
You want to know how to analyze an Oracle trace file. 

Solution 
There are multiple ways to interpret a SQL trace file. Here are the different approaches: 

• Read the raw SQL trace file in a text editor. 

• Use the Oracle-provided TKPROF (Trace Kernel Profiler) utility. 

• Use Oracle Trace Analyzer, a free product you can download from Oracle Support. 

• Use third-party tools. 

How It Works 
Getting a SQL trace is often the easy part—analyzing it is, of course, more of a task than collecting the
trace. Sometimes, if you’re particularly adept at it, you can certainly directly view the source trace file
itself, but in most cases, you need a tool to interpret and profile the huge amount of data that a trace file
can contain. Note that the TKPROF or other profiling tools show the elapsed times for various phases of
query execution, but not the information for locks and latches. If you’re trying to find out if any locks are
slowing down a query, look at the raw trace files to see if there are any enqueue waits in the WAIT lines of
the raw file. 

You can easily read certain trace files such as the trace file for event 10053, since the file doesn’t
contain any SQL execution statistics (such as parsing, executing, and fetching statistics), and no wait
event analysis—it mostly consists of a trace of the execution path used by the cost-based optimizer
(CBO). However, for any SQL execution trace files, such as those you generate with the event 10046, a
visual inspection of the trace file, while technically possible, is not only time-consuming, but the raw
data is not in a summary form and key events are often described in obscure ways. Therefore, using a
profiler such as the TKPROF utility is really your best option. 

The TKPROF utility is an Oracle-supplied profiling tool that most Oracle DBAs use on a routine basis.
Recipes 10-7 and 10-8 show how to use TKPROF. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

336 

Oracle’s Trace Analyzer is free (you have to download it from Oracle Support), easy to install and 
use, and produces clear reports with plenty of useful diagnostic information. You do have to install the 
tool first, but it takes only a few minutes to complete the installation. Thereafter, you just pass the name 
of the trace file to a script to generate the formatted output. Recipe 10-9 shows how to install and use the 
Oracle Trace Analyzer. 

There are also third-party profiling tools that offer features not found in the TKPROF utility. Some of 
these tools generate pretty HTML trace reports and some include charts as well to help you visually 
inspect the details of the execution of the SQL statement that you’ve traced. Note that in order to use 
some of these products, you’ll have to upload your trace files for analysis. If your trace files contain 
sensitive data or security information, this may not work for you. 

10-7. Formatting Trace Files with TKPROF 

Problem 
You’ve traced a session, and you want to use TKPROF to format the trace file. 

Solution 
You run the TKPROF utility from the command line. Here’s an example of a typical tkprof command for 
formatting a trace file. 

$ tkprof user_sql_001.trc user1.prf explain=hr/hr table=hr.temp_plan_table_a sys=no  
  sort=exeela,prsela,fchela 

In the example shown here, the tkprof command takes the user_sql_001.trc trace file as input and 
generates an output file named user1.prf. The “How it Works” section of this recipe explains key 
optional arguments of the TKPROF utility. 

How It Works 
TKPROF is a utility that lets you format any extended trace files that you generate with the event 10046 or 
through the DBMS_MONITOR package. You can use this tool to generate reports for analyzing results of the 
various types of SQL tracing explained in this chapter. You can run TKPROF on a single trace file or a set of 
trace files that you’ve concatenated with the trcsess utility. TKPROF shows details of various aspects of 
SQL statement execution, such as the following: 

• SQL statement text 

• SQL trace statistics 

• Number of library cache misses during the parse and execute phases 

• Execution plans for all SQL statements 

• Recursive SQL calls 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

337 

You can view a list of all the arguments you can specify issuing the tkprof command without any 
arguments, as shown here: 

$ tkprof 
Usage: tkprof tracefile outputfile [explain= ] [table= ] 
              [print= ] [insert= ] [sys= ] [sort= ] 
… 

Here’s a brief explanation of the important arguments you can specify with the tkprof command: 

filename1: Specifies the name of the trace file 

filename2: Specifies the formatted output file 

waits: Specifies whether the output file should record a summary of the wait events; default is yes. 

sort: By default, TKPROF lists the SQL statements in the trace file in the order they were executed. You 
can specify various options with the sort argument to control the order in which TKPROF lists the 
various SQL statements. 

• prscpu: CPU time spent parsing 

• prsela: Elapsed time spent parsing 

• execpu: CPU time spent executing 

• exeela: Elapsed time spent executing 

• fchela: Elapsed time spent fetching 

print: By default TKPROF will list all traced SQL statements. By specifying a value for the print 
option, you can limit the number of SQL statements listed in the output file. 

sys: By default TKPROF lists all SQL statements issued by the user SYS, as well as recursive statements. 
Specify the value no for the sys argument to make TKPROF omit these statements. 

explain: Writes execution plans to the output file; TKPROF connects to the database and issues 
explain plan statements using the username and password you provide with this parameter. 

table: By default, TKPROF uses a table named PLAN_TABLE in the schema of the user specified by the 
explain parameter, to store the execution plans. You can specify an alternate table with the table 
parameter. 

width: This is an integer that determines the output line widths of some types of output, such as the 
explain plan information. 

10-8. Analyzing TKPROF Output 

Problem 
You’ve formatted a trace file with TKPROF, and you now want to analyze the TKPROF output file. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

338 

Solution 
Invoke the TKPROF utility with the tkprof command as shown here: 

c:\>tkprof orcl1_ora_6448_mytrace1.trc ora6448.prf explain=hr/hr sys=no 
sort=prsela,exeela,fchela 
 
TKPROF: Release 11.2.0.1.0 - Development on Sat May 14 11:36:35 2011 
 
Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All rights reserved. 
 
c:\app\ora\diag\rdbms\orcl1\orcl1\trace> 

In this example, orcl1_ora_6448_mytrace1.trc is the trace file you want to format. The ora6448.prf 
file is the TKPROF output file. The “How it Works” section that follows shows how to interpret a TKPROF 
output file. 

How It Works 
 In our example, there’s only a single SQL statement. Thus, the sort parameters (prsecla, exeela, fchela) 
don’t really matter, because they come into play only when TKPROF needs to list multiple SQL statements. 
Here’s a brief description of the key sections in a TKPROF output file. 

Header 
The header section shows the trace file name, the sort options, and a description of the terms used in the 
output file. 

Trace file: orcl1_ora_6448_mytrace1.trc 
Sort options: prsela  exeela  fchela   
******************************************************************************** 
count    = number of times OCI procedure was executed 
cpu      = cpu time in seconds executing  
elapsed  = elapsed time in seconds executing 
disk     = number of physical reads of buffers from disk 
query    = number of buffers gotten for consistent read 
current  = number of buffers gotten in current mode (usually for update) 
rows     = number of rows processed by the fetch or execute call 
************************************************************************* 

Execution Statistics 
TKPPROF lists execution statistics for each SQL statement in the trace file. TKPROF lists the execution 
statistics for the three steps that are part of SQL statement processing: parse, execute, and fetch. 

1
www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

339 

call   count      cpu   elapsed      disk     query   current       rows 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
Parse        1      0.01       0.03          0         64          0           0 
Execute      1      0.00       0.00          0          0          0           0 
Fetch     5461      0.29       0.40          0       1299          0       81901 
------- ------  -------- ---------- ---------- ---------- ----------  ---------- 
total     5463      0.31       0.43          0       1363          0       81901 

The following is what the SQL execution statistics in the table stand for: 

count: The number of times the database parsed, executed, or fetched this statement 

cpu: The CPU time used for the parse/execute/fetch phases 

elapsed: Total elapsed time (in seconds) for the parse/execute/fetch phases 

disk: Number of physical block reads for the parse/execute/fetch phases 

query: Number of data blocks read with logical reads from the buffer cache in consistent mode for 
the parse/fetch/execute phases (for a select statement) 

current: Number of data blocks read and retrieved with logical reads from the buffer cache in 
current mode (for insert, update, delete, and merge statements) 

rows: Number of fetched rows for a select statement or the number of rows inserted, deleted, or 
updated, respectively, for an insert, delete, update, or merge statement 

Row Source Operations 
The next section of the report shows the number of misses in the library cache, the current optimizer 
mode, and the row source operations for the query. Row source operations show the number of rows 
that the database processes for each operation such as joins or full table scans. 

Misses in library cache during parse: 1 
Optimizer mode: ALL_ROWS 
Parsing user id: 85  (HR) 
 
Rows     Row Source Operation 
-------  --------------------------------------------------- 
  81901  HASH JOIN  (cr=1299 pr=0 pw=0 time=3682295 us cost=22 size=41029632 card=217088) 
   1728   TABLE ACCESS FULL DEPT (cr=16 pr=0 pw=0 time=246 us cost=6 size=96768 card=1728) 
   1291   TABLE ACCESS FULL EMP (cr=1283 pr=0 pw=0 time=51213 us cost=14 size=455392 
card=3424) 

The “Misses in library cache during parse” indicates the number of hard parses during the parse and 
execute database calls. In the Row Source Operation column, the output includes several statistics for 
each row source operation. These statistics quantify the various types of work performed during a row 
source operation. The following is what the different statistics stand for (you may not see all of these for 
every query): 

cr: Blocks retrieved through a logical read in the consistent mode 

pr: Number of blocks read through a physical disk read 

pw: Number of blocks written with a physical write to a disk 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

340 

time: Total time (in milliseconds) spent processing the operation 

cost: Estimated cost of the operation 

size: Estimated amount of data (bytes) returned by the operation 

card: Estimated number of rows returned by the operation 

The Execution Plan 
If you specified the explain parameter when issuing the tkprof command, you’ll find an execution table 
showing the execution plan for each SQL statement. 

Rows     Execution Plan 
-------  --------------------------------------- 
      0  SELECT STATEMENT   MODE: ALL_ROWS 
  81901   HASH JOIN 
   1728    TABLE ACCESS (FULL) OF 'DEPT' (TABLE) 
   1291    TABLE ACCESS (FULL) OF 'EMP' (TABLE) 

In our example, the execution plan shows that there were two full table scans, and a hash join 
following it. 

Wait Events 
You’ll see the wait events section only if you’ve specified waits=>true in your trace command. The wait 
events table summarizes waits during the trace period: 

Elapsed times include waiting on following events: 
  Event waited on                             Times   Max. Wait  Total Waited 
  ----------------------------------------   Waited  ----------  ------------ 
    SQL*Net message from client                5461      112.95        462.81 
    db file sequential read                       1        0.05          0.05 
 
******************************************************************************** 

In this example, the SQL*Net message to client waits account for most of the waits, but these are 
idle waits. If you see wait events such as the db file sequential read event or the db file scattered read 
event with a significant number of waits (and/or total wait time), you need to investigate those wait 
events further. 

Note that the TKPROF output doesn’t show you information about any bind variables. It also doesn’t 
show any waits due to enqueue locks. 

10-9. Analyzing Trace Files with Oracle Trace Analyzer 

Problem 
You want to use the Oracle Trace Analyzer to analyze trace files. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

341 

Solution 
The Oracle Trace Analyzer, also known as TRCANLZR or TRCA, is a SQL trace profiling tool that’s an 
alternative to the TKPROF utility. You must download the TRCA from Oracle Support. Once you download 
TRCA, unzip the files and install TRCA by executing the /trca/install/trcreate.sql script. 

Once you install TRCA, you must log in as a user with the SYSDBA privilege to execute the 
tacreate.sql script. The tacreate.sql generates the formatted output files for any traces you’ve 
generated. The script asks you for information relating to the location of the trace files, the output file, 
and the tablespace where you want TRCA to store its data. 

Here are the steps for installing and running TRCA. 

1. Installing TRCA is straightforward, so we just show you a summary of the 
installation here: 

SQL> @tacreate.sql 
Uninstalling TRCA, please wait 
TADOBJ completed. 
SQL> 
SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE; 
SQL> REM If this DROP USER command fails that means a session is connected wi 
this user. 
SQL> DROP USER trcanlzr CASCADE; 
SQL> WHENEVER SQLERROR CONTINUE; 
SQL> 
SQL> SET ECHO OFF; 
TADUSR completed. 
TADROP completed. 
 
Creating TRCA$ INPUT/BDUMP/STAGE Server Directories 
... 
 
TACREATE completed. Installation completed successfully. 
SQL> 

2. Set up tracing. 

SQL> alter session set events '10046 trace name context forever, level 12'; 
 
System altered. 
 
SQL> 

3. Execute the SQL statement you want to trace. 

SQL> select … 

4. Turn off tracing. 

SQL> alter session set events '10046 trace name context off'; 
System altered. 

 
SQL> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 10 ■ TRACING SQL EXECUTION 

 

342 

5. Run the /trca/run/trcanlzr script (START trcanlzr.sql) to profile the trace 
you’ve just generated. You must pass the trace file name as input to this script: 

c:\trace\trca\trca\run>sqlplus hr/hr 
SQL> START trcanlzr.sql orcl1_ora_7460_mytrace7.trc 
Parameter 1: 
Trace Filename or control_file.txt (required) 
Value passed to trcanlzr.sql: 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
TRACE_FILENAME: orcl1_ora_7460_mytrace7.trc
Analyzing orcl1_ora_7460_mytrace7.trc
... analyzing trace(s) ...
Trace Analyzer completed.
Review first trcanlzr_error.log file for possible fatal errors.
TKPROF: Release 11.2.0.1.0 - Development on Sat May 14 15:59:13 2011
 …
 233387 05/14/2011 15:59 trca_e21106.html
 115885 05/14/2011 15:59 trca_e21106.txt
File trca_e21106.zip has been created
TRCANLZR completed.
SQL>
c:\trace\trca\trca\run>

You can now view the profiled trace data in text or HTML format—TRCA provides both of these in
the ZIP file that it creates when it completes profiling the trace file. TRCA places the ZIP file in the
directory from which you run the /trca/run/trcanlzr.sql script.

How It Works
Oracle Support Center of Expertise (CoE) provides the TRCA diagnostic tool. Although many DBAs are
aware of the TRCA, few use it on regular basis. Some of us have used it in response to a request by Oracle
Support. As you learned in the “Solution” section, the TRCA tool accepts a SQL trace generated by you
and outputs a diagnostic report in both text and HTML formats. The TRCA tool also provides you a
TKPROF report (it executes the tkprof command as part of its diagnostic data collection). Since TRCA
provides a rich set of diagnostic information, consider using it instead of TKPROF.

Apart from the data normally collected by the TKPROF utility, TRCA also identifies expensive SQL
statements and gathers their explain plans. It also shows the optimizer statistics and configuration
parameters that have a bearing on the performance of the SQL statements in the trace.

■ Tip Use TRCA instead of TKPROF for analyzing your trace files—it provides you a wealth of diagnostic
information, besides giving you a TKPROF output file as part of the bargain.

In our example, we used TRCA to format a trace file on the same system where we generated the
trace. However, if you can’t install TRCA in a production system, not to worry. TRCA can also analyze
production traces using a different system. The details are in the trca_instructions HTML document,
which is part of the TRCA download ZIP file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

343

Here are the major sections of a TRCA report, and as you can see already, the report offers a richer
set of diagnostic information than that offered by TKPROF.

Summary: Provides a breakdown of elapsed time, response time broken down into CPU and non-
idle wait time, and other response time-related information

Non-Recursive Time and Totals: Provides a breakdown of response time and elapsed time during the
parse, execute, and fetch steps; the report also contains a table that provides total and average waits
for each idle and non-idle wait event.

Top SQL: Provides detailed information about SQL statements that account for the most response
time, elapsed time, and CPU time, as shown in the following extract from the report:

There are 2 SQL statements with "Response Time Accounted-for" larger than threshold of
10.0% of the "Total Response Time Accounted-for".
These combined 2 SQL statements are responsible for a total of 99.3% of the "Total
Response Time Accounted-for".

There are 3 SQL statements with "Elapsed Time" larger than threshold of 10.0% of the
"Total Elapsed Time".
These combined 3 SQL statements are responsible for a total of 75.5% of the "Total Elapsed
Time".

There is only one SQL statement with "CPU Time" larger than threshold of 10.0% of the
"Total CPU Time".

Individual SQL: This is a highly useful section, as it lists all SQL statements and shows their elapsed
time, response time, and CPU time. It provides the hash values and SQL IDs of each statement.

SQL Self - Time, Totals, Waits, Binds and Row Source Plan: Shows parse, execute, and fetch statistics
for each statement, similar to the TKPROF utility; it also shows the wait event breakdown (average and
total times) for each statement. There’s also a very nice explain plan for each statement, which
shows the time and the cost of each execution step.

Tables and Indexes: Shows the number of rows, partitioning status, the sample size, and the last
time the object was analyzed; for indexes, it additionally shows the clustering factor and the number
of keys.

Summary: Shows I/O related wait (such as the db file sequential read event) information including
average and total waits, for tables and indexes

Hot I/O Blocks: Shows the list of blocks with the largest wait time or times waited

Non-default Initialization Parameters: Lists all non-default initialization parameters

As this brief review of TRCA shows, it’s a far superior tool than TKPROF. Besides, if you happen to love
TKPROF reports, it includes them as well in its ZIP file. So, what are you waiting for? Download the TRCA
and benefit from its rich diagnostic profiling of problem SQL statements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

344

10-10. Tracing a Parallel Query

Problem
You’d like to trace a parallel query.

Solution
You can get an event 10046 trace for a parallel query in the same way as you would for any other query.
The only difference is that the 10046 event will generate as many trace files as the number of parallel
query servers. Here’s an example:

SQL>alter session set tracefile_identifier='MyTrace1';

SQL> alter session set events '10046 trace name context forever, level 12';

Session altered.

SQL> select /*+ full(sales) parallel (sales 6) */ count(quantity_sold) from
 sales;

COUNT(QUANTITY_SOLD)

 918843

SQL> alter session set events '10046 trace name context off';

Session altered.

SQL>

You’ll now see a total of seven trace files with the trace file identifier MyTrace1 in the trace directory.
Depending on what you’re looking for, you can analyze each of the trace files separately, or consolidate
them into one big trace file with the trcsess utility before analyzing it with TKPROF or another profiler
such as the Oracle Trace Analyzer. You’ll also find several files with the suffix .trm in the trace
directory—you can ignore these files, as they are for use by the database.

How It Works
The only real difference between getting an extended trace for a single query and one for a parallel query
is that you’ll have multiple trace files, one for each parallel query server. When a user executes a parallel
query, Oracle creates multiple parallel query processes to process the query, with each process getting
its own session. That’s the reason Oracle creates multiple trace files for a parallel query.

Once you turn off the trace, go to the trace directory and execute the following command to find all
the trace files for the parallel query:

$ find . -name '*MyTrace1*'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

345

The find command lists all the trace files for your parallel query (ignore the files ending with .trm in
the trace directory). You can move the trace files to another directory and use the trcsess utility to
consolidate those files, as shown here:

$ trcsess output=MyTrace1.trc clientid='px_test1' orcl1_ora_8432_mytrace1.trc
orcl1_ora_8432_mytrace2.trc

You’re now ready to use the TKPROF utility to profile the parallel query.
When you issue a parallel query, the parallel execution coordinator/query coordinator (QC) controls

the execution of the query. The parallel execution servers/slaves (QS) do the actual work. The parallel
execution server set is the set of all the query servers that execute an operation. The query coordinator
and each of the execution servers generate their own trace files. For example, if one of the slave
processes waits for a resource, the database records the resulting wait events in that slave process’s trace
file, but not in the query coordinator’s trace file.

Note that if you’re using a 10.2 or an older release, the trace files for the user process will be created
in the user dump directory and the background processes (slaves) will generate trace files in the
background dump directory. In 11.1 and newer databases, the trace files for both background and user
processes are in the same directory (trace). You can find the trace file names by issuing the show
tracefile -t command after invoking ADRCI, or by querying the V$DIAG_INFO view from SQL*Plus.

10-11. Tracing Specific Parallel Query Processes

Problem
You want to trace one or more specific parallel query processes.

Solution
Identify the parallel query processes you want to trace with the following command.

SQL> select inst_id,p.server_name,
 p.status as p_status,
 p.pid as p_pid,
 p.sid as p_sid
 from gv$px_process p
 order by p.server_name;

Let’s say you decide to trace the processes p002 and p003. Issue the following alter system set
events command to trace just these two parallel processes.

SQL> alter system set events ‘sql_trace {process: pname = p002 | p003}’;

Once you’re done tracing, turn off the trace by issuing the following command:

SQL> alter system set events ‘sql_trace {process: pname = p002 | p003} off’;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

346

How It Works
Tracing parallel processes is always tricky. One of the improvements made to the tracing infrastructure
in the Oracle Database 11g release is the capability to trace a specific statement or a set of statements.
This capability comes in handy when there are a large number of SQL statements being executed by a
session and you’re sure about the identity of the SQL statement whose execution you want to trace.

10-12. Tracing Parallel Queries in a RAC System

Problem
You’re tracing a parallel query in a RAC environment, but aren’t sure in which instance the trace files are
located.

Solution
Finding the trace files for the server (or thread or slave) processes is sometimes difficult in a RAC
environment, because you aren’t sure on which node or node(s) the database has created the trace files.
Here are the steps to follow to make it easier to find the trace files on the different nodes.

1. Set the px_trace with an alter session command, to help identify the trace
files, as shown here:

SQL> alter session set tracefile_identifier='10046';
SQL> alter session set "_px_trace" = low , messaging;
SQL> alter session set events '10046 trace name context forever,level 12';

2. Execute your parallel query.

SQL> alter table bigsales (parallel 4);
SQL> select count(*) from bigsales;

3. Turn all tracing off.

SQL> alter session set events '10046 trace name context off';
SQL> alter session set "_px_trace" = none;

Specifying px_trace will cause the query coordinator’s trace file to include information about the
slave processes that are part of the query, and the instance each slave process belongs to. You can then
retrieve the trace files from the instances listed in the query coordinator’s trace file.

How It Works
The _px_trace (px trace) parameter is an undocumented, internal Oracle parameter that has existed
since the 9.2 release. Once you run the trace commands as shown in the “Solution” section of this recipe,
the trace file for the query coordinator (QC) process will show within it the name of each of the slave
processes and the instances the processes have run on—for example:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

347

Acquired 4 slaves on 1 instances avg height=4 in 1 set q serial:2049
 P000 inst 1 spid 7512
 P001 inst 1 spid 4088
 P002 inst 1 spid 7340
 P003 inst 1 spid 9256

In this case, you know that Instance 1 is where you must look to get the trace files for the slave
processes P000, P001, P002, and P003. On Instance 1, in the ADR trace subdirectory, look for file names
that contain the words P000 (or P001/P002/P003), to identify the correct trace files.

10-13. Consolidating Multiple Trace Files

Problem
You have generated multiple trace files for a session in order to tune performance, and you want to
consolidate those files into a single trace file.

Solution
Use the trcsess command to merge multiple trace files into a single trace file. Here’s a simple example:

c:\trace> trcsess output=combined.trc session=196.614 orcl1_ora_8432_mytrace1.trc
orcl1_ora_8432_mytrace2.trc
C:\trace>

The trcsess command shown here combines two trace files generated for a session into a single
trace file. The session parameter identifies the session with a session identifier, consisting of the session
index and session serial number, which you can get from the V$SESSION view.

How It Works
The trcsess utility is part of the Oracle database and helps by letting you consolidate multiple trace files
during performance tuning and debugging exercises. Here’s the syntax of the trcsess command:

trcsess [output=output_file_name]
 [session=session_id]
 [client_id=cleint_id]
 [service=service_name]
 [action=action_name]
 [module=module_name]
 [trace_files]

You must specify one of these five options when issuing the trcess command: session, client_id,
service, action, and module. For example, if you issue the command in the following manner, the
command includes all the trace files in the current directory for a session and combines them into a
single file:

$ trcsess output=main.trc session=196.614

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

348

In our example, we specified the name of the consolidated trace file with the output option. If you
don’t specify the output option, trcsess prints the output to standard out. Once you use trcsess to
combine the output of multiple trace files into one consolidated file, you can use the TKPROF utility to
analyze the file, just as you’d do in the case of a single trace file.

10-14. Finding the Correct Session for Tracing

Problem
You want to initiate a session trace for a user from your own session, and you would like to find out the
correct session to trace.

Solution
You must have the SID and the serial number for the user whose session you want to trace. You can find
these from the V$SESSION view, of course, once you know the user’s name. However, you must get several
other details about the user’s session to identify the correct session, since the user may have multiple
sessions open. Use the following query to get the user’s information:

SQL> select a.sid, a.serial#, b.spid, b.pid,
 a.username, a.osuser, a.machine
 from
 v$session a,
 v$process b
 where a.username IS NOT NULL
 and a.paddr=b.addr;

The query provides several attributes such as USERNAME, OSUSER, and MACHINE, which help you
unambiguously select the correct session.

How It Works
You can’t always rely on the first set of SID and serial number you manage to find for the user whose
session you want to trace. Together, the SID and serial number uniquely identify a session. However, you
may find multiple SID and serial number combinations for the same user, because your database may be
using common user logins. Therefore, querying the V$SESSION view for other information such as OSUSER
and MACHINE besides the SID and serial number helps to identify the correct user session.

V$SESSION view columns such as COMMAND, SERVER, LOGON_TIME, PROGRAM, and LAST_CALL_ET help
identify the correct session to trace. If you still can’t find the correct session, you may want to join the
V$SESSION and V$SQLAREA views to identify the correct session.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

349

10-15. Tracing a SQL Session

Problem
You want to turn on SQL tracing for a session to diagnose a performance problem.

Solution
There are multiple ways to trace a session, but the Oracle-recommended approach is to use the
DBMS_MONITOR package to access the SQL tracing facility. To trace a session, first identify the session with
the following command, assuming you know either the username or the SID for the session:

SQL> select sid, serial#, username from v$session;

Once you get the SID and SERIAL# from the previous query, invoke the session_trace_enable
procedure of the DBMS_MONITOR package, as shown here:

SQL> execute dbms_monitor.session_trace_enable(session_id=>138,serial_num=>242,
waits=>true,binds=>false);
PL/SQL procedure successfully completed.
SQL>

■ Caution SQL tracing does impose an overhead on the database—you need to be very selective in tracing
sessions in a production environment, as a trace can fill up a disk or affect CPU usage adversely.

In this example, we chose to trace the wait information as well, but it’s optional. Once you execute
this command, have the user execute the SQL statements that you’re testing (in a dev or test
environment). In a production environment, wait for a long enough period to make sure you’ve
captured the execution of the SQL statements, before turning the tracing off. Invoke the
session_trace_disable procedure to disable the SQL tracing for the session, as shown here:

SQL> execute dbms_monitor.session_trace_disable();
PL/SQL procedure successfully completed.
SQL>

Once you complete tracing the session activity, you can get the trace file for the session from the
trace directory and use the TKPROF utility (or a different profiler) to get a report. The trace file will have
the suffix mytrace1, the value you set as the trace file identifier.

To trace the current user session, use the following pair of commands:

SQL> execute dbms_monitor.session_trace_enable();
SQL> execute dbms_monitor.session_trace_disable();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

350

How It Works
Tracing an entire session is expensive in terms of resource usage and you must do so only when you
haven't identified a poorly performing SQL statement already. A session trace gathers the following types
of information.

• Physical and logical reads for each statement that's running in the session

• CPU and elapsed times

• Number of rows processed by each statement

• Misses in the library cache

• Number of commits and rollbacks

• Row operations that show the actual execution plan for each statement

• Wait events for each SQL statement

■ Note You need the DBA role to execute procedures and functions in the DBMS_MONITOR package.

You can specify the following parameters for the session_trace_enable procedure:

session_id: Identifies the session you want to trace (SID); if you omit this, your own session will be
traced.

serial_num: Serial number for the session

waits: Set it to true if you want to capture wait information (default = false).

binds: Set it to true to capture bind information (default=false).

plan_stat: Determines the frequency with which the row source statistics (execution plan and
execution statistics) are dumped

All the parameters for the session_trace_enable procedure are self-evident, except the plan_stat
parameter. You can set the following values for this parameter:

never: The trace file won’t contain any information about row source operations.

first_execution (same as setting the plan_stat parameter to the value null): Row source
information is written once, after the first execution of a statement.

all_executions: Execution plan and execution statistics are written for each execution of the cursor,
instead of only when the cursor is closed.

Since an execution plan for a statement can change during the course of a program run, you may
want to set the plan_stat parameter to the value all_executions if you want to capture all possible
execution plans for a statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

351

10-16. Tracing a Session by Process ID

Problem
You want to identify and trace a session using an operating system process ID.

Solution
Execute the alter session (or alter system) set events command to trace a session by its operating
system process ID, which is shown by the SPID column in the V$PROCESS view. The general format of this
command is as follows:

alter session set events ‘sql_trace {process:pid}’

Here are the steps to tracing a session by its OS PID.

1. Get the OS process ID by querying the V$PROCESS view.

SQL> select spid,pname from v$process;

2. Once you identify the SPID of the user, issue the following statement to start
the trace for that session:

SQL> alter session set events ‘sql_trace {process:2714}’;
Session altered.
SQL>

3. Turn off tracing the following way:

SQL> alter session set events ‘sql_trace {process:2714} off’;
Session altered.
SQL>

You can also execute the set events command in the following manner, to
concatenate two processes:

SQL> alter system set events ‘sql_trace {process:2714|2936}’;
System altered.
SQL> alter system set events ‘sql_trace {process:2714|2936} off’;
System altered.
SQL>

When you concatenate two processes, the database generates two separate trace files, one for each
process, as shown here:

orcl1_ora_2714.trc
orcl1_ora_2936.trc

How It Works
In Oracle Database 11g, the alter session set events command has been enhanced to allow you to
trace a process by specifying the process ID (PID), process name (PNAME), or the Oracle Process ID

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

352

(ORAPID). You can also use an alter system command with the same general syntax as well. Here’s the
syntax of the command:

alter session set events ‘sql_trace {process : pid = <pid>, pname = <pname>, orapid =
<orapid>} rest of event specification’

 The V$PROCESS view contains information about all currently active processes. In the V$PROCESS
view, the following columns help you identify the three process-related values:

PID: the Oracle process identifier
SPID: the Operating System process identifier
PNAME: name of the process

In this recipe, we showed how to generate a trace file using the OS process identifier (SPID column in
the V$PROCESS view). You can use the general syntax shown here to generate a trace using the PID or the
process name.

10-17. Tracing Multiple Sessions

Problem
You want to trace multiple SQL sessions that belong to a single user.

Solution
You can trace multiple sessions that belong to a user by using the client_id_trace_enable procedure
from the DBMS_MONITOR package. Before you can execute the dbms_monitor.client_id_trace_enable
procedure, you must set the client_identifier for the session by using the DBMS_SESSION package, as
shown here:

SQL> execute dbms_session.set_identifier('SH')

Once you set the client identifier as shown here, the client_identifier column in the V$SESSION
view is populated. You can confirm the value of the client_identifier column by executing the
following statement:

SQL> select sid, serial#,username from v$session where client_identifier='SH';

Now you can execute the dbms_monitor.client_id_trace_enable procedure:

SQL> execute dbms_monitor.client_id_trace_enable(client_id=>'SH', waits=>true, binds=>false);

You can disable the trace with the following command:

SQL> execute dbms_monitor.client_id_trace_disable(client_id=>'SH');

How It Works
Setting the client_identifier column lets you enable the tracing of multiple sessions, when several
users may be connecting as the same Oracle user, especially in applications that use connection pools.
The client_id_trace_enable procedure collects statistics for all sessions with a specific client ID.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

353

Note that the client_id that you must specify doesn’t have to belong to a currently active session. By
default, the waits and binds parameters are set to false and you can set the tracing of both waits and
binds by adding those parameters when you execute the client_id_trace_enable procedure:

 SQL> exec dbms_monitor.client_id_trace_enable('SH',true,true);

PL/SQL procedure successfully completed.

You can query the DBA_ENABLED_TRACES view to find the status of a trace that you executed with a
client identifier. In this view, the column TRACE_TYPE shows the value CLIENT_ID and the PRIMARY_ID
shows the value of the client identifier.

SQL> select trace_type, primary_id,waits,binds from dba_enabled_traces;

TRACE_TYPE PRIMARY_ID WAITS BINDS
------------- --------------- -------- --------------
CLIENT_ID SH TRUE TRUE

10-18. Tracing an Instance or a Database

Problem
You want to trace the execution of all SQL statements in the entire instance or database.

Solution
Use the dbms_monitor.database_trace_enable procedure to trace a specific instance or an entire
database. Issue the following pair of commands to start and stop tracing for an individual instance.

SQL> execute dbms_monitor.database_trace_enable(instance_name=>'instance1');
SQL> execute dbms_monitor.database_trace_disable(instance_name=>'instance1');

You can optionally specify the waits and binds attributes. The following commands enable and
disable SQL tracing at the database level:

SQL> execute dbms_monitor.database_trace_enable();
SQL> execute dbms_monitor.database_trace_disable();

You can also set the sql_trace initialization parameter to true to turn on and turn off SQL tracing,
but this parameter is deprecated. Oracle recommends that you use the dbms_monitor (or the
dbms_session) package for SQL tracing.

How It Works
Obviously, instance-level and database-level SQL tracing is going to impose a serious overhead, and may
well turn out to be another source of performance problems! You normally don’t ever have to do this—
use the session-level tracing instead to identify performance problems. If you must trace an entire
instance, because you don’t know from which session a query may be executed, turn off tracing as soon
as possible, to reduce the overhead.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

354

10-19. Generating an Event 10046 Trace for a Session

Problem
You want to get an Oracle event 10046 trace for a session.

Solution
You can get an Oracle event 10046 trace, also called an extended trace, by following these steps:

1. Set your trace file identifier.

SQL> alter session set tracefile_identifier='10046';

2. Issue the following statement to start the trace.

SQL> alter session set events '10046 trace name context forever, level 12'

3. Execute the SQL statement(s) that you want to trace.

SQL> select sum(amount_sold) from sales;

4. Turn tracing off with the following command:

SQL> alter session set events '10046 trace name context off';

You’ll find the trace dump file in the trace directory that’s specified by the diagnostic_dest
parameter ($DIAG_HOME/rdbms/db/inst/trace). You can analyze this trace file with TKPROF or another
utility such as the Oracle Trace Analyzer.

How It Works
Here’s what the various keywords in the syntax for setting a 10046 trace mean:

set events: Sets a specific Oracle event, in this case, the event 10046

10046: Specifies when an action should be taken

trace: The database must take this action when the event (10046) occurs.

name: Indicates the type of dump or trace

context: Specifies that Oracle should generate a context-specific trace; if you replace context with
errorstack, the database will not trace the SQL statement. It dumps the error stack when it hits the
10046 event.

forever: Specifying the keyword forever tells the database to invoke the action (trace) every time
the event (10046) is invoked, until you disable the 10046 trace. If you omit the keyword forever, the
action is invoked just once, following which the event is automatically disabled.

level 12: Specifies the trace level—in this case, it captures both bind and wait information.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

355

While the Oracle event 10046 has existed for several years, this trace is identical to the trace you can
generate with the session_trace_enable procedure of the DBMS_MONITOR package:

SQL> execute dbms_monitor.session_trace_enable(session_id=>99,
serial_num=>88,waits=>true,binds=>true);

Both the 10046 event and the dbms_monitor.session_trace_enable procedure shown here generate
identical tracing information, called extended tracing because the trace includes wait and bind variable
data.

If you aren’t using the new diagnostic infrastructure (ADR) introduced in Oracle Database 11g,
make sure you set the dump file size to the value unlimited, as the 10046 trace often produces very large
trace files, and the database will truncate the dump file if there isn’t enough space in the trace dump
directory.

 The level of tracing you specify for the 10046 trace determines which types of information is
gathered by the trace. The default level is 1, which collects basic information. Level 4 allows you to
capture the bind variable values, which are shown as :bi, :b2, and so on. You can see the actual values
that Oracle substitutes for each of the bind variables. Level 8 provides all the information from a Level 1
trace plus details about all the wait events during the course of the execution of the SQL query. A Level
12 trace is a combination of the Level 4 and Level 8 traces, meaning it’ll include both bind variable and
wait information. Level 16 is new in Oracle Database 11g, and provides STAT line dumps for each
execution of the query. Note that this is the same as setting the value all_executions for the plan_level
parameter when you trace with the dbms_monitor.session_trace_enable procedure.

■ Tip If the session doesn’t close cleanly before you disable tracing, your trace file may not include important
trace information.

While getting a 10046 trace and analyzing it does provide valuable information regarding the usage
of bind variables and the wait events, you need to be careful about when to trace sessions. If the instance
as a whole is poorly performing, your tracing might even make performance worse due to overhead
imposed by running the trace. In addition, it takes time to complete the trace, run it through TKPROF or
some other profiler, and go through the dozens of SQL statements in the report. Here is a general
strategy that has worked for us in our own work:

 If you’re diagnosing general performance problems, a good first step would be to get an AWR
report, ideally taking several snapshots spaced 1–15 minutes apart. Often, you can identify the problem
from a review of the AWR report. The report will highlight things such as inefficient SQL statements,
contention of various types, memory issues, latching, and full table scans that are affecting performance.
You can get all this information without running a 10046 trace.

Run a 10046 trace when a user reports a problem and you can’t identify a problem through the AWR
reports. If you’ve clearly identified a process that is performing poorly, you can trace the relevant
session. You can also run this trace in a development environment to help developers understand the
query execution details and tune their queries.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

356

10-20. Generating an Event 10046 Trace for an Instance

Problem
You want to trace a problem SQL query, but you can’t identify the session in advance. You would like to
trace all SQL statements executed by the instance.

Solution
You can turn on tracing at the instance level with the following alter system command, after connecting
to the instance you want to trace.

SQL> alter system set events '10046 trace name context forever,level 12';

The previous command enables the tracing of all sessions that start after you issue the command—
it won’t trace sessions that are already connected.

You disable the trace by issuing the following command:

SQL> alter system set events '10046 trace name context off';

This command disables tracing for all sessions.

How It Works
Instance-wide tracing helps in cases where you know a problem query is running, but there’s no way to
identify the session ahead of time. Make sure that you enable instance-wide tracing only when you have
no other alternative, and turn it off as soon as you capture the necessary diagnostic information. Any
instance-wide tracing is going to not only generate very large trace files in a busy environment, but also
contribute significantly to the system workload.

10-21. Setting a Trace in a Running Session

Problem
You want to set a trace in a session, but the session has already started.

■ Note A user who phones to ask for help with a long-running query is a good example of a case in which you
might want to initiate a trace in a currently executing session. Some business-intelligence queries, for example,
run for dozens of minutes, even hours, so there is time to initiate a trace mid-query and diagnose a performance
problem.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

357

Solution
You can set a trace in a running session using the operating system process ID (PID), with the help of the
oradebug utility. Once you identify the PID of the session you want to trace, issue the following
commands to trace the session.

SQL> connect / as sysdba
SQL> oradebug setospid <SPID>
SQL> oradebug unlimit
SQL> oradebug event 10046 trace name context forever,level 12
SQL> oradebug event 10046 trace name context off

In the example shown here, we specified Level 12, but as with the 10046 trace you set with the alter
session command, you can specify the lower tracing levels 4 or 8.

How It Works
The oradebug utility comes in handy when you can’t access the session you want to trace, or when the
session has already started before you can set tracing. oradebug lets you attach to the session and start
the SQL tracing. If you aren’t sure about the operating system PID (or SPID) associated with an Oracle
session, you can find it with the following query.

SQL> select p.PID,p.SPID,s.SID
 2 from v$process p,v$session s
 3 where s.paddr = p.addr
 4* and s.sid = &SESSION_ID

oradebug is only a facility that allows you to set tracing—it’s not a tracing procedure by itself. The
results of the 10046 trace you obtain with the oradebug command are identical to those you obtain with a
normal event 10046 trace command.

In the example shown in the “Solution” section, we use the OS PID of the Oracle users. You can also
specify the Oracle Process Identifier (PID) to trace a session, instead of the OS PID.

SQL> connect / as sysdba
SQL> oradebug setorapid 9834
SQL> oradebug unlimit
SQL> oradebug event 10046 trace name context forever,level 12

 In an Oracle RAC environment, as is the case with all other types of Oracle tracing, make sure you
connect to the correct instance before starting the trace. As an alternative to using oradebug, you can use
the dbms_system.set_sql_trace_in_session procedure to set a trace in a running session. Note that
DBMS_SYSTEM is an older package, and the recommended way to trace sessions starting with the Oracle
Database 10g release is to use the DBMS_MONITOR package.

10-22. Enabling Tracing in a Session After a Login

Problem
You want to trace a user’s session, but that session starts executing queries immediately after it logs in.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

358

Solution
If a session immediately begins executing a query after it logs in, it doesn’t give you enough time to get
the session information and start tracing the session. In cases like this, you can create a logon trigger that
automatically starts tracing the session once the session starts. Here is one way to create a logon trigger
to set up a trace for sessions created by a specific user:

SQL> create or replace trigger trace_my_user
 2 after logon on database
 3 begin
 4 if user='SH' then
 5 dbms_monitor.session_trace_enable(null,null,true,true);
 6 end if;
 8* end;
SQL> /

Trigger created.

SQL>

Before creating the logon trigger, make sure that you grant the user the alter session privileges, as
shown here:

SQL> grant alter session to sh,hr;

Grant succeeded.
SQL>

How It Works
Often, you find it hard to trace session activity because the session already starts executing statements
before you can set up the trace. This is especially so in a RAC environment, where it is harder for the DBA
to identify the instance and quickly set up tracing for a running session. A logon trigger is the perfect
solution for such cases. Note that in a RAC environment, the database generates the trace files in the
trace directory of the instance to which a user connected.

A logon trigger for tracing sessions is useful for tracing SQL statements issued by a specific user, by
setting the trace as soon as the user logs in. From that point on, the database traces all SQL statements
issued by that user. Make sure you disable the tracing and drop the logon trigger once you complete
tracing the SQL statements you are interested in. Remember to revoke the alter session privilege from
the user as well.

10-23. Tracing the Optimizer’s Execution Path

Problem
You want to trace the cost-based optimizer (CBO) to examine the execution path for a SQL statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

359

Solution
You can trace the optimizer’s execution path by setting the Oracle event 10053. Here are the steps.

1. Set the trace identifier for the trace file.

SQL> alter session set tracefile_identifier='10053_trace1'
Session altered.
SQL>

2. Issue the alter session set events statement to start the trace.

SQL> alter session set events '10053 trace name context forever,level 1';
Session altered.
SQL>

3. Execute the SQL statement whose execution path you want to trace.

SQL> select * from users
 2 where user_id=88 and
 3 account_status='OPEN'
 4 and username='SH';
…
SQL>

4. Turn the tracing off.

SQL> alter session set events '10053 trace name context off';
Session altered.
SQL>

You can examine the raw trace file directly to learn how the optimizer went about its business in
selecting the execution plan for the SQL statement.

How It Works
An event 10053 trace gives you insight into the way the optimizer does its job in selecting the optimal
execution plan for a SQL statement. For example, you may wonder why the optimizer didn’t use an
index in a specific case—the event 10053 trace shows you the logic used by the optimizer in skipping that
index. The optimizer considers the available statistics for all objects in the query and evaluates various
join orders and access paths. The event 10053 trace also reveals all the evaluations performed by the
optimizer and how it arrived at the best join order and the best access path to use in executing a query.

You can set either Level 1 or Level 2 for the event 10053 trace. Level 2 captures the following types of
information:

• Column statistics

• Single access paths

• Table joins considered by the optimizer

• Join costs

• Join methods considered by the optimizer

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

360

A Level 1 trace includes all the foregoing, plus a listing of all the default initialization parameters
used by the optimizer. You’ll also find detailed index statistics used by the optimizer in determining the
best execution plan. The trace file captures the amazing array of statistics considered by the cost
optimizer, and explains how the CBO creates the execution plan. Here are some of the important things
you’ll find in the CBO trace file.

• List of all internal optimizer-related initialization parameters

• Peeked values of the binds in the SQL statement

• Final query after optimizer transformations

• System statistics (CPUSPEEDNW, IOTFRSPEED, IOSEEKTIM, MBRC)

• Access path analysis for all objects in the query

• Join order evaluation

Unlike a raw 10046 event trace file, a 10053 event trace file is quite easy (and interesting) to read.
Here are key excerpts from our trace file. The trace file shows the cost-based query transformations
applied by the optimizer:

OBYE: Considering Order-by Elimination from view SEL$1 (#0)
OBYE: OBYE performed.

In this case, the optimizer eliminated the order by clause in our SQL statement. After performing all
its transformations, the optimizer arrives at the “final query after transformations,” which is shown here:

select channel_id,count(*)
from sh.sales
group by channel_id

Next, the output file shows the access path analysis for each of the tables in your query.

Access path analysis for SALES

SINGLE TABLE ACCESS PATH
 Single Table Cardinality Estimation for SALES[SALES]
 Table: SALES Alias: SALES
 Card: Original: 918843.000000 Rounded: 918843 Computed: 918843.00 Non Adjusted:
918843.00
 Access Path: TableScan
 Cost: 495.47 Resp: 495.47 Degree: 0
 Cost_io: 481.00 Cost_cpu: 205554857
 Resp_io: 481.00 Resp_cpu: 205554857
 Access Path: index (index (FFS))
 Index: SALES_CHANNEL_BIX
 resc_io: 42.30 resc_cpu: 312277
 ix_sel: 0.000000 ix_sel_with_filters: 1.000000
 Access Path: index (FFS)
 Cost: 42.32 Resp: 42.32 Degree: 1
 Cost_io: 42.30 Cost_cpu: 312277
 Resp_io: 42.30 Resp_cpu: 312277
 ****** trying bitmap/domain indexes ******
 Access Path: index (FullScan)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

361

 Index: SALES_CHANNEL_BIX
 resc_io: 75.00 resc_cpu: 552508
 ix_sel: 1.000000 ix_sel_with_filters: 1.000000
 Cost: 75.04 Resp: 75.04 Degree: 0
 Access Path: index (FullScan)
 Index: SALES_CHANNEL_BIX
 resc_io: 75.00 resc_cpu: 552508
 ix_sel: 1.000000 ix_sel_with_filters: 1.000000
 Cost: 75.04 Resp: 75.04 Degree: 0
 Bitmap nodes:
 Used SALES_CHANNEL_BIX
 Cost = 75.038890, sel = 1.000000
 Access path: Bitmap index - accepted
 Cost: 75.038890 Cost_io: 75.000000 Cost_cpu: 552508.000000 Sel: 1.000000
 Believed to be index-only
 ****** finished trying bitmap/domain indexes ******
******** Begin index join costing ********
******** End index join costing ********
 Best:: AccessPath: IndexFFS
 Index: SALES_CHANNEL_BIX
 Cost: 42.32 Degree: 1 Resp: 42.32 Card: 918843.00 Bytes: 0

In this case, the optimizer evaluates various access paths and shows the optimal access path as an
Index Fast Full Scan (IndexFFS).

The optimizer then considers various permutations of join orders and estimates the cost for each
join order it considers:

Considering cardinality-based initial join order.
Join order[1]: SALES[SALES]#0
GROUP BY sort
GROUP BY adjustment factor: 1.000000
 Total IO sort cost: 0 Total CPU sort cost: 834280255
 Best so far: Table#: 0 cost: 101.0459 card: 918843.0000 bytes: 2756529
Number of join permutations tried: 1
GROUP BY adjustment factor: 1.000000
GROUP BY cardinality: 4.000000, TABLE cardinality: 918843.000000
 Total IO sort cost: 0 Total CPU sort cost: 834280255
 Best join order: 1
 Cost: 101.0459 Degree: 1 Card: 918843.0000 Bytes: 2756529

As our brief review of the 10053 trace output shows, you can get answers to puzzling questions such
as why exactly the optimizer chose a certain join order or an access path, and why it ignored an index.
The answers are all there!

10-24. Generating Automatic Oracle Error Traces

Problem
You want to create an automatic error dump file when a specific Oracle error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

362

Solution
You can create error dumps to diagnose various problems in the database, by specifying the error
number in a hanganalyze or systemstate command. For example, diagnosing the causes for deadlocks is
often tricky. You can ask the database to dump a trace file when it hits the ORA-00060: Deadlock
detected error. To do this, specify the event number 60 with the hanganalyze or the systemstate
command:

SQL> alter session set events '60 trace name hanganalyze level 4';

Session altered.

SQL> alter session set events '60 trace name systemstate level 266';

Session altered.

SQL>

Both of these commands will trigger the automatic dumping of diagnostic data when the database
next encounters the ORA-00060 error. You can use the same technique in an Oracle RAC database. For
example, you can issue the following command to generate automatic hanganalyze dumps:

SQL>alter session set events '60 trace name hanganalyze_global level 4';

This alter session statement invokes the hanganalyze command in any instance in which the
database encounters the ORA-00060 error.

How It Works
Setting event numbers for an error will ensure that when the specified error occurs the next time, Oracle
automatically dumps the error information for you. This comes in very handy when you’re diagnosing
an error that occurs occasionally and getting a current systemstate dump or a hanganalyze dump is
unhelpful. Some events such as deadlocks have a text alias, in which case you can specify the alias
instead of the error number. For the ORA-00060 error, the text alias is deadlock, and so you can issue the
following command for tracing the error:

SQL> alter session set events 'deadlock trace name systemstate level 266';

Session altered.

SQL>

Similarly, you can use text aliases wherever they’re available, for other error events.

10-25. Tracing a Background Process

Problem
You want to trace a background process.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

363

Solution
If you aren’t sure of the correct name of the background process you want to trace, you can list the exact
names of all background processes by issuing the following command:

SQL> select name,description from v$bgprocess;

Suppose you want to trace the dbw0 process. Issue the following commands to start and stop the
trace.

SQL> alter system set events 'sql_trace {process:pname=dbw0}';
System altered.
SQL> alter system set events 'sql_trace {process:pname=dbw0} off';
System altered.
SQL>

You can trace two background processes at the same time by specifying the pipe (|) character to
separate the process names:

SQL> alter system set events 'sql_trace {process:pname=dbw0|dbw1}';
System altered.

SQL> alter system set events 'sql_trace {process:pname=dbw0|dbw1} off';
System altered.
SQL>

How It Works
The Oracle Database 11g release offers several improvements to the SQL tracing facility. One of them is
the new capability that allows you to issue an alter system set events command to trace a process (or
a set of processes) or a specific SQL statement (or a set of statements).This recipe shows how to trace a
background process by specifying the process name.

10-26. Enabling Oracle Listener Tracing

Problem
You want to trace the Oracle listener for diagnostic purposes.

Solution
To generate a trace for the Oracle listener, add the following two lines in the listener.ora file, which is
by default located in the $ORACLE_HOME/network/admin directory.

trace_level_listener=support
trace_timestamp_listener=true

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

364

You can optionally specify a file name for the listener trace by adding the line
trace_file_listener=<file_name>. Reload the listener with the lsnrctl reload command, and then
check the status of the listener with the lsnrctl status command. You should see the trace file listed in
the output:

C:\>lsnrctl reload

The command completed successfully

C:\>lsnrctl status
…

Listener Parameter File C:\app\ora\product\11.2.0\dbhome_1\network\admin\liste
ner.ora
Listener Log File c:\app\ora\diag\tnslsnr\MIROPC61\listener\alert\log.xm
l
Listener Trace File c:\app\ora\diag\tnslsnr\MIROPC61\listener\trace\ora_86
40_9960.trc
…
 Instance "orcl1", status READY, has 1 handler(s) for this service...
Service "orcl1XDB.miro.local" has 1 instance(s).
 Instance "orcl1", status READY, has 1 handler(s) for this service...
The command completed successfully

C:>

The output shows the listener trace file you’ve just configured.

■ Note This and the next recipe don't have anything to with SQL tracing, which is the focus of this chapter.
However, we thought we'd add these two recipes because they're useful, and there's no better chapter to put
them in!

How It Works
You can specify various levels for listener tracing. You can specify Level 4 (user) for user trace
information and Level 10 (admin) for administrative trace information. Oracle Support may request Level
16 (support) for troubleshooting Oracle listener issues.

If you can’t reload or restart the listener, you can configure the tracing dynamically by issuing the
following commands:

C:>lsnrctl

LSNRCTL> set current_listener listener
Current Listener is listener
LSNRCTL> set trc_level 16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

365

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC
listener parameter "trc_level" set to support
The command completed successfully
LSNRCTL>

You can turn off listener tracing by issuing the command set trc_level off, which is the default
value for this parameter:

LSNRCTL> set trc_level off
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521)))
LISTENER parameter "trc_level" set to off
The command completed successfully
LSNRCTL>

You’ll notice that the lsnrctl status command doesn’t show the listener trace file any longer. Note
that the trace file for the listener will not be in the $ORACLE_HOME\rdbms\network\admin directory. Rather,
the database stores the trace file in the diag directory of the database diagnosability infrastructure
(ADR), under the tnslsnr directory, as shown here:

Listener Trace File c:\app\ora\diag\tnslsnr\myhost\listener\trace\ora_86
 40_9960.trc

10-27. Setting Archive Tracing for Data Guard

Problem
You want to trace the creation and transmission of the archive logs in a Data Guard environment.

Solution
You can trace the archive logs on either the primary or the standby database by setting the
log_archive_trace initialization parameter:

log_archive_trace=trace_level(integer)

For example, if you want to set tracing at Level 15 on the primary server, you’d set this parameter as
follows:

SQL> alter system set log_archive_trace=15

By default the log_archive_trace parameter is set to zero, meaning archive log tracing is disabled.

How It Works
Although archive log tracing is disabled when you leave the log_archive_trace parameter at its default
level of zero, the database will still record error conditions in the trace files and the alert log. When you
set the log_archive_trace parameter to a non-zero value, Oracle writes the appropriate trace output
generated by the archive log process to an audit trail. The audit trail is the same trace directory as that
for the SQL trace files—the trace directory in the ADR (this is the same as the user dump directory
specified by the user_dump_dest initialization parameter).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ TRACING SQL EXECUTION

366

On the primary database, the log_archive_trace parameter controls the output of the ARCn
(archiver), FAL (fetch archived log), and the LGWR (log writer) background processes. On the standby
databases, it traces the work of the ARCn, RFS (remote file server), and the FAL processes.

You can specify any of 15 levels of archive log tracing. Here’s what the important tracing levels
mean:

Level 1: Tracks the archiving of log files

Level 2: Tracks archive log status by destination

Level 4: Tracks archive operational phase

Level 8: Tracks archive log destination activity

Level 128: Tracks LGWR redo shipping network activity

Level 4096: Tracks real-time apply activity

Level 8192: Tracks redo apply activity (media recovery or physical standby)

When you specify a higher level of tracing, the trace will include information from all lower tracing
levels. For example, if you specify Level 15, the trace file will include trace information from Levels 1, 2, 4,
and 8.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 1 1

367

Automated SQL Tuning

Prior to Oracle Database 11g, accurately identifying poorly performing SQL queries and recommending
solutions was mainly the purview of veteran SQL tuners. Typically one had to know how to identify
high-resource SQL statements and bottlenecks, generate and interpret execution plans, extract data
from the dynamic performance views, understand wait events and statistics, and then collate this
knowledge to produce good SQL queries. As you’ll see in this chapter, the Oracle SQL tuning paradigm
has shifted a bit.

With the advent of automated SQL tuning features, anybody from novice to expert can generate and
recommend solutions for SQL performance problems. This opens the door for new ways to address
problematic SQL. For example, imagine your boss coming to you each morning with tuning
recommendations and asking what the plan is to implement enhancements. This is different.

The automated SQL tuning feature is not a panacea for SQL performance angst. If you are an expert
SQL tuner, there’s no need to fear your skills are obsolete or your job is lost. There will always be a need
to verify recommendations and successfully implement solutions. A human is still required to review the
automated SQL tuning output and confirm the worthiness of fixes.

Still, there’s been a change in the way SQL performance problems can be identified and solutions
can be recommended. Some old-school folks may disagree and argue that you can’t allow just anybody
to generate SQL tuning advice. Regardless, Oracle has made these automated tools accessible and usable
by the general population (for a fee). Therefore you need to understand the underpinnings of these
features and how to use them.

This chapter focuses on the following automated SQL tuning tools:

• Automatic SQL Tuning

• SQL tuning sets (STS)

• SQL Tuning Advisor

• Automatic Database Diagnostic Monitor (ADDM)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

368

Starting with Oracle Database 11g, Automatic SQL Tuning is a preset background database job that
by default runs every day. This task examines high resource-consuming statements in the Automatic
Workload Repository (AWR). It then invokes the SQL Tuning Advisor and generates tuning advice (if any)
for each statement analyzed. As part of automated SQL tuning, you can configure characteristics such as
the automatic acceptance of some recommendations such as SQL profiles (see Chapter 12 for details on
SQL profiles).

A SQL tuning set (STS) is a database object that contains one or more SQL statements and the
associated execution statistics. You can populate a SQL tuning set from multiple sources, such as SQL
recorded in the AWR and SQL in memory, or you can provide specific SQL statements. It’s critical that
you be familiar with SQL tuning sets. This feature is used as an input to several of Oracle’s performance
tuning and management tools, such as the SQL Tuning Advisor, SQL Plan Management, SQL Access
Advisor, and SQL Performance Advisor.

The SQL Tuning Advisor is central to Oracle’s Automatic SQL Tuning feature. This tool runs
automatically on a periodic basis and generates tuning advice for high resource-consuming SQL
statements found in the AWR. You can also run the SQL Tuning Advisor manually and provide as input
specific snapshot periods in the AWR, high resource-consuming SQL in memory, or user-provided SQL
statements. This tool can be invoked via the DBMS_SQLTUNE package, SQL Developer, or Enterprise
Manager.

The Automatic Database Diagnostic Monitor (ADDM) analyzes information in the AWR and
provides recommendations on database performance issues including high resource-consuming SQL
statements. The main goal of ADDM is to help you reduce the overall time (the DB time metric) spent by
the database processing user requests. This tool can be invoked from an Oracle-provided SQL script, the
DBMS_ADDM package, or Enterprise Manager.

All of the prior listed tools require an extra license from Oracle. You may not have a license to run
these tools. Even if you don’t have one, we still recommend that you know how these tools function. For
example, you might have a manager asking if these automated tools are worth the cost, or you might be
working with a developer who is investigating the use of these tools in a test environment. As a SQL
tuning guru, you need to be familiar with these tools, as you will sooner or later encounter these
automated features.

Before investigating the recipes in this chapter, please take a long look at Figure 11-1. This diagram
demonstrates how the various automated tools interact and in what scenarios you would use a
particular feature. Refer back to this diagram as you work through the recipes in this chapter.
Particularly notice that you can easily use SQL statements found in the AWR or SQL currently in memory
as input for various Oracle tuning tools. This allows you to systematically identify and use high-resource
SQL statements as the target for various performance tuning activities.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

369

Figure 11-1. Oracle’s automatic SQL tuning tools

The first several recipes in this chapter deal with the Automatic SQL Tuning feature. You’ll be shown
how to determine if and when the automated job is running and how to modify its characteristics. The
middle section of this chapter focuses on how to create and manage SQL tuning sets. SQL tuning sets are
used widely as input to various Oracle performance tuning tools. Lastly, the chapter shows you how to
manually run the SQL Tuning Advisor and ADDM to generate performance recommendations for SQL
statements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

370

■ Note In the examples in this chapter, we focus on showing you how to use features via SQL and built-in
PL/SQL packages. While we do show some screenshots from Enterprise Manager, we don’t focus on the graphical
tool usage. You should be able to use the SQL and PL/SQL regardless of whether Enterprise Manager is installed.
Furthermore, the manual approach allows you to understand each piece of the process and will help you to
diagnose issues when problems arise.

11-1. Displaying Automatic SQL Tuning Job Details

Problem
You have an Oracle Database 11g environment and want to determine if the Automatic SQL Tuning job
is enabled and regularly running. If the job is enabled, you want to display other aspects, such as when it
starts and how long it executes.

Solution
Use the following query to determine if any Automatic SQL Tuning jobs are enabled:

SELECT client_name, status, consumer_group, window_group
FROM dba_autotask_client
ORDER BY client_name;

The following output shows that there are three enabled automatic jobs running, one of which is the
SQL Tuning Advisor:

CLIENT_NAME STATUS CONSUMER_GROUP WINDOW_GROUP
------------------------------- -------- ------------------------- --------------------
sql tuning advisor ENABLED ORA$AUTOTASK_SQL_GROUP ORA$AT_WGRP_SQ
auto space advisor ENABLED ORA$AUTOTASK_SPACE_GROUP ORA$AT_WGRP_SA
auto optimizer stats collection ENABLED ORA$AUTOTASK_STATS_GROUP ORA$AT_WGRP_OS

Run the following query to view the last several times the Automatic SQL Tuning Advisor job
has run:

SELECT task_name, status, TO_CHAR(execution_end,'DD-MON-YY HH24:MI')
FROM dba_advisor_executions
WHERE task_name='SYS_AUTO_SQL_TUNING_TASK'
ORDER BY execution_end;

Here is some sample output:

TASK_NAME STATUS TO_CHAR(EXECUTION_END
------------------------------ ---------- ---------------------
SYS_AUTO_SQL_TUNING_TASK COMPLETED 30-APR-11 06:00
SYS_AUTO_SQL_TUNING_TASK COMPLETED 01-MAY-11 06:02

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

371

How It Works
When you create a database in Oracle Database 11g or higher, Oracle automatically implements three
automatic maintenance jobs:

• Automatic SQL Tuning Advisor

• Automatic Segment Advisor

• Automatic Optimizer Statistics Collection

These tasks are automatically configured to run in maintenance windows. A maintenance window is
a specified time and duration for the task to run. You can view the maintenance window details with this
query:

SELECT window_name,TO_CHAR(window_next_time,'DD-MON-YY HH24:MI:SS')
,sql_tune_advisor, optimizer_stats, segment_advisor
FROM dba_autotask_window_clients;

Here’s a snippet of the output for this example:

WINDOW_NAME TO_CHAR(WINDOW_NEXT_TIME SQL_TUNE OPTIMIZE SEGMENT_
---------------- ------------------------ -------- -------- --------
THURSDAY_WINDOW 28-APR-11 22:00:00 ENABLED ENABLED ENABLED
FRIDAY_WINDOW 29-APR-11 22:00:00 ENABLED ENABLED ENABLED
SATURDAY_WINDOW 30-APR-11 06:00:00 ENABLED ENABLED ENABLED
SUNDAY_WINDOW 01-MAY-11 06:00:00 ENABLED ENABLED ENABLED

There are several data dictionary views related to the automatically scheduled jobs. See Table 11-1
for descriptions of these views.

Table 11-1. Automatic Maintenance Task View Descriptions

View Name Description

DBA_AUTOTASK_CLIENT Statistical information about automatic jobs

DBA_AUTOTASK_CLIENT_HISTORY Window history of job execution

DBA_AUTOTASK_CLIENT_JOB Currently running automatic scheduled jobs

DBA_AUTOTASK_JOB_HISTORY History of automatic scheduled job runs

DBA_AUTOTASK_SCHEDULE Schedule of automated tasks for next 32 days

DBA_AUTOTASK_TASK Information regarding current and past tasks

DBA_AUTOTASK_OPERATION Operations for automated tasks

DBA_AUTOTASK_WINDOW_CLIENTS Displays windows that belong to the MAINTENANCE_WINDOW_GROUP

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

372

11-2. Displaying Automatic SQL Tuning Advice

Problem
You’re aware that Oracle automatically runs a daily job that generates SQL tuning advice. You want to
view the advice.

Solution
If you’re using Oracle Database 11g Release 2 or higher, here’s the quickest way to display automatically
generated SQL tuning advice:

SQL> SET LINESIZE 80 PAGESIZE 0 LONG 100000
SQL> SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK FROM DUAL;

■ Note Starting with Oracle Database 11g Release 2, the DBMS_AUTO_SQLTUNE package should be used (instead
of DBMS_SQLTUNE) for administrating automatic SQL tuning features. If you are using an older release of Oracle,
use DBMS_SQLTUNE.REPORT_AUTO_TUNING_TASK to view automated SQL tuning advice.

Depending on the activity in your database, there may be a great deal of output. Here’s a small
sample of output from a very active database:

GENERAL INFORMATION SECTION

Tuning Task Name : SYS_AUTO_SQL_TUNING_TASK
Tuning Task Owner : SYS
Workload Type : Automatic High-Load SQL Workload
Execution Count : 30
Current Execution : EXEC_3483
Execution Type : TUNE SQL
Scope : COMPREHENSIVE
.....
Completion Status : COMPLETED
Started at : 04/10/2011 06:00:01
Completed at : 04/10/2011 06:02:41
Number of Candidate SQLs : 103
Cumulative Elapsed Time of SQL (s) : 49124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

373

SUMMARY SECTION

 Global SQL Tuning Result Statistics

Number of SQLs Analyzed : 103
Number of SQLs in the Report : 8
Number of SQLs with Findings : 8
Number of SQLs with Alternative Plan Findings: 1
Number of SQLs with SQL profiles recommended : 1

 SQLs with Findings Ordered by Maximum (Profile/Index) Benefit, Object ID

object ID SQL ID statistics profile(benefit) index(benefit) restructure
---------- ------------- ---------- ---------------- -------------- -----------
 9130 crx9h7tmwwv67 51.44%

AUTOMATICALLY E-MAILING SQL OUTPUT

On Linux/Unix systems, it’s quite easy to automate the e-mailing of output from a SQL script. First
encapsulate the SQL in a shell script, and then use a utility such as cron to automatically generate and e-
mail the output. Here’s a sample shell script:

#!/bin/bash
if [$# -ne 1]; then
 echo "Usage: $0 SID"
 exit 1
fi
source oracle OS variables
. /var/opt/oracle/oraset $1

BOX=`uname -a | awk '{print$2}'`
OUTFILE=$HOME/bin/log/sqladvice.txt

sqlplus -s <<EOF
mv_maint/foo
SPO $OUTFILE
SET LINESIZE 80 PAGESIZE 0 LONG 100000
SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK FROM DUAL;
EOF
cat $OUTFILE | mailx -s "SQL Advice: $1 $BOX" larry@oracle.com
exit 0

Here’s the corresponding cron entry that runs the report on a daily basis:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

374

#---
SQL Advice report from SQL auto tuning
16 11 * * * /orahome/oracle/bin/sqladvice.bsh DWREP
 1>/orahome/oracle/bin/log/sqladvice.log 2>&1
#---

In the prior cron entry, the command was broken into two lines to fit on a page within this book.

How It Works
The “Solution” section describes a simple method to display in-depth tuning advice for high-load
queries in your database. Depending on the activity and load on your database, the report may contain
no suggestions or may provide a great deal of advice. The Automatic SQL Tuning job uses the high-
workload SQL statements identified in the AWR as the target SQL statements to report on. The advice
report consists of one or more of the following general subsections:

• General information

• Summary

• Details

• Findings

• Explain plans

• Alternate plans

• Errors

The general information section contains high-level information regarding the start and end time,
number of SQL statements considered, cumulative elapsed time of the SQL statements, and so on.

The summary section contains information regarding the SQL statements analyzed—for example:

 Global SQL Tuning Result Statistics

Number of SQLs Analyzed : 26
Number of SQLs in the Report : 5
Number of SQLs with Findings : 5
Number of SQLs with Alternative Plan Findings: 1
Number of SQLs with SQL profiles recommended : 5
Number of SQLs with Index Findings : 2

 SQLs with Findings Ordered by Maximum (Profile/Index) Benefit, Object ID

object ID SQL ID statistics profile(benefit) index(benefit) restructure
---------- ------------- ---------- ---------------- -------------- -----------
 1160 31q9w59vpt86t 98.27% 99.90%
 1167 3u8xd0vf2pnhr 98.64%

The detail section contains information describing specific SQL statements, such as the owner and
SQL text. Here is a small sample:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

375

DETAILS SECTION
--
 Statements with Results Ordered by Maximum (Profile/Index) Benefit, Object ID

Object ID : 1160
Schema Name: CHN_READ
SQL ID : 31q9w59vpt86t
SQL Text : SELECT "A2"."UMID","A2"."ORACLE_UNIQUE_ID","A2"."PUBLIC_KEY","A2"
 ."SERIAL_NUMBER",:1||"A1"."USER_NAME","A1"."USER_NAME",NVL("A2"."
 CREATE_TIME_DTT",:2),NVL("A2"."UPDATE_TIME_DTT",:3) FROM
 "COMPUTER_SYSTEM" "A2","USERS" "A1" WHERE

The findings section contains recommendations such as accepting a SQL profile or creating an
index—for example:

FINDINGS SECTION

1- SQL Profile Finding (see explain plans section below)

 A potentially better execution plan was found for this statement.
 Recommendation (estimated benefit: 98.27%)

 - Consider accepting the recommended SQL profile to use
parallel execution for this statement.
 execute dbms_sqltune.accept_sql_profile(task_name =>
 'SYS_AUTO_SQL_TUNING_TASK', object_id => 1160, task_owner =>
 'SYS', replace => TRUE, profile_type => DBMS_SQLTUNE.PX_PROFILE);
.................
2- Index Finding (see explain plans section below)

The execution plan of this statement can be improved by creating
one or more indices.
 Recommendation (estimated benefit: 99.9%)
 --
 - Consider running the Access Advisor to improve the physical schema design
 or creating the recommended index.
 create index CHAINSAW.IDX$$_90890002 on
 CHAINSAW.COMPUTER_SYSTEM("UPDATE_TIME_DTT");

Where appropriate, the original execution plan for a query is displayed along with a suggested fix
and new execution plan. This allows you to see the before and after plan differences. This is very useful
when determining if the findings (such as adding an index) would improve performance.

Lastly, there is an error section of the report. For most scenarios, there typically will not be an error
section in the report.

The “Solution” section showed how to execute the REPORT_AUTO_TUNING_TASK function from a SQL
statement. This function can also be called from an anonymous block of PL/SQL. Here’s an example:

VARIABLE tune_report CLOB;
BEGIN
 :tune_report := DBMS_AUTO_SQLTUNE.report_auto_tuning_task(
 begin_exec => NULL
 ,end_exec => NULL
 ,type => DBMS_AUTO_SQLTUNE.type_text

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

376

 ,level => DBMS_AUTO_SQLTUNE.level_typical
 ,section => DBMS_AUTO_SQLTUNE.section_all
 ,object_id => NULL
 ,result_limit => NULL);
END;
/
--
SET LONG 1000000
PRINT :tune_report

The parameters for the REPORT_AUTO_TUNING_TASK function are described in detail in Table 11-2.
These parameters allow you a great deal of flexibility to customize the advice output.

Table 11-2. Parameter Details for the REPORT_AUTO_TUNING_TASK Function

Parameter Name Description

BEGIN_EXEC Name of beginning task execution; NULL means the most recent task is used.

END_EXEC Name of ending task; NULL means the most recent task is used.

TYPE Type of report to produce; TEXT specifies a text report.

LEVEL Level of detail; valid values are BASIC, TYPICAL, and ALL.

SECTION Section of the report to include; valid values are ALL, SUMMARY, FINDINGS, PLAN,
INFORMATION, and ERROR.

OBJECT_ID Used to report on a specific statement; NULL means all statements.

RESULT_LIMIT Maximum number of SQL statements to include in report

11-3. Generating a SQL Script to Implement Automatic
Tuning Advice

Problem
You’ve reported on the automatic tuning advice. Now you want to generate a SQL script that can be used
to implement tuning advice.

Solution
Use the DBMS_SQLTUNE.SCRIPT_TUNING_TASK function to generate the SQL statements to implement the
advice of a tuning task. You need to provide as input the name of the automatic tuning task. In this
example, the name of the task is SYS_AUTO_SQL_TUNING_TASK:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

377

SET LINES 132 PAGESIZE 0 LONG 10000
SELECT DBMS_SQLTUNE.SCRIPT_TUNING_TASK('SYS_AUTO_SQL_TUNING_TASK') FROM dual;

Here is a small snippet of the output for this example:

execute dbms_stats.gather_index_stats(ownname => 'STAR2', indname => 'F_CONFIG_P
ROD_INST_FK1', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE);
create index NSESTAR.IDX$$_17F5F0004 on NSESTAR.D_DATES("FISCAL_YEAR","FISCAL_WE
EK_NUMBER_IN_YEAR","DATE_DTT");

How It Works
The SCRIPT_TUNING_TASK function generates the SQL to implement the advice recommended by the
Automatic SQL Tuning job. If the tuning task doesn’t have any advice to give, then there won’t be any
SQL statements generated in the output. SYS_AUTO_SQL_TUNING_TASK is the default name of the Automatic
SQL Tuning task. If you’re unsure of the details regarding this task, then query the DBA_ADVISOR_LOG view:

select task_name, execution_start from dba_advisor_log
where task_name='SYS_AUTO_SQL_TUNING_TASK'
order by 2;

Here’s some sample output for this example:

TASK_NAME EXECUTION
------------------------------ ---------
SYS_AUTO_SQL_TUNING_TASK 19-APR-11

11-4. Modifying Automatic SQL Tuning Features

Problem
You’ve noticed that sometimes the Automatic SQL Tuning advice job recommends that a SQL profile be
applied to a SQL statement (see Chapter 12 for details on SQL profiles). The default behavior of the
tuning advice job is to not automatically accept SQL profile recommendations. You want to modify this
behavior and have the Automatic SQL Tuning job automatically place any SQL profiles that it
recommends into an accepted state.

Solution
Use the DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER procedure to modify the default behavior
of Automatic SQL Tuning. For example, if you want SQL profiles to be automatically accepted, you can
do so as follows:

BEGIN
 DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER(
 parameter => 'ACCEPT_SQL_PROFILES', value => 'TRUE');
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

378

You can verify that auto SQL profile accepting is enabled via this query:

SELECT parameter_name, parameter_value
FROM dba_advisor_parameters
WHERE task_name = 'SYS_AUTO_SQL_TUNING_TASK'
AND parameter_name ='ACCEPT_SQL_PROFILES';

Here is some sample output:

PARAMETER_NAME PARAMETER_VALUE
------------------------------ ------------------------------
ACCEPT_SQL_PROFILES TRUE

To disable automatic acceptance of SQL profiles, pass a FALSE value to the procedure:

BEGIN
 DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER(
 parameter => 'ACCEPT_SQL_PROFILES', value => 'FALSE');
END;
/

■ Note Starting with Oracle Database 11g Release 2, the DBMS_AUTO_SQLTUNE package should be used (instead
of DBMS_SQLTUNE) for administrating Automatic SQL Tuning features.

How It Works
The DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER procedure allows you to modify the default
behavior of the Automatic SQL Tuning job. You can view all of the current settings for Automatic SQL
Tuning via this query:

SELECT parameter_name ,parameter_value
FROM dba_advisor_parameters
WHERE task_name = 'SYS_AUTO_SQL_TUNING_TASK'
AND parameter_name IN ('ACCEPT_SQL_PROFILES',
 'MAX_SQL_PROFILES_PER_EXEC',
 'MAX_AUTO_SQL_PROFILES',
 'EXECUTION_DAYS_TO_EXPIRE');

Here’s some sample output:

PARAMETER_NAME PARAMETER_VALUE
------------------------------ ------------------------------
ACCEPT_SQL_PROFILES FALSE
EXECUTION_DAYS_TO_EXPIRE 30
MAX_SQL_PROFILES_PER_EXEC 20
MAX_AUTO_SQL_PROFILES 10000

The prior parameters are described in Table 11-3.

Table 11-3. Description of SET_AUTO_TUNING_TASK_PARAMETER Parameters

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

379

Parameter Name Description

ACCEPT_SQL_PROFILE Determines if SQL profiles are automatically accepted

EXECUTION_DAYS_TO_EXPIRE Number of days to save task history

MAX_SQL_PROFILES_PER_EXEC Limit of SQL profiles accepted per execution of tuning task

MAX_AUTO_SQL_PROFILES Maximum limit of SQL profiles automatically accepted

You can also use Enterprise Manager to manage the features regarding Automatic SQL Tuning.

From the main database page, navigate to the Advisor Central page. Next, click the SQL Advisors link.
Now click the Automatic SQL Tuning Results page. You should be presented with a screen similar to
Figure 11-2.

Figure 11-2. Managing Automatic SQL Tuning with Enterprise Manager

From this screen, you can configure, view results, disable, and enable various aspects of Automatic
SQL Tuning.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

380

11-5. Disabling and Enabling Automatic SQL Tuning

Problem
You want to completely disable and later re-enable the Automatic SQL Tuning job.

Solution
Use the DBMS_AUTO_TASK_ADMIN.DISABLE procedure to disable the Automatic SQL Tuning job. This
example disables the Automatic SQL Tuning Advisor job.

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

To re-enable the job, use the ENABLE procedure as shown:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

You can report on the status of the automatic tuning job via this query:

SELECT client_name ,status ,consumer_group
FROM dba_autotask_client
ORDER BY client_name;

Here’s some sample output:

CLIENT_NAME STATUS CONSUMER_GROUP
-------------------------------- --------------- ------------------------------
auto optimizer stats collection ENABLED ORA$AUTOTASK_STATS_GROUP
auto space advisor ENABLED ORA$AUTOTASK_SPACE_GROUP
sql tuning advisor ENABLED ORA$AUTOTASK_SQL_GROUP

How It Works
You might want to disable the Automatic SQL Tuning job because you have a very active database and
want to ensure that this job doesn’t impact the overall performance of the database. The DBMS_AUTO_
TASK_ADMIN.ENABLE/DISABLE procedures allow you to turn on and off the Automatic SQL Tuning job.
These procedures take three parameters (see Table 11-4 for details). The behavior of the procedures
varies depending on which parameters you pass in:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

381

• If CLIENT_NAME is provided and both OPERATION and WINDOW_NAME are NULL, then the
client is disabled.

• If OPERATION is provided, then the operation is disabled.

• If WINDOW_NAME is provided, and OPERATION is NULL, then the client is disabled in the
provided window name.

The prior parameters allow you to control at a granular detail the schedule of the automatic task.
Given the prior rules, you would disable the Automatic SQL Tuning job during the Tuesday maintenance
window as follows:

BEGIN
 dbms_auto_task_admin.disable(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => 'TUESDAY_WINDOW');
END;
/

You can verify that the window has been disabled via this query:

SELECT window_name,TO_CHAR(window_next_time,'DD-MON-YY HH24:MI:SS')
,sql_tune_advisor
FROM dba_autotask_window_clients;

Here is a snippet of the output:

WINDOW_NAME TO_CHAR(WINDOW_NEXT_TIME SQL_TUNE
---------------- ------------------------ --------
TUESDAY_WINDOW 03-MAY-11 22:00:00 DISABLED

Table 11-4. Parameter Descriptions for DBMS_AUTO_TASK_ADMIN.ENABLE and DISABLE Procedures

Parameter Description

CLIENT_NAME Name of client; query DBA_AUTOTASK_CLIENT for details.

OPERATION Name of operation; query DBA_AUTOTASK_OPERATION for details.

WINDOW_NAME Operation name of the window

11-6. Modifying Maintenance Window Attributes

Problem
You realize that the automatic tasks (such as the Automatic SQL Tuning job) run during regularly
scheduled maintenance windows. You want to modify the length of time associated with a maintenance
window.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

382

Solution
Here’s an example that changes the duration of the Sunday maintenance window to two hours:

BEGIN
 dbms_scheduler.set_attribute(
 name => 'SUNDAY_WINDOW',
 attribute => 'DURATION',
 value => numtodsinterval(2, 'hour'));
END;
/

You can confirm the changes to the maintenance window with this query:

SELECT window_name, next_start_date, duration
FROM dba_scheduler_windows;

Here is a snippet of the output:

WINDOW_NAME NEXT_START_DATE DURATION
---------------- -- --------------------
SATURDAY_WINDOW 07-MAY-11 06.00.00.000000 AM US/MOUNTAIN +000 20:00:00
SUNDAY_WINDOW 08-MAY-11 06.00.00.000000 AM US/MOUNTAIN +000 02:00:00

How It Works
The key to understanding how to modify a maintenance window is that it is an attribute of the database
job scheduler and therefore must be maintained via the DBMS_SCHEDULER package. When you install
Oracle Database 11g, by default three automatic maintenance jobs are configured:

• Automatic SQL Tuning

• Statistics gathering

• Segment advice

These jobs automatically execute in preconfigured daily maintenance windows. A maintenance
window consists of a day of the week and the length of time the job runs.

You can view the future one month’s worth of scheduled jobs via this query:

SELECT window_name, to_char(start_time,'dd-mon-yy hh24:mi'), duration
FROM dba_autotask_schedule
ORDER BY start_time;

Here is a small sample of the output:

WINDOW_NAME TO_CHAR(START_TIME,'D DURATION
-------------------- --------------------- --------------------
SATURDAY_WINDOW 14-may-11 06:00 +000 20:00:00
SUNDAY_WINDOW 15-may-11 06:00 +000 02:00:00

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

383

■ Tip See Oracle’s Database Administrator’s Guide (available on the Oracle Technology Network web site) for
further details on managing scheduled jobs.

11-7. Creating a SQL Tuning Set Object

Problem
You’re working on a performance issue that requires that you analyze a group of SQL statements. Before
you process the SQL statements as a set, you need to create a SQL tuning set object.

Solution
Use the DBMS_SQLTUNE.CREATE_SQLSET procedure to create a SQL tuning set object—for example:

BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET(
 sqlset_name => 'HIGH_IO',
 description => 'High disk read tuning set');
END;
/

The prior code creates a tuning set with the name of HIGH_IO. At this point, you have created a
named tuning set object. The tuning set does not contain any SQL statements.

How It Works
A SQL tuning set object must be created before populating a tuning set with SQL statements (see Recipes
11-9 through 11-11 for details on adding SQL statements to an STS). You can view any defined SQL
tuning sets in the database by querying the DBA_SQLSET view:

SQL> select id, name, created, statement_count from dba_sqlset;

Here is some sample output:

 ID NAME CREATED STATEMENT_COUNT
---------- ------------------------------ --------- ---------------
 5 HIGH_IO 26-APR-11 0

If you need to drop a SQL tuning set object, then use the DBMS_SQLTUNE.DROP_SQLSET procedure to
drop a tuning set. The following example drops a tuning set named MY_TUNING_SET:

SQL> EXEC DBMS_SQLTUNE.DROP_SQLSET(sqlset_name => 'MY_TUNING_SET');

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

384

11-8. Viewing Resource-Intensive SQL in the AWR

Problem
Before populating a SQL tuning set, you want to view high-load SQL statements in the AWR. You want to
eventually use SQL contained in the AWR as input for populating a SQL tuning set.

Solution
The DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function can be used to extract SQL stored in the AWR.
This particular query selects queries in the AWR between snapshots 8200 and 8201 ordered by the top 10
in the disk reads usage category:

SELECT
 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
FROM table(DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(8200,8201,
 null, null, 'disk_reads',null, null, null, 10))
ORDER BY disk_reads DESC;

Here is a small snippet of the output:

SQL_ID SUBSTR(SQL_TEXT,1,20 DISK_READS CPU_TIME ELAPSED_TIME
-------------- -------------------- ---------- ------------- -------------
achffburdff9j delete from "MVS"." 101145 814310000 991574249
5vku5ap6g6zh8 INSERT /*+ BYPASS_RE 98172 75350000 91527239

How It Works
Before you work with SQL tuning sets, it’s critical to understand you can use the
DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function to retrieve high resource-usage SQL from the AWR.
The result sets retrieved by this PL/SQL function can be used as input for populating SQL tuning sets.
See Table 11-5 for a description of the SELECT_WORKLOAD_REPOSITORY function parameters.

You have a great deal of flexibility in how you use this function. A few examples will help illustrate
this. Say you want to retrieve SQL from the AWR that was not parsed by the SYS user. Here is the SQL to
do that:

SELECT sql_id, substr(sql_text,1,20)
,disk_reads, cpu_time, elapsed_time, parsing_schema_name
FROM table(
DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(8200,8201,
'parsing_schema_name <> ''SYS''',
NULL, NULL,NULL,NULL, 1, NULL, 'ALL'));

The following example retrieves the top ten queries ranked by buffer gets for non-SYS users:

SELECT

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

385

 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
,buffer_gets
,parsing_schema_name
FROM table(
DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(
 begin_snap => 21730
,end_snap => 22900
,basic_filter => 'parsing_schema_name <> ''SYS'''
,ranking_measure1 => 'buffer_gets'
,result_limit => 10
));

In the prior queries, the SYS keyword is enclosed by two single quotes (in other words, those aren’t
double quotes around SYS).

Table 11-5. Parameter Descriptions of the SELECT_WORKLOAD_REPOSITORY Function

Parameter Description

BEGIN_SNAP Non-inclusive beginning snapshot ID

END_SNAP Inclusive ending snapshot ID

BASELINE_NAME Name of AWR baseline

BASIC_FILTER SQL predicate to filter SQL statements from workload; if not set, then only
SELECT, INSERT, UPDATE, DELETE, MERGE, and CREATE TABLE statements are
captured.

OBJECT_FILTER Not currently used

RANKING_MEASURE(n) Order by clause on selected SQL statement(s), such as elapsed_time, cpu_time,
buffer_gets, disk_reads, and so on; N can be 1, 2, or 3.

RESULT_PERCENTAGE Filter for choosing top N% for ranking measure

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

386

Continued

Parameter Description

RESULT_LIMIT Limit of the number of SQL statements returned in the result set.

ATTRIBUTE_LIST List of SQL statement attributes (TYPICAL, BASIC, ALL, and so on)

RECURSIVE_SQL Include/exclude recursive SQL (HAS_RECURSIVE_SQL or NO_RECURSIVE_SQL)

11-9. Viewing Resource-Intensive SQL in Memory

Problem
Before populating a SQL tuning set, you want to view high-load SQL statements in the cursor cache in
memory. You want to eventually use SQL contained in memory as input for populating a SQL tuning set.

Solution
Use the DBMS_SQLTUNE.SELECT_CURSOR_CACHE function to view current high resource-consuming SQL
statements in memory. This query selects SQL statements in memory that have required more than a
million disk reads:

SELECT
 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('disk_reads > 1000000'))
ORDER BY sql_id;

Here is some sample output:

SQL_ID SUBSTR(SQL_TEXT,1,20 DISK_READS CPU_TIME ELAPSED_TIME
------------- -------------------- ---------- ---------- ------------
0s6gq1c890p4s delete from "MVS"." 3325320 8756130000 1.0416E+10
b63h4skwvpshj BEGIN dbms_mview.ref 9496353 1.4864E+10 3.3006E+10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

387

How It Works
Before you work with SQL tuning sets, it’s critical to understand you can use the
DBMS_SQLTUNE.SELECT_CURSOR_CACHE function to retrieve high resource-usage SQL from memory. The
result set retrieved by this PL/SQL function can be used as input for populating SQL tuning sets. See
Table 11-6 for a description of the SELECT_CURSOR_CACHE function parameters.

You have a great deal of flexibility in how you use this function. Here’s an example that selects SQL
in memory, but excludes statements parsed by the SYS user and also returns statements with an elapsed
time greater than 100,000:

SELECT sql_id, substr(sql_text,1,20)
,disk_reads, cpu_time, elapsed_time
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('parsing_schema_name <> ''SYS''
 AND elapsed_time > 100000'))
ORDER BY sql_id;

In the prior query, the SYS keyword is enclosed by two single quotes (in other words, those aren’t
double quotes around SYS). The SQL_TEXT column is truncated to 20 characters so that the output can be
displayed on the page more easily. Here is some sample output:

SQL_ID SUBSTR(SQL_TEXT,1,20 DISK_READS CPU_TIME ELAPSED_TIME
------------- -------------------- ---------- ---------- ------------
byzwu34haqmh4 SELECT /* DS_SVC */ 0 140000 159828

Once you have identified a SQL_ID for a resource-intensive SQL statement, you can view all of its
execution details via this query:

SELECT *
FROM table(DBMS_SQLTUNE.SELECT_CURSOR_CACHE('sql_id = ''byzwu34haqmh4'''));

Note that the SQL_ID in the prior statement is enclosed by two single quotes (not double quotes).
This next example selects the top ten queries in memory in terms of CPU time for non-SYS users:

SELECT
 sql_id
,substr(sql_text,1,20)
,disk_reads
,cpu_time
,elapsed_time
,buffer_gets
,parsing_schema_name
FROM table(
DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 basic_filter => 'parsing_schema_name <> ''SYS'''
,ranking_measure1 => 'cpu_time'
,result_limit => 10
));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

388

Table 11-6. Parameter Descriptions of the SELECT_CURSOR_CACHE Function

Parameter Description

BASIC_FILTER SQL predicate to filter SQL in the cursor cache

OBJECT_FILTER Currently not used

RANKING_MEASURE(n) ORDER BY clause for the SQL returned

RESULT_PERCENTAGE Filter for the top N percent queries for the ranking measure provided; invalid if
more than one ranking measure provided

RESULT_LIMIT Top number of SQL statements filter

ATTRIBUTE_LIST List of SQL attributes to return in result set

RECURSIVE_SQL Include recursive SQL

11-10. Populating SQL Tuning Set from High-Resource SQL in
AWR

Problem
You want to create a SQL tuning set and populate it with the top I/O-consuming SQL statements found
in the AWR.

Solution
Use the following steps to populate a SQL tuning set from high resource-consuming statements in the
AWR:

1. Create a SQL tuning set object.

2. Determine begin and end AWR snapshot IDs.

3. Populate the SQL tuning set with high-resource SQL found in AWR.

The prior steps are detailed in the following subsections.

Step 1: Create a SQL Tuning Set Object
Create a SQL tuning set. This next bit of code creates a tuning set named IO_STS:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

389

BEGIN
 dbms_sqltune.create_sqlset(
 sqlset_name => 'IO_STS'
 description => 'STS from AWR');
END;
/

Step 2: Determine Begin and End AWR Snapshot IDs
If you’re unsure of the available snapshots in your database, you can run an AWR report or select the
SNAP_ID from DBA_HIST_SNAPSHOTS:

select snap_id, begin_interval_time
from dba_hist_snapshot order by 1;

Step 3: Populate the SQL Tuning Set with High-Resource SQL Found in AWR
Now the SQL tuning set is populated with the top 15 SQL statements ordered by disk reads. The begin
and end AWR snapshot IDs are 26800 and 26900 respectively:

DECLARE
 base_cur dbms_sqltune.sqlset_cursor;
BEGIN
 OPEN base_cur FOR
 SELECT value(x)
 FROM table(dbms_sqltune.select_workload_repository(
 26800,26900, null, null,'disk_reads',
 null, null, null, 15)) x;
 --
 dbms_sqltune.load_sqlset(
 sqlset_name => 'IO_STS',
 populate_cursor => base_cur);
END;
/

The prior code populates the top 15 SQL statements contained in the AWR ordered by disk reads.
The DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function is used to populate a PL/SQL cursor with AWR
information based on a ranking criterion. Next the DBMS_SQLTUNE.LOAD_SQLSET procedure is used to
populate the SQL tuning set using the cursor as input.

How It Works
The DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY function can be used in a variety of ways to populate a
SQL tuning set using queries in the AWR. You can instruct it to load SQL statements by criteria such as
disk reads, elapsed time, CPU time, buffer gets, and so on. See Table 11-5 for descriptions for parameters
to this function. When designating the AWR as input, you can use either of the following:

• Begin and end AWR snapshot IDs

• An AWR baseline that you’ve previously created

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

390

You can view the details of the SQL tuning set (created in the “Solution” section) via this query:

SELECT
 sqlset_name
,elapsed_time
,cpu_time
,buffer_gets
,disk_reads
,sql_text
FROM dba_sqlset_statements
WHERE sqlset_name = 'IO_STS';

11-11. Populating a SQL Tuning Set from Resource-
Consuming SQL in Memory

Problem
You want to populate a tuning set from high resource-consuming SQL statements that are currently in
the memory.

Solution
Use the DBMS_SQLTUNE.SELECT_CURSOR_CACHE function to populate a SQL tuning set with statements
currently in memory. This example creates a tuning set and populates it with high-load resource-
consuming statements not belonging to the SYS schema and having disk reads greater than 1,000,000:

-- Create the tuning set
EXEC DBMS_SQLTUNE.CREATE_SQLSET('HIGH_DISK_READS');
-- populate the tuning set from the cursor cache
DECLARE
 cur DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN cur FOR
 SELECT VALUE(x)
 FROM table(
 DBMS_SQLTUNE.SELECT_CURSOR_CACHE(
 'parsing_schema_name <> ''SYS'' AND disk_reads > 1000000',
 NULL, NULL, NULL, NULL, 1, NULL,'ALL')) x;
--
 DBMS_SQLTUNE.LOAD_SQLSET(sqlset_name => 'HIGH_DISK_READS',
 populate_cursor => cur);
END;
/

In the prior code, notice that the SYS user is bookended by sets of two single quotes (not double
quotes). The SELECT_CURSOR_CACHE function loads the SQL statements into a PL/SQL cursor, and the
LOAD_SQLSET procedure populates the SQL tuning set with the SQL statements.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

391

How It Works
The DBMS_SQLTUNE.SELECT_CURSOR_CACHE function (see Table 11-6 for function parameter descriptions)
allows you to extract from memory SQL statements and associated statistics into a SQL tuning set. The
procedure allows you to filter SQL statements by various resource-consuming criteria, such as the
following:

• ELAPSED_TIME

• CPU_TIME

• BUFFER_GETS

• DISK_READS

• DIRECT_WRITES

• ROWS_PROCESSED

This allows you a great deal of flexibility on how to filter and populate the SQL tuning set.

11-12. Populating SQL Tuning Set with All SQL in Memory

Problem
You want to create a SQL tuning set and populate it with all SQL statements currently in memory.

Solution
Use the DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET procedure to efficiently capture all of the SQL
currently stored in the cursor cache (in memory). This example creates a SQL tuning set named
PROD_WORKLOAD and then populates by sampling memory for 3,600 seconds (waiting 20 seconds between
each polling event):

BEGIN
 -- Create the tuning set
 DBMS_SQLTUNE.CREATE_SQLSET(
 sqlset_name => 'PROD_WORKLOAD'
 ,description => 'Prod workload sample');
 --
 DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(
 sqlset_name => 'PROD_WORKLOAD'
 ,time_limit => 3600
 ,repeat_interval => 20);
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

392

How It Works
The DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET procedure allows you to poll for queries and memory
and use any queries found to populate a SQL tuning set. This is a powerful technique that you can use
when it’s required to capture a sample set of all SQL statements executing.

You have a great deal of flexibility on instructing DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET to
capture SQL statements in memory (see Table 11-7 for details on all parameters). For example, you can
instruct the procedure to capture a cumulative set of statistics for each SQL statement by specifying a
CAPTURE_MODE of DBMS_SQLTUNE.MODE_ACCUMULATE_STATS.

BEGIN
 DBMS_SQLTUNE.CAPTURE_CURSOR_CACHE_SQLSET(
 sqlset_name => 'PROD_WORKLOAD'
 ,time_limit => 60
 ,repeat_interval => 10
 ,capture_mode => DBMS_SQLTUNE.MODE_ACCUMULATE_STATS);
END;
/

This is more resource-intensive than the default settings, but produces more accurate statistics for
each SQL statement.

Table 11-7. CAPTURE_CURSOR_CACHE_SQLSET Parameter Descriptions

Parameter Description Default Value

SQLSET_NAME SQL tuning set name none

TIME_LIMIT Total time in seconds to spend sampling 1800

REPEAT_INTERVAL While sampling, amount of time to pause in seconds
before polling memory again

300

CAPTURE_OPTION Either INSERT, UPDATE, or MERGE statements when new
statements are detected

MERGE

CAPTURE_MODE When capture option is UPDATE or MERGE, either replace
statistics or accumulate statistics. Possible values are
MODE_REPLACE_OLD_STATS or MODE_ACCUMULATE_STATS.

MODE_REPLACE_OLD_STATS

BASIC_FILTER Filter type of statements captured NULL

SQLSET_OWNER SQL tuning set owner; NULL indicates the current user. NULL

RECURSIVE_SQL Include (or not) recursive SQL; possible values are
HAS_RECURSIVE_SQL, NO_RECURSIVE_SQL.

HAS_RECURSIVE_SQL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

393

11-13. Displaying the Contents of a SQL Tuning Set

Problem
You have populated a SQL tuning set and want to verify its characteristics such as the SQL statements
and corresponding statistics.

Solution
You can determine the name and number of SQL statements for SQL tuning sets in your database via
this query:

SELECT name, created, statement_count
FROM dba_sqlset;

Here is some sample output:

NAME CREATED STATEMENT_COUNT
------------------------------ --------- ---------------
test1 19-APR-11 29

Use the following query to display the SQL text and associated statistical information for each query
within the SQL tuning set:

SELECT sqlset_name, elapsed_time, cpu_time, buffer_gets, disk_reads, sql_text
FROM dba_sqlset_statements;

Here is a small snippet of the output. The SQL_TEXT column has been truncated in order to fit the
output on the page:

SQLSET_NAME ELAPSED_TIME CPU_TIME BUFFER_GETS DISK_READS SQL_TEXT
--------------- ------------ ---------- ----------- ---------- ----------------------------
test1 235285363 45310000 112777 3050 INSERT
test1 52220149 22700000 328035 18826 delete from.....

How It Works
Recall that a SQL tuning set consists of one or more SQL statements and the corresponding execution
statistics. This information is viewable from the DBA_SQLSET_* views. Table 11-8 describes the type of SQL
tuning set information contained within each of these views.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

394

Table 11-8. Views Containing SQL Tuning Set Information

View Name Description

DBA_SQLSET Displays information regarding SQL tuning sets

DBA_SQLSET_BINDS Displays bind variable information associated with SQL tuning sets

DBA_SQLSET_PLANS Shows execution plan information for queries in a SQL tuning set

DBA_SQLSET_STATEMENTS Contains SQL text and associated statistics

DBA_SQLSET_REFERENCES Shows whether a SQL tuning set is active

You can also use the DBMS_SQLTUNE.SELECT_SQLSET function to retrieve information about SQL tuning

sets—for example:

SELECT
 sql_id
,elapsed_time
,cpu_time
,buffer_gets
,disk_reads
,sql_text
FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET('&&sqlset_name'));

Whether you use the DBMS_SQLTUNE.SELECT_SQLSET function or directly query the data dictionary
views depends entirely on your personal preference or business requirement.

11-14. Selectively Deleting Statements from a SQL Tuning
Set

Problem
You want to prune SQL statements from an STS that don’t meet a performance measure, such as queries
that have less than 2,000,000 disk reads.

Solution
First view the existing SQL information associated with an STS:

select sqlset_name, disk_reads, cpu_time, elapsed_time, buffer_gets
from dba_sqlset_statements;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

395

Here is some sample output:

SQLSET_NAME DISK_READS CPU_TIME ELAPSED_TIME BUFFER_GETS
------------------------------ ---------- ---------- ------------ -----------
IO_STS 3112941 3264960000 7805935285 2202432
IO_STS 2943527 3356460000 8930436466 1913415
IO_STS 2539642 2310610000 5869237421 1658465
IO_STS 1999373 2291230000 6143543429 1278601
IO_STS 1993973 2243180000 5461607976 1272271
IO_STS 1759096 1930320000 4855618689 1654252

Now use the DBMS_SQLTUNE.DELETE_SQLSET procedure to remove SQL statements from the STS based
on the specified criterion. This example removes SQL statements that have less than 2,000,000 disk reads
from the SQL tuning set named IO_STS:

BEGIN
 DBMS_SQLTUNE.DELETE_SQLSET(
 sqlset_name => 'IO_STS'
 ,basic_filter => 'disk_reads < 2000000');
END;
/

How It Works
The key to understanding is that a SQL tuning set consists of the following:

• One or more SQL statements

• Associated metrics/statistics for each SQL statement

Because the metrics/statistics are part of the STS, you can remove SQL statements from a SQL
tuning set based on characteristics of the associated metrics/statistics. You can use the
DBMS_SQLTUNE.DELETE_SQLSET procedure to remove statements from the STS based on statistics such as
the following:

• ELAPSED_TIME

• CPU_TIME

• BUFFER_GETS

• DISK_READS

• DIRECT_WRITES

• ROWS_PROCESSED

If you want to delete all SQL statements from a SQL tuning set, then don’t specify a filter—for
example:

SQL> exec DBMS_SQLTUNE.DELETE_SQLSET(sqlset_name => 'IO_STS');

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

396

11-15. Transporting a SQL Tuning Set

Problem
You’ve identified some resource-intensive SQL statements in a production environment. You want to
transport these statements and associated statistics to a test environment, where you can tune the
statements without impacting production.

Solution
The following steps are used to copy a SQL tuning set from one database to another:

1. Create a staging table in source database.

2. Populate the staging table with STS data.

3. Copy the staging table to the destination database.

4. Unpack the staging table in the destination database.

The prior steps are elaborated on in the following subsections.

Step 1: Create a Staging Table in the Source Database
Use the DBMS_SQLTUNE.CREATE_STGTAB_SQLSET procedure to create a table that will be used to contain the
SQL tuning set metadata. This example creates a table named STS_TABLE:

BEGIN
 dbms_sqltune.create_stgtab_sqlset(
 table_name => 'STS_TABLE'
 ,schema_name => 'MV_MAINT');
END;
/

Step 2: Populate Staging Table with STS Data
Now populate the staging table with STS metadata using DBMS_SQLTUNE.PACK_STGTAB_SQLSET:

BEGIN
 dbms_sqltune.pack_stgtab_sqlset(
 sqlset_name => 'IO_STS'
 ,sqlset_owner => 'SYS'
 ,staging_table_name => 'STS_TABLE'
 ,staging_schema_owner => 'MV_MAINT');
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

397

If you’re unsure of the names of the STS you want to transport, run the following query to get the
details:

SELECT name, owner, created, statement_count
FROM dba_sqlset;

Step 3: Copy the Staging Table to the Destination Database
You can copy the table from one database to the other via Data Pump, the old exp/imp utilities, or by
using a database link. This example creates a database link in the destination database and then copies
the table from the source database:

create database link source_db
connect to mv_maint
identified by foo
using 'source_db';

In the destination database, the table can be copied directly from the source with the CREATE TABLE
AS SELECT statement:

SQL> create table STS_TABLE as select * from STS_TABLE@source_db;

Step 4: Unpack the Staging Table in the Destination Database
Use the DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET procedure to take the contents of the staging table and
populate the data dictionary with the SQL tuning set metadata. This example unpacks all SQL tuning
sets contained within the staging table:

BEGIN
DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(
 sqlset_name => '%'
 ,replace => TRUE
 ,staging_table_name => 'STS_TABLE');
END;
/

How It Works
A SQL tuning set consists of one or more queries and corresponding execution statistics. You will
occasionally have a need to copy a SQL tuning set from one database to another. For example, you might
be having performance problems with a production database but want to capture and move the top
resource-consuming statements to a test database where you can diagnose the SQL (within the STS)
without impacting production.

Keep in mind that an STS can be used as input for any of the following tools:

• SQL Tuning Advisor

• SQL Access Advisor

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

398

• SQL Plan Management

• SQL Performance Analyzer

The prior tools are used extensively to troubleshoot and test SQL performance. Transporting a SQL
tuning set from one environment to another allows you to use these tools in a testing or development
environment.

■ Note SQL tuning sets can be transported to Oracle Database 10g R2 or higher versions of the database only.

11-16. Creating a Tuning Task

Problem
You realize that as part of manually running the SQL Tuning Advisor, you need to first create a tuning
task.

■ Tip Refer to Figure 11-1 for the details on the flow of processes required when manually running the SQL
Tuning Advisor.

Solution
Use the DBMS_SQLTUNE.CREATE_TUNING_TASK procedure to create a SQL tuning task. You can use the
following as inputs when creating a SQL tuning task:

• Text for a specific SQL statement

• SQL identifier for a specific SQL statement from the cursor cache in memory

• Single SQL statement from the AWR given a range of snapshot IDs

• SQL tuning set name (see Recipes 11-7 through 11-11 for details on how to create
a SQL tuning set)

Examples of the prior techniques for creating a SQL tuning task are described in the following
subsections.

■ Note The user creating the tuning task needs the ADMINISTER SQL MANAGEMENT OBJECT system privilege.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

399

Text for a Specific SQL Statement
This example provides the text of a SQL statement when creating the tuning task:

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;
BEGIN
 tune_sql := 'select count(*) from mgmt_db_feature_usage_ecm';
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text => tune_sql
 ,user_name => 'MV_MAINT'
 ,scope => 'COMPREHENSIVE'
 ,time_limit => 60
 ,task_name => 'tune_test'
 ,description => 'Provide SQL text'
);
END;
/

SQL ID for a Specific SQL Statement from the Cursor Cache
First identify the SQL_ID by querying V$SQL:

SELECT sql_id, sql_text
FROM v$sql where sql_text like '%&&mytext%';

Once you have the SQL_ID, you can provide it as input to DBMS_SQLTUNE.CREATE_TUNING_TASK:

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;
BEGIN
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_id => '98u3gf0xzq03f'
 ,task_name => 'tune_test2'
 ,description => 'Provide SQL ID'
);
END;
/

Single SQL Statement from the AWR Given a Range of Snapshot IDs
Here’s an example of creating a SQL tuning task by providing a SQL_ID and range of AWR snapshot IDs:

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

400

BEGIN
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_id => '1tbu2jp7kv0pm'
 ,begin_snap => 21690
 ,end_snap => 21864
 ,task_name => 'tune_test3'
);
END;
/

If you’re not sure which SQL_ID (and associated query) to use, then run this query:

SQL> select sql_id, sql_text from dba_hist_sqltext;

If you’re unaware of the available snapshot IDs, then run this query:

SQL> select snap_id from dba_hist_snapshot order by 1;

■ Tip By default, the AWR contains only high resource-consuming queries. You can modify this behavior and
ensure that a specific SQL statement is included in every snapshot (regardless of its resource consumption) by
adding it to the AWR via the following:

SQL> exec dbms_workload_repository.add_colored_sql('98u3gf0xzq03f');

SQL Tuning Set Name
If you have the requirement of running the SQL Tuning Advisor against multiple SQL queries, then a SQL
tuning set is required. To create a tuning task using a SQL tuning set as input, do so as follows:

SQL> variable mytt varchar2(30);
SQL> exec :mytt := DBMS_SQLTUNE.CREATE_TUNING_TASK(sqlset_name => 'IO_STS');
SQL> print :mytt

How It Works
Before manually executing the SQL Tuning Advisor, you first need to define what SQL statements will be
used as input. You do this by creating a SQL tuning task. Oracle provides a great deal of flexibility on how
you add SQL statements to a tuning task. As shown in the “Solution” section, you can do the following:

• Hard-code the text for a specific SQL query

• Use a SQL query in memory

• Use a SQL query in the AWR

• Define a SQL tuning set when tuning multiple queries

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

401

The prior techniques provide a variety of ways to identify SQL statements to be analyzed by the SQL
Tuning Advisor. Once you’ve created a tuning task, you can view its details via this query:

select owner, task_name, advisor_name, created
from dba_advisor_tasks
order by created;

Once you have created a tuning task, you can now manually execute the SQL Tuning Advisor
(Recipe 11-17). If you need to drop the tuning task, you can do so as follows:

SQL> exec dbms_sqltune.drop_tuning_task(task_name => '&&task_name');

11-17. Manually Running SQL Tuning Advisor

Problem
You want to manually execute SQL Tuning Advisor and get tuning advice for a SQL statement.

Solution
Use the following steps to manually run the SQL Tuning Advisor:

1. Create a tuning task (see Recipe 11-16 for complete details); this defines which
SQL statements will be tuned. This can be a single SQL statement or several
SQL statements within a SQL tuning set.

2. Execute the tuning task.

3. Display the results of the tuning task.

This example runs the SQL Tuning Advisor for a single SQL statement. First a tuning task is created.

DECLARE
 tune_task VARCHAR2(30);
 tune_sql CLOB;
BEGIN
 tune_sql := 'select a.emp_id, b.dept_name ' ||
 'from emp a, dept b ' ||
 'where a.dept_id = b.dept_id';
 --
 tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text => tune_sql
 ,user_name => 'MV_MAINT'
 ,scope => 'COMPREHENSIVE'
 ,time_limit => 60
 ,task_name => 'tune_test'
 ,description => 'Tune a SQL statement.'
);
END;
/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

402

Next the tuning task is executed:

SQL> exec dbms_sqltune.execute_tuning_task(task_name => 'tune_test');

Lastly, a report is generated that displays the tuning advice:

SQL> set long 10000 longchunksize 10000
SQL> set linesize 132 pagesize 200
SQL> select dbms_sqltune.report_tuning_task('tune_test') from dual;

Here is some sample output:

1- Statistics Finding

 Table "MV_MAINT"."DEPT" was not analyzed.
 Recommendation

 - Consider collecting optimizer statistics for this table.
....
2- Index Finding (see explain plans section below)
--
 The execution plan of this statement can be improved by creating one or more
 indices.
 Recommendation (estimated benefit: 97.98%)
 --
 - Consider running the Access Advisor to improve the physical schema design
 or creating the recommended index.
 create index MV_MAINT.IDX$$_21E10001 on MV_MAINT.EMP("DEPT_ID");

The prior output has specific recommendations on generating statistics for a table in the query and
adding an index. You’ll need to test the recommendations to ensure that performance does improve
before implementing them in a production environment.

OPTIMIZER TUNING MODES

The optimizer operates in two different modes: normal and tuning. When a SQL statement executes, the
optimizer operates in normal mode and quickly identifies a reasonable execution plan. In this mode, the
optimizer spends only a fraction of a second to try to determine the best plan.

When the SQL Tuning Advisor analyzes a query, it runs the optimizer in tuning mode. In this mode, the
optimizer can take several minutes to analyze each step of the execution plan and generate an execution
plan that is potentially much more efficient than the plan generated under normal mode.

This is somewhat similar to a computer chess game. When you allow the chess software to spend only a
second or less on each move, it’s easy to beat the game. However, if you allow the chess game to spend a
minute or more on each move, in this mode the game makes much more optimal decisions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

403

How It Works
The SQL Tuning Advisor helps automate the task of tuning poorly performing queries. The tool is fairly
easy to use, and it provides suggestions on how to tune a query, such as the following:

• Rewriting the SQL

• Adding indexes

• Implementing a SQL profile or plan baselines

• Generating statistics

You can also manually run the SQL Tuning Advisor from either SQL Developer or Enterprise
Manager. Running the SQL Tuning Advisor from these tools is briefly described in the next two
subsections.

Running SQL Tuning Advisor from SQL Developer
If you have access to SQL Developer 3.0 or higher, then it’s very easy to run the SQL Tuning Advisor for a
query. Follow these simple steps:

1. Open a SQL worksheet.

2. Type in the query.

3. Click the button associated with the SQL Tuning Advisor.

You will be presented with any findings and recommendations. If you have access to SQL Developer
(it’s a free download), this is the easiest way to run the SQL Tuning Advisor.

■ Note Before running SQL Tuning Advisor, ensure the user that you’re connected to has the ADVISOR system
privilege granted to it.

Running SQL Tuning Advisor from Enterprise Manager
You can also run the advisor from within Enterprise Manager. Log into Enterprise Manager and follow
these steps:

1. From the main database page, click the Advisor Central link (near the bottom).

2. Under the Advisors section, click the SQL Advisors link.

3. Click the SQL Tuning Advisor link.

You should be presented with a page similar to the one shown in Figure 11-3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

404

Figure 11-3. Scheduling SQL Tuning Advisor jobs from Enterprise Manager

From here you can run a SQL Tuning Advisor tuning task on the top SQL statements or SQL in the
AWR, or provide a SQL tuning set as input.

11-18. Getting SQL Tuning Advice from the Automatic
Database Diagnostic Monitor

Problem
You want to get advice on problem SQL statements from the Automatic Database Diagnostic Monitor
(ADDM).

Solution
You can view an ADDM report from the following tools:

• SQL*Plus script

• DBMS_ADDM package

• Enterprise Manager

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ AUTOMATED SQL TUNING

405

These techniques are elaborated on in the following subsections.

SQL Approach
You can run the ADDM report manually as shown:

SQL> @?/rdbms/admin/addmrpt.sql

You’ll be prompted to specify a beginning and ending snapshot. Here’s some sample output:

Instance DB Name Snap Id Snap Started Level
------------ ------------ --------- ------------------ -----
DWREP DWREP 26482 09 Apr 2011 08:00 1
 26483 09 Apr 2011 09:00 1
 26484 09 Apr 2011 10:00 1
 26485 09 Apr 2011 11:00 1
 26486 09 Apr 2011 12:00 1

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 

You’ll then be prompted for a report name: 

The default report file name is addmrpt_1_26468_26486.txt. To use this name,
press <return> to continue, otherwise enter an alternative. 
Enter value for report_name: 

After the report executes, you can inspect the output. There’s a Top SQL Statements section that
reports on tuning recommendations for the top resource-consuming SQL statement. Here’s some
sample output: 

Finding 1: Top SQL Statements 
Impact is .79 active sessions, 72.17% of total activity.
-------------------------------------------------------- 
SQL statements consuming significant database time were found. These
statements offer a good opportunity for performance improvement. 
   Recommendation 1: SQL Tuning 
   Estimated benefit is .58 active sessions, 53.07% of total activity. 
   ------------------------------------------------------------------- 
   Action 
      Investigate the INSERT statement with SQL_ID "2nw0mmysuma43" for 
      possible performance improvements. You can supplement the information 
      given here with an ASH report for this SQL_ID. 
      Related Object 
         SQL statement with SQL_ID 2nw0mmysuma43. 
         INSERT INTO bling 
         ( registration_id,company 
         ,soa_id,product_name 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 11 ■ AUTOMATED SQL TUNING 

 

406 

DBMS_ADDM Package 
The DBMS_ADDM package is available with Oracle Database 11g R2 or higher. When using the DBMS_ADDM 
package, you must pass in a valid range of begin and end AWR snapshot IDs—for example: 

var task_name varchar2(30); 
exec DBMS_ADDM.ANALYZE_DB(:task_name, 8020, 8050); 
print :task_name 

Here is some sample output displaying the task name: 

TASK_NAME 
------------------------------- 
TASK_8676 

Query the DBA_HIST_SNAPSHOT view if you’re not sure of what snapshots are available. Next the 
ADDM report is displayed: 

SET LONG 1000000 PAGESIZE 0; 
SELECT DBMS_ADDM.GET_REPORT('TASK_8676') FROM DUAL; 

The output can be quite lengthy. Here is a small snippet recommending that you run the SQL 
Tuning Advisor for a specific SQL statement: 

   Action 
      Run SQL Tuning Advisor on the DELETE statement with SQL_ID 
      "0s6gq1c890p4s". 
      Related Object 
         SQL statement with SQL_ID 0s6gq1c890p4s. 
         delete from "MVS"."MGMT_DB_FEAT_USE_ECM_LATEST" 
   Rationale 
      The SQL spent 98% of its database time on CPU, I/O and Cluster waits. 
      This part of database time may be improved by the SQL Tuning Advisor. 

Enterprise Manager 
First, log into Enterprise Manager. From the main login page, you can access the ADDM reports in 
Enterprise Manager as follows: 

1. From the main database page, click the Advisor Central link (near the bottom). 

2. Under the Advisors section, click the ADDM link. 

You should be presented with a page similar to the one shown in Figure 11-4. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 11 ■ AUTOMATED SQL TUNING 

 

407 

 

Figure 11-4. Running ADDM from Enterprise Manager 

From this page, you can run ADDM to analyze current performance or investigate past performance 
issues. 

How It Works 
The ADDM analyzes AWR snapshots every hour (by default) and produces performance 
recommendations. The suggestions are ranked by the expected benefit of implementing a 
recommendation. Listed next are the types of recommendations you can expect from ADDM: 

• Expensive SQL statements 

• Expensive PL/SQL 

• RAC issues 

• CPU bottlenecks 

• Memory sizing recommendations 

• Database configuration recommendations 

• I/O bottlenecks 

If you are having database performance issues, the ADDM report is an excellent place to first look 
for bottlenecks and problem areas of the database. The ADDM also details top resource-consuming SQL 
statements and makes recommendations on how to tune these queries.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 
 

 

    

 

   

 

  

 

 

  

 

409 

Execution Plan Optimization and 
Consistency 

An execution plan describes how Oracle will retrieve the data to satisfy the results of a query. When you 
submit a SQL statement, the query optimizer quickly produces several execution plans and will 
determine which plan is most efficient. In most scenarios, the prior behavior results in a well-performing 
execution plan. However, you will encounter situations where you know additional details about your 
environment and need to adjust the optimizer’s choice of an execution plan. Listed next are features you 
can use to influence the decision path the optimizer uses when selecting a plan: 

• Initialization parameters 

• Statistics 

• Hints 

• SQL profiles 

• SQL plan management (plan baselines) 

• Stored outlines (deprecated in favor of plan baselines) 

It’s critical you understand how these features affect the optimizer’s choice of an execution plan. 
When troubleshooting SQL performance problems, you must determine which of the prior features are 
enabled and how they influence query behavior. The performance of a SQL statement can vary 
drastically depending on which feature is implemented and the impact of the various combinations of 
features. 

Initialization parameters (that impact the optimizer) and statistics gathering are detailed in Chapter 
13. Using hints is the emphasis of Chapter 14. The focus of this chapter is SQL profiles and plan 
baselines. 

SQL profiles are optionally generated corrections and improvements to statistics. The 
recommendation (and code) to implement a SQL profile is manifested through the output of the SQL 
Tuning Advisor. You can manually enable SQL profiles or configure them to be automatically accepted. 
SQL profiles help the optimizer derive better execution plans. 

SQL plan management allows you to store and manage execution plans within tables in the 
database. Plan baselines consist of one or more stored execution plans that have been accepted for a 
SQL query. When you run a query, and if a plan baseline exists for the query, the optimizer will give 
precedence to execution plans within the plan baseline. Plan history is the super set of both accepted 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

410 

and unaccepted execution plans for a query. You can manually change the state of an unaccepted plan 
to accepted (this moves it to the plan baseline). This is known as evolving a plan baseline. 

Plan baselines help ensure that the optimizer consistently chooses the same execution plan, 
regardless of changes in the database environment. Plan baselines provide the following benefits: 

• Preserving performance when upgrading from one database version to another; in 
other words, helping ensure that the same execution plan is used for a query 
before and after the upgrade 

• Keeping performance stable and consistent when data changes, or statistics are 
updated, or new SQL profiles become available 

• Providing a mechanism for accepting more efficient executions plans as they 
become available (like a new index is added or a SQL profile becomes available) 

Figure 12-1 displays the flow of choices that the optimizer makes when choosing an execution plan. 
Please take a few minutes to analyze this diagram and ensure you grasp how the various features 
influence the optimizer’s behavior. As you view the diagram, keep in mind the following: 

• Hints are the only feature that requires a physical modification to the SQL query. 
All of the other techniques can be used to improve performance without changing 
the query. 

• Initialization parameters, statistics, hints, SQL profiles, and plan baselines can all 
operate independently of each other. No one feature is dependent on the 
existence of another feature. 

• The optimizer works fine with out-of-the-box settings. You don’t need any of these 
features (hints, SQL profiles, and so on) to be explicitly enabled. However, to get 
the maximum performance from SQL queries, we highly recommend you know 
when and how to use these features to help the query optimizer make optimal 
decisions. 

As you look at the skep-shaped diagram, to help understand how the optimizer chooses between 
the low-cost plan and a plan baseline plan, consider the general steps taken when formulating an 
execution plan: 

1. The optimizer first considers initialization parameters, hints, and SQL profiles 
when choosing the lowest-cost plan. 

2. Regardless of the plan arrived at in step 1, if a plan baseline exists for the query, 
the optimizer will choose the lowest-cost plan from the plan baseline. 
Additionally, the optimizer will give preference to plans that have a fixed state 
in the plan baseline. 

3. If the accepted plans in the plan baseline are not reproducible (say an index 
has been dropped that all of the plan baseline plans depend on), then the 
optimizer chooses the lowest-cost plan generated in step 1. Lowest cost in this 
situation means using the least amount of database resources such as CPU, 
I/O, and memory. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

411 

4. If a plan baseline exists for a query, and if the low-cost plan (from step 1) has a 
lower cost than the plan from the plan baseline, then the low-cost plan is 
automatically added to the plan history for the query in an unaccepted state. 
You can choose to move plans from the plan history into the plan baseline so 
that the optimizer will consider them when choosing an execution plan. This 
provides you the flexibility to use better plans as they become available 
(evolving the plan). 

 

 

Figure 12-1. Oracle database features influencing optimizer’s choice of execution plan 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

412 

Features such as initialization parameters and hints don’t require an extra license and are available 
with all editions of the Oracle database. Other features such as SQL profiles require an extra license and 
ship only with the Enterprise Edition. Table 12-1 summarizes the characteristics of each query 
optimizer-influencing feature. 

Table 12-1. Oracle Features Influencing the Generation of an Execution Plan 

Feature Purpose How to Enable Enterprise 
Edition 
Required? 

Extra 
License 
Required? 

Require 
Change 
to SQL? 

Initialization 
parameters 

Influence aspects such 
as efficiently delivering 
query result sets to the 
client application 

ALTER SYSTEM or 
SESSION statement 

No No No 

Statistics Provide optimizer with 
characteristics of the 
table, data, and indexes 
so as to better generate 
execution plans 

Statistics are 
automatically 
enabled and 
gathered, and can 
also be manually 
collected. 

No No No 

Hints Suggestions coded into 
the query to influence 
optimizer decisions 
when choosing an 
execution plan 

Add a SQL hint to 
the query 

No No Yes 

SQL profiles Corrections and 
enhancements to 
statistics that enable 
the optimizer to craft a 
more efficient 
execution plan 

1. Run SQL Tuning 
Advisor. 

2. If SQL Tuning 
Advisor 
recommends a 
profile, enable via 
DBMS_TUNE package. 

Yes Yes No 

 Plan 
baselines 

Instructs the optimizer 
to consistently select a 
certain execution plan 

1. Identify queries. 

2. Enable via 
DBMS_SPM package. 

Yes No No 

Stored 
Outlines 

Deprecated plan 
stability tool; use fixed 
plan baselines to 
achieve stored outline 
functionality. 

1. Identify queries. 

2. CREATE OR 
REPLACE OUTLINE 
... FOR <query>. 

Yes No No 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

413 

The first part of this chapter focuses on managing SQL profiles. The rest of the chapter deals with 
the implementation and use of plan baselines. We describe practical and real-world examples of the use 
of these tools. Where appropriate, we also have added instructions on how to use a given feature via 
Enterprise Manager. 

12-1. Creating and Accepting a SQL Profile 

Problem 
You have a poorly performing query, and you want to get advice from the SQL Tuning Advisor. You 
realize that the SQL Tuning Advisor may recommend that a SQL profile be applied to the problem query 
as part of the tuning recommendation. 

Solution 
Run the SQL Tuning Advisor for the problem query. Keep in mind that the SQL Tuning Advisor may or 
may not recommend a SQL profile as a solution for performance issues. To run the SQL Tuning Advisor 
manually, perform the following steps: 

1. Use DBMS_SQLTUNE to create a tuning task. 

2. Execute the tuning task. 

3. Generate the tuning advice report. 

4. If SQL profile is part of the tuning advice output, then create and accept. 

The following example follows the prior steps. In this scenario, the SQL Tuning Advisor 
recommends that a SQL profile be applied to the given query. 

■ Tip See Chapter 11 for complete details on creating SQL tuning tasks. Chapter 11 covers topics such as 
using the AWR, memory, or SQL tuning sets as the source of SQL for a tuning task. 

Step 1: Use DBMS_SQLTUNE to Create a Tuning Task 
The first step is to create a tuning task that is associated with the problem SQL statement. In the 
following code, the SQL text is hard-coded as input to the tune_sql variable: 

DECLARE 
  tune_sql  CLOB; 
  tune_task VARCHAR2(30); 
BEGIN 
  tune_sql := 'select count(*) from mgmt_db_feature_usage_ecm2'; 
  tune_task := DBMS_SQLTUNE.CREATE_TUNING_TASK( 
    sql_text   => tune_sql 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

414 

   ,user_name  => 'STAGING' 
   ,scope      => 'COMPREHENSIVE' 
   ,time_limit => 60 
   ,task_name  => 'TUNE1' 
   ,description => 'Calling SQL Tuning Advisor for one statement' 
); 
END; 
/ 

The prior code is placed in a file named sqltune.sql, and executed as follows: 

SQL> @sqltune.sql 

If you need to later drop the tuning task, you can use the DBMS_SQLTUNE.DROP_TUNING_TASK 
procedure. Obviously don’t drop the tuning task at this point because you’ll need it for the next several 
steps. 

■ Note When working with tuning advice and SQL profiles, ensure that the database account you’re using has 
the ADMINISTER SQL MANAGEMENT OBJECT system privilege granted to it. This privilege contains all of the 
privileges required to manage tuning tasks and SQL profiles. 

Step 2: Execute the Tuning Task 
This step runs the SQL Tuning Advisor to generate advice regarding any queries associated with the 
tuning task (created in step 1): 

SQL> exec dbms_sqltune.execute_tuning_task(task_name=>'TUNE1'); 

Step 3: Run Tuning Advice Report 
Now use DBMS_SQLTUNE to extract any tuning advice generated in step 2: 

set long 10000 
set longchunksize 10000 
set lines 132 
set pages 200 
select dbms_sqltune.report_tuning_task('TUNE1') from dual; 

For this example, the SQL Tuning Advisor recommends creating a SQL profile. Here is a snippet 
from the output that contains the recommendation and the code required to create the SQL profile: 

Recommendation (estimated benefit: 86.11%) 
 ------------------------------------------ 
  - Consider accepting the recommended SQL profile to use parallel execution 
    for this statement. 
    execute dbms_sqltune.accept_sql_profile(task_name => 'TUNE1', task_owner 
            => 'SYS', replace => TRUE, profile_type => 
            DBMS_SQLTUNE.PX_PROFILE); 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

415 

------------------------------------------- 
  Executing this query parallel with DOP 8 will improve its response time 
  86.11% over the original plan. However, there is some cost in enabling 
  parallel execution... 

Step 4: Create and Accept SQL Profile 
To actually create the SQL profile, you need to run the code recommended by the SQL Tuning Advisor 
(from step 3)—for example: 

begin 
-- This is the code from the SQL Tuning Advisor 
dbms_sqltune.accept_sql_profile( 
    task_name => 'TUNE1', 
    task_owner => 'SYS', 
    replace => TRUE, 
    profile_type => DBMS_SQLTUNE.PX_PROFILE); 
-- 
end; 
/ 

When the prior code is run, it creates and enables the SQL profile. Now whenever the associated 
SQL query is executed, the SQL profile will be considered by the optimizer when formulating an 
execution plan. 

■ Tip How do you know if a SQL profile is being used by the optimizer? Set AUTOTRACE on and view the 
execution plan with the profile enabled and then disabled. You should see a lower-cost execution plan being used 
when the profile is enabled. Additionally, consider inspecting the SQL_PROFILE column of V$SQL. 

How It Works 
The only Oracle-supported method for creating a SQL profile is to run the SQL Tuning Advisor and if 
recommended, create a SQL profile using the Tuning Advisor’s output. In other words, the SQL Tuning 
Advisor determines if a SQL profile will help, and if so generates the code required to create a SQL profile 
for a given query. 

The “Solution” section detailed how to manually run the SQL Tuning Advisor. Keep in mind that as 
of Oracle Database 11g, this tuning task job automatically runs on a regularly scheduled basis. See 
Chapter 11 for details on automatic SQL tuning features. You can easily review the output of the 
automatic tuning job via this query: 

SQL> SELECT DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK FROM DUAL; 

We recommend that you review the output of the automatic tuning job on a regular basis. The SQL 
Tuning Advisor will provide the code to create and accept SQL profiles as part of the output. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

416 

■ Tip See Recipe 12-2 for details on how to configure the automatic acceptance of SQL profiles. 

As noted in the “Solution” section, a SQL profile is created and accepted via the
DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure. There are many options available when using this
procedure (see Table 12-2 for details). 

Table 12-2. Parameters for the ACCEPT_SQL_PROFILE Procedure 

Parameter Name Description 

TASK_NAME Mandatory name of tuning task 

OBJECT_ID The identifier of the advisor object representing the SQL statement 

NAME Name of SQL profile (case-sensitive) 

DESCRIPTION Description of SQL profile 

CATEGORY Category name that must match the session value of the SQLTUNE_CATEGORY
initialization parameter 

TASK_OWNER Tuning task owner 

REPLACE Specify TRUE to replace profile if it already exists 

FORCE_MATCH Specify TRUE for SQL statement matching after normalization of literal values into
bind values 

PROFILE_TYPE REGULAR_PROFILE specifies no change to parallel execution; PX_PROFILE changes
regular profile to parallel execution. 

The FORCE_MATCH parameter of ACCEPT_SQL_PROFILE requires further explanation. Recall that a SQL
profile is associated with a SQL statement. The SQL statement is identified via a hash function (SQL
signature). The hash function is generated after converting the SQL text and removing extra white space.
When setting FORCE_MATCH to TRUE, this additionally normalizes literal values into bind values. This is
similar to the algorithm generated via the FORCE option of the CURSOR_SHARING database initialization
parameter. 

For example, with FORCE_MATCH set to TRUE, the following two SQL statements will generate the same
SQL signature: 

SQL> select value from my_table where value = 'AA';
SQL> select value from my_table where value = 'bb'; 

This allows SQL statements that use literal values to share the same SQL profile. If there is a
combination of literal values and bind variables in a SQL statement, then literal values are not
normalized. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

417 

SQL PROFILE VS. DATABASE PROFILE 

It’s puzzling that Oracle would choose the name of “profile” and apply it to two diverse database features, 
namely SQL profiles and database profiles. Perhaps in a future release, Oracle might consider renaming 
SQL profiles to something like SQL Optional More Intelligent Statistics That Make Your Queries Run Faster. 
Regardless, ensure you don’t confuse a SQL profile with a database profile. 

Briefly, a SQL profile is associated with a SQL statement and contains corrections to statistics that help the 
optimizer generate a more efficient execution plan. The SQL Tuning Advisor recommends and generates 
the code required to create and accept a SQL profile, whereas a database profile is an object assigned to a 
user that constrains database resource usage and also enforces password security. A database profile is 
created with the CREATE PROFILE statement. 

12-2. Automatically Accepting SQL Profiles 

Problem 
You realize that the Automatic SQL Tuning job runs on a daily basis (in Oracle Database 11g or higher). 
You determine that the automatic tuning job generates reasonable SQL profiles for problematic  
queries and now want to enable the automatic acceptance of SQL profiles generated by the automatic 
tuning job. 

■ Tip See Chapter 11 for full details on modifying the Automatic SQL Tuning job. 

Solution 
Use the DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER procedure to enable the automatic 
acceptance of SQL profiles recommended by the Automatic SQL Tuning task—for example: 

BEGIN 
DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER( 
  parameter => 'ACCEPT_SQL_PROFILES', value => 'TRUE'); 
END; 
/ 

If you want to disable the automatic acceptance of SQL profiles, then do so as follows (using the 
FALSE parameter): 

BEGIN 
DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER( 
  parameter => 'ACCEPT_SQL_PROFILES', value => 'FALSE'); 
END; 
/ 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

418 

■ Note The DBMS_AUTO_SQLTUNE package requires the DBA role or that EXECUTE on the package has been 
granted explicitly to a user. This package is available in Oracle Database 11g R2 or higher. If you are using a lower 
version of the database, then use the DBMS_SQLTUNE package. 

How It Works 
In Oracle Database 11g or higher, an automatically configured job runs the SQL Tuning Advisor on a 
periodic basis (determined by a configured maintenance window). This job identifies high resource-
consuming SQL statements from performance metrics contained in the AWR. When the automatic 
tuning job runs, it will occasionally recommend that a SQL profile be implemented for a poorly 
performing SQL statement. Oracle will automatically accept the profile if the following conditions are 
true: 

• Automatic acceptance has been configured via 
DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER. 

• With the SQL profile, the performance gain is determined (by the SQL Tuning 
Advisor) to be at least three times more (than without the profile). 

You can report on the details of the automatic tuning task configuration via this query: 

SELECT 
 parameter_name 
,parameter_value 
FROM dba_advisor_parameters 
WHERE task_name = 'SYS_AUTO_SQL_TUNING_TASK' 
AND  parameter_name 
  IN ('ACCEPT_SQL_PROFILES', 
      'MAX_SQL_PROFILES_PER_EXEC', 
      'MAX_AUTO_SQL_PROFILES', 
      'EXECUTION_DAYS_TO_EXPIRE'); 

Here is some sample output: 

PARAMETER_NAME            PARAMETER_VALUE 
------------------------- -------------------- 
EXECUTION_DAYS_TO_EXPIRE  30 
ACCEPT_SQL_PROFILES       TRUE 
MAX_SQL_PROFILES_PER_EXEC 20 
MAX_AUTO_SQL_PROFILES     10000 

■ Tip SQL profiles that have automatically been implemented display the value of AUTO in the TYPE column of 
the DBA_SQL_PROFILES view. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

419 

You can also use Enterprise Manager to configure the automatic acceptance of SQL profiles. From 
the main database page, navigate to the Advisor Central page. Next, click the SQL Advisors link. Now 
click the Automatic SQL Tuning Results page. Next click the configure button of Automatic 
Implementation of SQL Profiles. You should see a page similar to Figure 12-2. 

 

 

Figure 12-2. Configuring automatic acceptance of SQL profiles 

From this screen, you can manage features such as the automatic acceptance of SQL profiles, 
maximum time for a tuning session, and so on. 

12-3. Displaying SQL Profile Information 

Problem 
You have created and accepted several SQL profiles and now want to view information related to these 
database objects. 

Solution 
Use the DBA_SQL_PROFILES view to display information about SQL profiles. Here’s an example that selects 
the most interesting columns: 

SQL> select name, type, status, sql_text from dba_sql_profiles; 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

420 

Here is a snippet of the output: 

NAME                           TYPE    STATUS   SQL_TEXT 
------------------------------ ------- -------- ------------------------------ 
SYS_SQLPROF_012eda58a1be0001   MANUAL  ENABLED  SELECT ecm_snapshot_id AS id... 
SYS_SQLPROF_012ea20305980000   MANUAL  ENABLED  SELECT *  FROM inv_maint... 
SYS_SQLPROF_012edf0316930003   MANUAL  ENABLED  SELECT /* + parallel(mgmt_db_f... 

For this database, there are several manually enabled SQL profiles (as shown in the prior output). 

■ Note Since a SQL profile is associated with a specific SQL statement (and not a user), there are no ALL- or 
USER-level views associated with SQL profiles. 

How It Works 
Recall that a SQL profile contains improvements to existing statistics. The DBA_SQL_PROFILES view is the 
best source for viewing the SQL profile name, attributes, and associated SQL text. 

To view the internal SQL profile hint-related information, you can additionally query the 
DBMSHSXP_SQL_PROFILE_ATTR view—for example: 

SELECT 
 a.name 
,b.comp_data 
FROM dba_sql_profiles          a 
    ,dbmshsxp_sql_profile_attr b 
WHERE a.name = b.profile_name; 

Here is some sample output: 

SYS_SQLPROF_0130520c90dc0002 
<outline_data><hint><![CDATA[OPT_ESTIMATE(@"SEL$2", 
NLJ_INDEX_SCAN, "FS"@"SEL$2", ("MAP"@"SEL$2"), "DB_FEAT_OPT_112_SUM_MV_IDX3", 
SCALE_ROWS=0.3369001041)]]></h 

The prior output gives you an indication of the types of hints within a SQL profile. This information 
is used by the optimizer to better estimate the cardinality of each execution step. This data allows the 
optimizer to make better decisions when generating an execution plan. 

You can also view this internal SQL profile information by querying the SQLOBJ$ and SQLOBJ$DATA 
views. The data in these views is in XML format, and therefore you must format the output with Oracle 
XML functions when querying—for example: 

SELECT 
  extractvalue(value(a), '.') sqlprofile_hints 
FROM sqlobj$     o 
    ,sqlobj$data d 
    ,table(xmlsequence(extract(xmltype(d.comp_data),'/outline_data/hint'))) a 
WHERE o.name     = '&&profile_name' 
AND   o. plan_id = d.plan_id 
AND   o.signature = d.signature 
AND   o.category = d.category 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

421 

AND   o.obj_type = d.obj_type; 

Here is a small sample of the output: 

OPT_ESTIMATE(@"SEL$EF0E05FC", INDEX_SCAN, "MGMT_TARGETS"@"SEL$4", 
"MIDX3", SCALE_ROWS=50.68489486) 
OPT_ESTIMATE(@"SEL$EF0E05FC", NLJ_INDEX_FILTER,  
"MGMT_ECM_GEN_SNAPSHOT"@"SEL$3", ("MGMT_TARGETS"@"SEL$4"), 
"IDX$$_1197C0001", SCALE_ROWS=0.4308705) 

Again, these profile statistics don’t force the optimizer to use a certain execution plan. Rather these 
statistics provide the optimizer the flexibility to choose a more efficient execution plan. 

■ Note If you’re using Oracle Database 10g, then use the SQLPROF$ and SQLPROF$ATTR views. 

12-4. Disabling a SQL Profile 

Problem 
You think that a SQL profile is no longer required for a query. You want to manually disable (not drop) 
the SQL profile. 

Solution 
First verify the name of the SQL profile that you want to disable: 

SQL> select name, status from dba_sql_profiles; 

Here’s a partial snippet of the output: 

NAME                           STATUS 
------------------------------ -------- 
SYS_SQLPROF_012eda58a1be0001   ENABLED 

Now use the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure to modify the status of the profile to 
disabled: 

BEGIN 
  DBMS_SQLTUNE.ALTER_SQL_PROFILE( 
    name => 'SYS_SQLPROF_012eda58a1be0001', 
    attribute_name => 'STATUS', 
    value => 'DISABLED'); 
END; 
/ 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

422 

How It Works 
The status of a SQL profile is one of several modifiable attributes. You can also modify characteristics 
such as the name, description, and category. See Table 12-3 for a description of the modifiable 
attributes. 

■ Note You need the ALTER ANY SQL PROFILE privilege to alter a SQL profile. 

Table 12-3. Modifiable SQL Profile Attributes 

Attribute Name Possible Values Description 

STATUS ENABLED or DISABLED Enable or disable the use of an existing SQL 
profile 

NAME Valid unique identifier Used to reset the name of the profile 

DESCRIPTION Character string up to 500 
characters 

Description of the SQL profile 

CATEGORY Valid category name Used to reset the category name 

 
The category of a SQL profile has some interesting implications. A category allows you to control the 

use of a SQL profile through the setting of the SQLTUNE_CATEGORY initialization parameter (this parameter 
can be set at the session or system level). When a query is executed, if a SQL profile is available, the 
optimizer will check to ensure that the category assigned to the SQL profile is the same as the system- or 
session-level setting of SQLTUNE_CATEGORY. If the category of the SQL profile matches the setting of 
SQLTUNE_CATEGORY, then the optimizer will consider using the SQL profile. 

The default category for a SQL profile is DEFAULT. Also the default value for SQLTUNE_CATEGORY is 
DEFAULT. Therefore, unless you alter the SQL profile category or modify the SQLTUNE_CATEGORY parameter, 
the SQL profile will be used as input by the optimizer. 

You can alter the category to something other than DEFAULT. This means that only sessions that 
modify the initialization parameter of SQLTUNE_CATEGORY to the value of the category for the SQL profile 
will be able to use the profile. For example, say you modify the SQL profile to have a category of TEST1: 

BEGIN 
  DBMS_SQLTUNE.ALTER_SQL_PROFILE( 
    name => 'SYS_SQLPROF_012eda58a1be0001', 
    attribute_name => 'CATEGORY', 
    value => 'TEST1'); 
END; 
/ 

Now the only sessions that can see and use the profile are those that have SQLTUNE_CATEGORY set to 
TEST1: 

SQL> alter session set sqltune_category=TEST1; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

423 

This allows you to isolate a profile’s use to only those sessions that have the SQLTUNE_CATEGORY set to 
match the category of the SQL profile. This allows you to test the impact of implementing a SQL profile 
and back it out quickly, simply by altering either the session-level or system-level setting of 
SQLTUNE_CATEGORY. 

You can also manage many aspects of a SQL profile from Enterprise Manager. From the main 
database page, navigate to the Server tab. In the Query Optimizer section, click the SQL Plan Control tab. 
You should be presented with a screen similar to Figure 12-3. 

 

 

Figure 12-3. Managing SQL profiles 

From this screen, you can manage features such as enabling, disabling, changing the category, and 
dropping a SQL profile. 

12-5. Dropping a SQL Profile 

Problem 
You’ve tested a query with and without a SQL profile attached to the query. You determine the query 
performance is not significantly better with the SQL profile. You want to drop the SQL profile so you’re 
not cluttering up the data dictionary with unnecessary and obsolete information. 

Solution 
Use the DBMS_SQLTUNE.DROP_SQL_PROFILE procedure to drop a SQL profile. Pass in the name of the SQL 
profile you want to drop—for example: 

SQL> exec dbms_sqltune.drop_sql_profile('SYS_SQLPROF_012edef0d0a70002'); 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

424 

If successful, you should see the following: 

PL/SQL procedure successfully completed. 

How It Works 
It’s fairly easy to drop a SQL profile. You might want to do this if you’re cleaning up a database or if you 
want to remove profiles from a testing environment. If you’re unsure of the SQL profile name, you can 
query DBA_SQL_PROFILES for more information (see Recipe 12-3 for details). 

■ Note You need the DROP ANY SQL PROFILE privilege to drop a SQL profile. 

If you want to drop all profiles in a database, you can use PL/SQL to loop through all profiles and 
drop them: 

declare 
  cursor c1 is select name from dba_sql_profiles; 
begin 
  for r1 in c1 loop 
    dbms_sqltune.drop_sql_profile(r1.name); 
  end loop; 
end; 
/ 

12-6. Moving a SQL Profile 

Problem 
You have a test database and want to extract all of the SQL profiles from the test database and move 
them to a production database. 

Solution 
Listed next are the steps involved with transporting a SQL profile from one database to another: 

1. Create a staging table. 

2. Populate the staging table. 

3. Move the table from the source database to the destination database (Data 
Pump or database link). 

4. On the destination database, extract information from the staging table to 
populate the data dictionary with SQL profile information. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

425 

These steps are detailed in the following subsections. 

Step 1: Create a Staging Table 
Use the DBMS_SQLTUNE.CREATE_STGTAB_SQLPROF procedure to create the staging table. This example 
creates a table named PROF_STAGE owned by the MV_MAINT user: 

BEGIN 
  dbms_sqltune.create_stgtab_sqlprof( 
    table_name => 'PROF_STAGE', 
    schema_name => 'MV_MAINT' ); 
END; 
/ 

Step 2: Populate the Staging Table 
Use the DBMS_SQLTUNE.PACK_STGTAB_SQLPROF procedure to populate the table created in step 1 with SQL 
profile information. This example populates the table with information regarding a specific SQL profile: 

BEGIN 
  dbms_sqltune.pack_stgtab_sqlprof( 
    profile_name => 'SYS_SQLPROF_012edf84806e0004', 
    staging_table_name => 'PROF_STAGE', 
    staging_schema_owner => 'MV_MAINT' ); 
END; 
/ 

■ Tip The PROFILE_NAME parameter can include wildcard characters. For example, if you want to transport all 
SQL profiles in a database, you can use ‘%’ for the PROFILE_NAME. 

Step 3: Copy the Staging Table to the Destination Database 
You can copy the table from one database to the other via Data Pump, the old exp/imp utilities, or by 
using a database link. This example creates a database link in the destination database and then copies 
the table from the source database: 

create database link source_db 
connect to mv_maint 
identified by foo 
using 'source_db'; 

Once the database link has been created, the table can be copied directly from the source with the 
CREATE TABLE...AS SELECT statement: 

SQL> create table PROF_STAGE as select * from PROF_STAGE@source_db; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

426 

Step 4: Load the Contents of the Staging Table into the Destination Database 
Now in the destination database, unpack the table to load profile information into the database: 

BEGIN 
  DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF( 
    replace => TRUE, 
    staging_table_name => 'PROF_STAGE');
END; 
/ 

If no profile name is specified, the default is the % wildcard character (meaning all profiles in the
table will be loaded into the destination database). 

How It Works 
It’s fairly easy to copy SQL profiles from one database to another. You simply have to create a special
table to hold the profile information, then populate the table, copy the table to the destination database,
and lastly unpack the table’s contents. Table 12-4 describes all of the parameters for the profile packing
procedure. 

Table 12-4. Parameters for the DBMS_SQLTUNE.PACK_STGTAB_SQLPROF Procedure 

Parameter Name Description Default Value 

PROFILE_NAME Name of profile (% wildcard characters can be used) % 

PROFILE_CATEGORY Name of category, can use % wildcards in name DEFAULT 

STAGING_TABLE_NAME Name of the staging table to store profile information No default value. 

STAGING_SCHEMA_OWNER Owner of staging table (NULL means use current schema) NULL 

The DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF procedure takes the same parameters as the packing
procedure with an additional REPLACE parameter. The REPLACE parameter specifies whether to replace
profiles if they already exist (can be TRUE or FALSE). 

12-7. Automatically Adding Plan Baselines 

Problem 
You want to automatically create plan baselines for every SQL query that repeatedly executes in your
database. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

427 

Solution 
Listed next are the steps for automatically creating plan baselines for SQL statements that execute more 
than once: 

1. Set the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter to TRUE (either at 
the session or system level). 

2. Execute two times or more the queries for which you want plan baselines 
captured. 

3. Set the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES to FALSE. 

This next example illustrates the process for adding a plan baseline (for a query) using the prior 
steps. First set the specified initialization parameter at the session level: 

SQL> alter session set optimizer_capture_sql_plan_baselines=true; 

Now a query is executed twice. Oracle will automatically create a plan baseline for a query that is 
run two or more times while the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter is set to TRUE: 

SQL> select emp_id from emp where emp_id=3000; 
SQL> select emp_id from emp where emp_id=3000; 

Now set the initialization parameter back to FALSE. 

SQL> alter session set optimizer_capture_sql_plan_baselines=false; 

The query now should have an entry in the DBA_SQL_PLAN_BASELINES view showing that it has an 
enabled plan baseline associated with it—for example: 

SELECT 
 sql_handle, plan_name, enabled, accepted, 
 created, optimizer_cost, sql_text 
FROM dba_sql_plan_baselines; 

Here is a partial listing of the output: 

SQL_HANDLE           PLAN_NAME                      ENA ACC... 
-------------------- ------------------------------ --- ---... 
SQL_790bd425fe4a0125 SQL_PLAN_7k2yn4rz4n095d8a279cc YES YES... 

How It Works 
Enabling OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES allows you to automatically capture plan baselines for 
queries running repeatedly (more than once) in your database. The “Solution” section described how to 
use this feature at the session level. You can also set the parameter so that all repeating queries in the 
database have plan baselines generated—for example: 

SQL> alter system set optimizer_capture_sql_plan_baselines=true; 

From this point, any query in the database that runs more than once will automatically have a plan 
baseline created for it. We wouldn’t recommend that you do this in a production environment unless 
you have first carefully tested this feature and ensured that there will be no adverse side effects (from 
storing a plan baseline for every query). However, you may have a test environment where you want to 
purposely create a plan baseline for every SQL statement that is repeatedly run. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

428 

■ Note By default, the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter is FALSE. 

You can also manage the use of plan baselines from Enterprise Manager. From the main database 
page, navigate to the Server tab. In the Query Optimizer section, click the SQL Plan Control tab. Next, 
click the SQL Plan Baseline tab. You should see a screen similar to Figure 12-4. 

 

 

Figure 12-4. Managing plan baselines 

From this screen, you can manage tasks such as enabling, disabling, dropping, and evolving plan 
baselines. 

12-8. Creating a Plan Baseline for One SQL Statement 

Problem 
You want to create a plan baseline for a specific SQL statement that you’re currently executing. 

Solution 
The procedure for manually associating a plan baseline with a SQL statement is as follows: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

429 

1. Identify the SQL statement(s) for which you want plan baselines. 

2. Provide an identifier such as the SQL_ID as input to the DBMS_SPM package to 
create a plan baseline for the SQL statement. 

For example, suppose you have a SQL statement you’ve been working with such as the following: 

SQL> select emp_id from emp where emp_id = 100; 

Now query the V$SQL view to determine the SQL_ID for the query: 

select 
 sql_id 
,sql_text 
from v$sql 
where sql_text 
  like 'select emp_id from emp where emp_id = 100'; 

Here is a snippet of the output: 

SQL_ID        SQL_TEXT 
------------- ------------------------------------------------------------ 
0qgmjf9krq285 select emp_id from emp where emp_id = 100 

Now that the SQL_ID has been identified, use it as input to the 
DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function to create a plan baseline for the given query—for 
example: 

DECLARE 
  plan1 PLS_INTEGER; 
BEGIN 
  plan1 := DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE(sql_id => '0qgmjf9krq285'); 
END; 
/ 

The query now should have an entry in the DBA_SQL_PLAN_BASELINES view showing that it has an 
enabled plan baseline associated with it—for example: 

SQL> select sql_handle, plan_name, sql_text from dba_sql_plan_baselines; 

Here’s a small snippet of the output: 

SQL_HANDLE                PLAN_NAME                                SQL_TEXT 
------------------------- ---------------------------------------- ---------------------- 
SQL_f34ef255797c4713      SQL_PLAN_g6mrkapwrsjsmd8a279cc           select emp_id..... 

How It Works 
The “Solution” section described how to identify a single SQL statement for which you want to create a 
plan baseline (based on the SQL_ID) using a query in the cursor cache. There are many methods for 
creating a plan baseline for a query, such as using the SQL text, schema, module, and so on. For 
example, next a plan baseline is loaded based on a partial SQL string: 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

430 

DECLARE 
  plan1 PLS_INTEGER; 
BEGIN 
  plan1 := DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE( 
             attribute_name => 'sql_text' 
            ,attribute_value => 'select emp_id from emp%'); 
END; 
/ 

See Table 12-5 for details on input parameters available with the 
DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function. 

■ Note See Recipe 12-9 for an example of how to create plan baselines for SQL statements contained in a SQL 
tuning set. 

Table 12-5. Parameters for the LOAD_PLANS_FROM_CURSOR_CACHE Function 

Parameter Name Description 

SQL_ID SQL statement identifier 

PLAN_HASH_VALUE Plan identifier; if NULL, then capture all plans for the given SQL_ID. 

SQL_TEXT Text used for identifying plan baseline into which plans are loaded 

SQL_HANDLE SQL handle used for identifying plan baseline into which plans are loaded 

FIXED Value of NO means plans are not loaded in a fixed state. YES means plans are loaded as 
fixed. Fixed plan baselines are given preference over non-fixed. 

ATTRIBUTE_NAME One of the following: SQL_TEXT, PARSING_SCHEMA_NAME, MODULE, ACTION 

ATTRIBUTE_VALUE Value of the attribute; when using SQL_TEXT attribute, the value can contain wildcard 
values. 

ENABLED Plans are loaded in an enabled state (default is YES). 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

431 

12-9. Creating Plan Baselines for SQL Contained in SQL 
Tuning Set 

Problem 
You have the following scenario: 

• You’re upgrading a database to a new version. 

• You know from past experience that upgrading to newer versions of Oracle can 
sometimes cause SQL statements to perform poorly because the optimizer in the 
upgraded version of the database is choosing a less efficient (worse) execution 
plan than the optimizer from the prior version of the database. 

• You want to ensure that SQL statements execute with acceptable performance 
after the upgrade. 

In essence, you are upgrading and would prefer that the optimizer choose the same execution plans 
both before and after the upgrade. You don’t want the upgrade to result in new plans that risk degrading 
performance. 

Solution 
To deal with this problem, use the most resource-intensive SQL queries in the AWR as candidates for the 
creation of plan baselines. This solution uses the technique of creating an AWR baseline. An AWR 
baseline is a snapshot of activity in the AWR designated by begin/end snapshot IDs. Listed next are the 
steps for creating and populating a SQL tuning set with high resource-consuming SQL statements found 
in an AWR baseline and then creating plan baselines for those queries: 

1. Create an AWR baseline. 

2. Create a SQL tuning set object. 

3. Populate the SQL tuning set with the queries found in the AWR baseline. 

4. Use the tuning set as input to DBMS_SPM to create a plan baseline for each query 
contained in the SQL tuning set. 

■ Note You have a great deal of flexibility on how to populate a SQL tuning set with high resource-consuming 
queries in the AWR or memory. See Chapter 11 for complete details on working with SQL tuning sets. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

432 

Step 1: Create an AWR Baseline 
The first step is to create an AWR baseline. For example, suppose you knew you had high-load queries 
running between two snapshots in your database. The following creates an AWR baseline using two 
snapshot IDs: 

BEGIN 
  DBMS_WORKLOAD_REPOSITORY.create_baseline ( 
    start_snap_id => 26632, 
    end_snap_id   => 26635, 
    baseline_name => 'peak_baseline_apr15_11'); 
END; 
/ 

If you’re unsure of the available snapshots in your database, you can run an AWR report or select the 
SNAP_ID from DBA_HIST_SNAPSHOTS: 

select snap_id, begin_interval_time 
from dba_hist_snapshot order by 1; 

Step 2: Create a SQL Tuning Set Object 
Now create a SQL tuning set. This next bit of code creates a tuning set named test1: 

BEGIN 
  dbms_sqltune.create_sqlset( 
    sqlset_name => 'test1' 
   ,description => 'STS from AWR'); 
END; 
/ 

Step 3: Populate the SQL Tuning Set with High-Resource Queries Found in 
AWR Baseline 
Now the SQL tuning set (created in step 2) is populated with any queries found within the AWR baseline 
(created in step 1): 

DECLARE 
  base_cur dbms_sqltune.sqlset_cursor; 
BEGIN 
  OPEN base_cur FOR 
    SELECT value(x) 
    FROM table(dbms_sqltune.select_workload_repository( 
      'peak_baseline_apr15_11', null, null,'elapsed_time', 
      null, null, null, 15)) x; 
  -- 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

433 

  dbms_sqltune.load_sqlset( 
    sqlset_name => 'test1', 
    populate_cursor => base_cur); 
END; 
/ 

In the prior lines of a code, the AWR baseline name is passed to the DBMS_SQLTUNE package. The 
queries within the baseline are select by the elapsed time, and the top 15 are specified. 

Step 4: Use the Tuning Set As Input to DBMS_SPM to Create Plan Baselines for 
Each Query Contained in the SQL Tuning Set 
Now the tuning set (populated in step 3) is provided as input to the DBMS_SPM package: 

DECLARE 
  test_plan1 PLS_INTEGER; 
BEGIN 
  test_plan1 := dbms_spm.load_plans_from_sqlset( 
                  sqlset_name=>'test1'); 
END; 
/ 

Any queries contained in the tuning set should now have entries in the DBA_SQL_PLAN_BASELINES 
view. 

How It Works 
The technique shown in the “Solution” section is a very powerful method for creating plan baselines for 
the most resource-consuming queries running in your database. The key to this recipe is understanding 
that you can use as input (to the DBMS_SPM package) queries contained in a SQL tuning set. A SQL tuning 
set can be populated from high resource-consuming statements found in the AWR and memory. This 
allows you to easily create plan baselines for the most problematic queries. 

Having plan baselines in place for resource-intensive queries helps ensure that the same execution 
plan is used after there are changes to your system, such as a database upgrades, changes in statistics, 
different data sets, and so on. 

Keep in mind that it’s possible to have more than one accepted execution plan within the plan 
baseline. If you have a specific plan that you want the optimizer to always use, then consider altering the 
plan to a FIXED state. See Recipe 12-10 for details on altering a plan baseline to a FIXED state. 

12-10. Altering a Plan Baseline 

Problem 
You have several accepted plan baseline execution plans for one query. You want to specifically instruct 
the optimizer to give preference to one of the accepted plans. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

434 

Solution 
The optimizer will give preference to plan baselines with a FIXED state. Use the DBMS_SPM package and 
ALTER_SQL_PLAN_BASELINE function to alter a current plan baseline execution plan to FIXED. Here’s an 
example: 

DECLARE 
 pf PLS_INTEGER; 
BEGIN 
  pf := dbms_spm.alter_sql_plan_baseline( 
    plan_name => 'SQL_PLAN_1wskqhvrwf8g60e23be79' 
   ,attribute_name => 'fixed' 
   ,attribute_value => 'YES'); 
END; 
/ 

You can query the FIXED column of DBA_SQL_PLAN_BASELINES to verify that it is now baseline-
neutered. Listed next is such a query: 

SELECT 
 sql_handle, plan_name, enabled, accepted, fixed 
FROM dba_sql_plan_baselines; 

Here is some sample output: 

SQL_HANDLE           PLAN_NAME                      ENA ACC FIX 
-------------------- ------------------------------ --- --- --- 
SQL_457bf2f82571bd38 SQL_PLAN_4ayzkz0kr3g9s90e466fd YES YES NO 
SQL_790bd425fe4a0125 SQL_PLAN_7k2yn4rz4n095d8a279cc YES YES YES 

How It Works 
You can think of fixing a plan baseline as a way of establishing a preference hierarchy for how the 
optimizer chooses a plan baseline. The optimizer will give first priority to any accepted and fixed plan 
baselines. If none is available, then accepted non-fixed plan baselines are considered. Execution plans 
that are added to a plan baseline that already contains a fixed plan baseline will be considered secondary 
(unless you add them as fixed). 

Table 12-6 describes the parameters available with ALTER_SQL_PLAN_BASELINE. You can specify either 
the SQL_HANDLE or PLAN_NAME or both. If the SQL_HANDLE is NULL, then a PLAN_NAME must be specified and 
vice versa. 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

435 

Table 12-6. Parameters for the ALTER_SQL_PLAN_BASELINE Function 

Parameter Description 

SQL_HANDLE SQL handle identifier for the SQL statement in the plan baseline 

PLAN_NAME Unique identifier for a plan baseline 

ATTRIBUTE_NAME Name of the attribute being modified 

ATTRIBUTE_VALUE Attribute value being modified 

 
The ATTRIBUTE_NAME and ATTRIBUTE_VALUE parameters consist of a name/value pairing that can be 

used to alter various attributes of a plan baseline. See Table 12-7 for a complete description of the 
possible pairings. 

■ Tip Use the ENABLED attribute of ALTER_SQL_PLAN_BASELINE to either disable or re-enable a plan baseline 
for use. 

Table 12-7. Values for ATTRIBUTE_NAME and ATTRIBUTE_VALUE 

Attribute 
Name 

Possible Attribute 
Values 

Description 

ENABLED YES or NO YES means the plan is available for use. The plan may or may not 
have been accepted. 

FIXED YES or NO YES means the plan is fixed. 

AUTOPURGE YES or NO YES means the plan can be purged if the plan isn’t used within a 
time period. NO means the plan is never purged. 

PLAN_NAME String up to 30 
characters 

Name of plan 

DESCRIPTION String up to 500 
characters 

Description of plan 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

436 

12-11. Determining If Plan Baselines Exist 

Problem 
You recently implemented a plan baseline for a query. You want to verify the configuration of a plan
baseline. 

Solution 
Run the following query to view details regarding any plan baselines that have been configured: 

set pages 100 
set linesize 132 
col sql_handle form a20 
col plan_name form a30 
col sql_text form a20 
col created form a20 
-- 
SELECT sql_handle, plan_name, enabled
,accepted, created, optimizer_cost, sql_text
FROM dba_sql_plan_baselines; 

The output from the prior query is very wide and has been modified to fit within the page width: 

SQL_HANDLE           PLAN_NAME                      ENA ACC
-------------------- ------------------------------ --- --- 
SQL_b98d2ae2145eec3d SQL_PLAN_bm39aw8a5xv1xae72d2f5 YES YES
CREATED              OPTIMIZER_COST SQL_TEXT
-------------------- -------------- -------------------- 
21-MAR-11 10.53.29.0              2 select last_name from custs... 

In the output, there are two key columns: the SQL_HANDLE and PLAN_NAME. Each query has an
associated SQL_HANDLE that is an identifier for a query. Each execution plan has a unique PLAN_NAME. The
PLAN_NAME will be unique within DBA_SQL_PLAN_BASELINES, whereas there could be multiple rows with the
same SQL_HANDLE (but different PLAN_NAME). 

How It Works 
The DBA_SQL_PLAN_BASELINES view provides a quick and easy way to determine if plan baselines exist and
are in use. If a plan is enabled and accepted, then the query has a plan baseline in use. 

■ Note There is no ALL or USER-level data dictionary views for plan baselines. This is because the plan baseline
is associated with a specific SQL statement and not a user. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

437 

If you have doubts about whether a plan baseline is being considered by the optimizer, then set 
AUTOTRACE on and view the output—for example: 

SQL> set autotrace trace explain; 
SQL> select emp_id from emp where emp_id = 100; 

Here is a partial listing of the output indicating that a SQL plan baseline execution plan is used for 
this query: 

Execution Plan 
---------------------------------------------------------- 
Plan hash value: 2872589290 
-------------------------------------------------------------------------- 
.................. 
- SQL plan baseline "SQL_PLAN_g6mrkapwrsjsmd8a279cc" used for this statement 

12-12. Displaying Plan Baseline Execution Plans 

Problem 
You want to quickly view details regarding an existing plan baseline, such as the associated execution 
plan. 

Solution 
Use the DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE function to display the execution plan and 
corresponding plan baseline details. This example reports details for a specific plan: 

SELECT * 
FROM TABLE( 
DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE(plan_name=>'SQL_PLAN_bm39aw8a5xv1xae72d2f5')); 

Here is some sample output: 

-------------------------------------------------------------------------------- 
SQL handle: SQL_b98d2ae2145eec3d 
SQL text: select last_name from custs where last_name='DAVIS' 
-------------------------------------------------------------------------------- 
-------------------------------------------------------------------------------- 
Plan name: SQL_PLAN_bm39aw8a5xv1xae72d2f5         Plan id: 2926760693 
Enabled: YES     Fixed: NO      Accepted: YES     Origin: MANUAL-LOAD 
-------------------------------------------------------------------------------- 
Plan hash value: 1824334906 
--------------------------------------------------------------------------- 
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |       |     2 |    54 |     2   (0)| 00:00:01 | 
|*  1 |  TABLE ACCESS FULL| CUSTS |     2 |    54 |     2   (0)| 00:00:01 | 
--------------------------------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

438 

How It Works 
The DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE function allows you to display one or more execution plans 
in a plan baseline. The return type for this function is a PL/SQL table type. This function takes three 
parameters (described in Table 12-8). 

Table 12-8. Parameters for the DISPLAY_SQL_PLAN_BASELINE Function 

Parameter Description 

SQL_HANDLE Identifier for the SQL statement; instructs function to display all plans for the SQL 
statement 

PLAN_NAME Instructs function to display a specific plan for a SQL statement 

FORMAT Determines the detail of information displayed; takes values of BASIC, TYPICAL, and ALL 

 
If you want to display all plans for a SQL statement, then use as input the SQL_HANDLE parameter—for 

example: 

SELECT * 
FROM TABLE( 
DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE(sql_handle=>'SQL_b98d2ae2145eec3d')); 

Here is a partial listing of the output showing there are multiple plans in the plan baseline for this 
SQL query: 

-------------------------------------------------------------------------------- 
Plan name: SQL_PLAN_bm39aw8a5xv1x519fc7bf         Plan id: 1369425855 
Enabled: YES     Fixed: NO      Accepted: NO      Origin: AUTO-CAPTURE 
-------------------------------------------------------------------------------- 
Plan hash value: 16205770 
------------------------------------------------------------------------------- 
| Id  | Operation        | Name       | Rows  | Bytes | Cost (%CPU)| Time     | 
------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT |            |     2 |    54 |     1   (0)| 00:00:01 | 
|*  1 |  INDEX RANGE SCAN| CUSTS_IDX1 |     2 |    54 |     1   (0)| 00:00:01 | 
------------------------------------------------------------------------------- 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
   1 - access("LAST_NAME"='DAVIS') 
-------------------------------------------------------------------------------- 
Plan name: SQL_PLAN_bm39aw8a5xv1xae72d2f5         Plan id: 2926760693 
Enabled: YES     Fixed: NO      Accepted: YES     Origin: MANUAL-LOAD 
-------------------------------------------------------------------------------- 
Plan hash value: 1824334906 

  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

439 

--------------------------------------------------------------------------- 
| Id  | Operation         | Name  | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |       |     2 |    54 |     2   (0)| 00:00:01 | 
|*  1 |  TABLE ACCESS FULL| CUSTS |     2 |    54 |     2   (0)| 00:00:01 | 
--------------------------------------------------------------------------- 

12-13. Adding a New Plan to Plan Baseline (Evolving) 

Problem 
You have the following scenario: 

• You have an existing plan baseline for the query. 

• You have recently added an index that the query can use. 

• The optimizer determines a new lower-cost plan is now available for the query 
and adds the new plan to the plan history in an unaccepted state. 

• You notice the new plan either from a recommendation by the SQL Tuning 
Advisor or by querying the DBA_SQL_PLAN_BASELINES view. 

• You have examined the new execution plan, have run the query in a test 
environment, and are confident that the new plan will result in better 
performance. 

You want to evolve the low-cost plan in the history so that it’s moved to an accepted plan in the 
baseline. You realize that once the plan is accepted in the baseline, the optimizer will use it (if it’s the 
lowest-cost plan in the baseline). 

Solution 
First verify that there are plans in the unaccepted state for the query in question (see Recipes 12-11 and 
12-12 for more details). Here’s a quick example: 

SELECT sql_handle, plan_name, enabled, accepted, optimizer_cost 
FROM dba_sql_plan_baselines 
WHERE sql_text like '%select emp_id from emp where emp_id = 100%'; 

Here is the output indicating there are two plans, one unaccepted but with a much lower cost: 

SQL_HANDLE           PLAN_NAME                      ENA ACC OPTIMIZER_COST 
-------------------- ------------------------------ --- --- -------------- 
SQL_f34ef255797c4713 SQL_PLAN_g6mrkapwrsjsm01205c23 YES NO               1 
SQL_f34ef255797c4713 SQL_PLAN_g6mrkapwrsjsmd8a279cc YES YES              7 

Use the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function to move a plan from the history to the 
baseline (evolve the plan). In this example, the SQL handle (unique SQL string associated with a SQL 
statement) is used to evolve a plan: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

440 

SET SERVEROUT ON SIZE 1000000 
SET LONG 100000 
DECLARE 
  rpt CLOB; 
BEGIN 
  rpt := DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE( 
    sql_handle => 'SQL_f34ef255797c4713'); 
  DBMS_OUTPUT.PUT_LINE(rpt); 
END; 
/ 

If Oracle determines that there is an unaccepted plan with a lower cost, then you’ll see output 
similar to this indicating that the plan has been moved to the accepted state (evolved): 

------------------------------------------------------------------------------- 
                        Evolve SQL Plan Baseline 
Report 
------------------------------------------------------------------------------- 
 
Inputs: 
------- 
  SQL_HANDLE = 
SQL_f34ef255797c4713 
  PLAN_NAME  = 
  TIME_LIMIT = DBMS_SPM.AUTO_LIMIT 
  VERIFY     = YES 
  COMMIT     = YES 
 
Plan: 
SQL_PLAN_4fpttm0b55uwr918dd295 
------------------------------------ 
  Plan was verified: Time used .09 seconds. 
  Plan passed 
performance criterion: 11.56 times better than baseline plan. 
  Plan was changed to an accepted plan. 

You can quickly verify that the new plan baseline is now in use by setting AUTOTRACE on and running 
the query—for example: 

SQL> set autotrace trace explain; 
SQL> select emp_id from emp where emp_id = 100; 

Here’s a small snippet of the output indicating the new plan baseline is in use: 

SQL plan baseline "SQL_PLAN_g6mrkapwrsjsm01205c23" used for this statement 

How It Works 
One key feature of SQL plan management is that when a new low-cost plan is generated by the query 
optimizer, if the new low-cost plan has a lower cost than the accepted plan(s) in the plan baseline, the 
new low-cost plan will automatically be added to the query’s plan history in an unaccepted state. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

441 

You can choose to accept this new low-cost plan, which then moves it into the plan baseline as 
accepted. Moving an unaccepted execution plan from the plan history to the plan baseline (ENABLED and 
ACCEPTED) is known as evolving the plan baseline. 

Why would a new plan ever be generated by the optimizer? There are several factors that would 
cause the optimizer to create a new execution plan that doesn’t match an existing one in the plan 
baseline: 

• New statistics are available. 

• A new SQL profile has been assigned to the query. 

• An index has been added or dropped. 

This gives you a powerful technique to manage and use new plans as they become available. You 
can use the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function in the following modes: 

• Specify the name of the plan to evolve. 

• Provide a list of plans to evolve. 

• Run it with no value, meaning that Oracle will evolve all non-accepted plans 
contained within the plan baseline repository. 

Table 12-9 describes the parameters used in the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function. 

Table 12-9. Parameters for the EVOLVE_SQL_PLAN_BASELINE Function 

Parameter Description Default Value 

SQL_HANDLE SQL statement ID; NULL means consider all statements with 
unaccepted plans. 

NULL 

PLAN_NAME Plan name; NULL means consider all unaccepted plans in plan 
baseline. 

NULL 

PLAN_LIST List of plan names DBMS_SPM.NAME_LIST 

TIME_LIMIT Time limit in minutes to verify plans; valid only if VERIFY=YES. 
DBMS_SPM.AUTO_LIMIT lets Oracle choose the time limit; 
DBMS_SPM.NO_LIMIT means no time limit. 

DBMS_SPM.AUTO_LIMIT 

VERIFY Verify that performance will be improved before accepting the 
plan 

YES 

COMMIT Updates accepted status from NO to YES YES 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

442 

12-14. Disabling Plan Baselines 

Problem 
You’re working with a test database that has many SQL statements with associated plan baselines. You 
want to determine what the performance difference would be without the plan baselines enabled and 
therefore want to temporarily disable the use of plan baselines. 

Solution 
To disable the use of any SQL plan baselines within the database, set the 
OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter to FALSE: 

SQL> alter system set optimizer_use_sql_plan_baselines=false scope=both; 

The prior line disables the use of the plan baselines at the SYSTEM level and records the value in 
memory and in the server parameter file. To re-enable the use of plan baselines, set the value back to 
TRUE. 

You can also set the OPTIMIZER_USE_SQL_PLAN_BASELINES at the session level. This disables the use of 
plan baselines for the duration of the session for the currently connected user: 

SQL> alter session set optimizer_use_sql_plan_baselines=false; 

How It Works 
The default value for OPTIMIZER_USE_SQL_PLAN_BASELINES is TRUE, which means by default, if plan 
baselines are available, they will be used. When enabled, the optimizer will look for a valid plan baseline 
execution plan for the given SQL query and choose the one with the lowest cost. This gives you a quick 
and easy way to disable/enable the use of plan baselines within your entire database or specific to a 
session. 

If you want to disable the use of one specific plan baseline, then alter its state to DISABLED: 

DECLARE 
 pf PLS_INTEGER; 
BEGIN 
  pf := dbms_spm.alter_sql_plan_baseline( 
    plan_name => 'SQL_PLAN_4ayzkz0kr3g9s6afbe2b3' 
   ,attribute_name => 'ENABLED' 
   ,attribute_value => 'NO'); 
END; 
/ 

■ Tip See Recipe 12-10 for more details on how to alter plan baselines. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

443 

12-15. Removing Plan Baseline Information 

Problem 
You have several plan baselines that you no longer want to use and therefore want to remove them. 

Solution 
You can drop a single plan baseline. This removes a single plan baseline using the PLAN_NAME parameter: 

DECLARE 
  plan_name1 PLS_INTEGER; 
BEGIN 
  plan_name1 := DBMS_SPM.DROP_SQL_PLAN_BASELINE( 
                           plan_name => 'SQL_PLAN_bm39aw8a5xv1x519fc7bf'); 
END; 
/ 

You can also drop all plans associated with a SQL statement. This example removes all plans 
associated with a SQL statement using the SQL_HANDLE parameter: 

DECLARE 
  sql_handle1 PLS_INTEGER; 
BEGIN 
  sql_handle1 := DBMS_SPM.DROP_SQL_PLAN_BASELINE( 
                           sql_handle => 'SQL_b98d2ae2145eec3d'); 
END; 
/ 

How It Works 
You may occasionally want to remove SQL plan baselines for the following reasons: 

• You have old plans that aren’t used anymore because more efficient plans 
(evolved) are available for a SQL statement. 

• You have plans that were never accepted and now want to remove them. 

• You have plans that were created for testing environments that are no longer 
needed. 

As shown in the “Solution” section, you can remove a specific plan baseline via the PLAN_NAME 
parameter. This will remove one specific plan. If you have several plans associated with one SQL 
statement, you can remove all plan baselines for that SQL statement via the SQL_HANDLE parameter. 

If you have a database where you want to clear out all plans, then you can encapsulate the call 
DBMS_SPM.DROP_SQL_PLAN_BASELINE within a PL/SQL block that drops all plans by looping through any 
plan found in DBA_SQL_PLAN_BASELINES: 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

444 

SET SERVEROUT ON SIZE 1000000 
DECLARE 
  sql_handle1 PLS_INTEGER; 
  CURSOR c1 IS 
    SELECT sql_handle 
    FROM dba_sql_plan_baselines; 
BEGIN 
  FOR r1 IN c1 LOOP 
    sql_handle1 := DBMS_SPM.DROP_SQL_PLAN_BASELINE(sql_handle => r1.sql_handle); 
    DBMS_OUTPUT.PUT_LINE('PB dropped for SH: ' || r1.sql_handle); 
  END LOOP; 
END; 
/ 

12-16. Transporting Plan Baselines 

Problem 
You have a test environment, and you want to ensure that all of the plan baselines in the test system are 
moved to a production database. 

Solution 
Follow these steps to transport plan baselines: 

1. Create a table using the DBMS_SPM package and CREATE_STGTAB_BASELINE 
procedure. 

2. Populate the table with plan baselines using the 
DBMS_SPM.PACK_STGTAB_BASELINE function. 

3. Copy the staging table to the destination database using a database link or 
Data Pump. 

4. Import the plan baseline information using the 
DBMS_SPM.UNPACK_STGTAB_BASELINE function. 

This example first uses the DBMS_SPM package to create a table named EXP_PB: 

BEGIN 
  DBMS_SPM.CREATE_STGTAB_BASELINE(table_name => 'exp_pb'); 
END; 
/ 

■ Note You cannot create the staging table in the SYS user. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

 

445 

Next the EXP_PB table is populated with plan baselines created by the database user MV_MAINT: 

DECLARE 
  pbs NUMBER; 
BEGIN 
  pbs := DBMS_SPM.PACK_STGTAB_BASELINE( 
           table_name => 'exp_pb', 
           enabled => 'yes', 
           creator => 'MV_MAINT'); 
END; 
/ 

The prior code populates the table with all plan baselines created by a user. You can also populate 
the table by PLAN_NAME, SQL_HANDLE, SQL_TEXT, or various other criteria. The only mandatory parameter is 
the name of the table to be populated. 

Now copy the staging table to the destination database. You can use a database link, Data Pump, or 
the old exp/imp utilities to accomplish this. 

Lastly, on the destination database, use the DBMS_SPM.UNPACK_STGTAB_BASELINE function to take the 
contents of the EXP_PB table and create plan baselines: 

DECLARE 
  pbs NUMBER; 
BEGIN 
  pbs := DBMS_SPM.UNPACK_STGTAB_BASELINE( 
           table_name => 'exp_pb', 
           enabled => 'yes'); 
END; 
/ 

You should now have all of the plan baselines transferred to your target database. You can query 
DBA_SQL_PLAN_BASELINES to verify this. 

How It Works 
It’s a fairly easy process to create a table, populate it with plan baseline information, copy the table, and 
the import its contents into the destination database. As shown in step 2 of the “Solution” section of this 
recipe, the PACK_STGTAB_BASELINE function is used (see Table 12-10). This function allows quite a bit of 
flexibility in what types of plan baselines you want exported. You can limit the plan baselines extracted 
to a specific user, or enabled, or accepted, and so on. 

Likewise, the DBMS_SPM.UNPACK_STGTAB_BASELINE function allows you a great deal of flexibility on 
what types of plan baselines are extracted from the staging table and loaded into the destination 
database. The input parameters for UNPACK_STGTAB_BASELINE are the same as the parameters used for 
PACK_STGTAB_BASELINE (described in Table 12-10). 
  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12 ■ EXECUTION PLAN OPTIMIZATION AND CONSISTENCY 

446 

Table 12-10. Parameters for the PACK_STGTAB_BASELINE Function 

Parameter Name Description 

TABLE_NAME Mandatory name of table to be populated with plan baseline information 

TABLE_OWNER Staging table owner; NULL specifies current user. 

SQL_HANDLE Uniquely identifies a SQL statement 

PLAN_NAME Uniquely identifies a specific plan baseline; % wildcards valid as input 

SQL_TEXT Identifies SQL queries by text; % wildcards valid as input 

CREATOR User who created plan baseline 

ORIGIN Origin of plan baseline; valid values are: MANUAL-LOAD, AUTO_CAPTURE,
MANUAL_SQLTUNE, or 

AUTO_SQLTUNE. 

ENABLED Specifies enabled plan baselines; YES and NO are valid values. 

ACCEPTED Specifies accepted plan baselines; YES and NO are valid values. 

FIXED Specifies fixed plan baselines; YES and NO are valid values. 

MODULE Module name 

ACTION Action name 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 3 
 

 

    

 

   

 

  

 

 

  

 

447 

Configuring the Optimizer 

The cost optimizer determines the most efficient execution plan for a SQL statement. The optimizer 
depends heavily on the statistics that you (or the database) gather. This chapter explains how to set the 
optimizer goal and how to control the behavior of the optimizer. You’ll learn how to enable and disable 
automatic statistics collection by the database and when to collect statistics manually. You’ll learn how 
to set preferences for statistics collection as well as how to validate new statistics before making them 
available to the optimizer. The chapter explains how to lock statistics, export statistics, gather system 
statistics, restore older versions of statistics, and how to handle missing statistics. 

Bind peeking behavior, wherein the optimizer looks at the bind variable values when parsing a SQL 
statement, can have unpredictable effects on execution plans. The chapter explains adaptive cursor 
sharing, which is designed to produce execution plans based on the specific values of bind variables. 

Collecting statistics on large tables is always problematic, and the chapter shows how to use the 
incremental statistics gathering feature to speed up statistics collection for large partitioned tables. 
You’ll also learn how to use the new concurrent statistics collection feature to optimize statistics 
collection for large tables. 

Collecting extension statistics for expressions and column groups improves optimizer performance, 
and you’ll learn how to collect these types of statistics. The chapter also explains how to let the database 
tell you which columns in a table are candidates for creating a column group. 

13-1. Choosing an Optimizer Goal 

Problem 
You want to set the cost optimizer goal for your database. 

Solution 
You can influence the behavior of the cost optimizer by setting an optimizer goal. The optimizer will 
collect appropriate statistics based on the goal you set. You set the optimizer goal with the 
optimizer_mode initialization parameter. You can set the parameter to the values ALL_ROWS or 
FIRST_ROWS_n, as shown here: 

optimizer_mode=all_rows 
optimizer_mode=first_rows_n         /* n can be 1,10,100 or 1000 */ 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

448 

The default value for the optimizer_mode parameter is ALL_ROWS. 

How It Works 
The default value for the optimizer_mode parameter, ALL_ROWS, has the goal of maximizing throughput—
it minimizes resource use to complete the processing of the entire statement and get all the requested 
rows. The alternate value of FIRST_ROWS_n uses the goal of response time, which is the time it takes to 
return the first n number of rows. 

If you set the optimizer_mode parameter to FIRST_ROWS_n, all sessions will use the optimizer goal of 
best response time. However, you can change the optimizer goal just at the session level by executing a 
SQL statement such as the following: 

SQL> alter session set optimizer_mode=first_rows_1; 

Note that the ALL_ROWS optimizer mode setting has built-in bias toward full table scans, because its 
goal is to minimize resource usage. The FIRST_ROWS_n setting, on the other hand, favors index accesses 
because its goal is minimizing response time, and thus returns the requested number of rows as fast as 
possible. 

In addition to the optimizer_mode parameter, you can also set the following parameters to influence 
the behavior of the optimizer: 

• optimizer_index_caching 

• optimizer_index_cost_adj 

• db_file_multiblock_read_count 

In general, changing these parameters at the database level can lead to unexpected optimizer 
behavior, including potential performance deterioration for some queries. The recommended practice is 
to leave these parameters at their default levels. We, however, do show (Recipe 13-11) how to use one of 
these parameters (optimizer_index_cost_adj) at the session level, to improve the performance of a long-
running query by forcing the optimizer to use an index. 

13-2. Enabling Automatic Statistics Gathering 

Problem 
You want to enable automatic statistics gathering in your database. 

■ Tip Oracle recommends the enabling of automatic optimizer statistics collection. 

Solution 
You enable automatic statistics collection by using the enable procedure in the DBMS_AUTO_TASK_ADMIN 
package. Check the status of the auto optimizer stats collection task in the following way: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

449 

SQL> select client_name,status from dba_autotask_client; 
 
CLIENT_NAME                                                      STATUS 
---------------------------------------------------------------- -------- 
auto optimizer stats collection                                  DISABLED 
auto space advisor                                               ENABLED 
sql tuning advisor                                               ENABLED 
SQL> 

Execute the dbms_auto_task_admin.enable procedure to enable the automatic statistics collection 
task: 

SQL> begin dbms_auto_task_admin.enable( 
  2  client_name=>'auto optimizer stats collection',   
  3  operation=>NULL, 
  4  window_name=>NULL); 
  5  end; 
  6  / 
 
PL/SQL procedure successfully completed. 

Check the status of the auto optimizer stats collection task: 

SQL>  SELECT client_name,status from dba_autotask_client; 
 
CLIENT_NAME                                                      STATUS 
---------------------------------------------------------------- -------- 
auto optimizer stats collection                                  ENABLED 
auto space advisor                                               ENABLED 
sql tuning advisor                                               ENABLED 
 
SQL> 

You can disable the statistics collection task by using the dbms_auto_task_admin.disable procedure: 

SQL> begin 
  2  dbms_auto_task_admin.disable( 
  3  client_name=> 'auto optimizer stats collection', 
  4  operation=> NULL, 
  5  window_name=> NULL); 
  6  end; 
  7  / 
 
PL/SQL procedure successfully completed. 
 
SQL> 

How It Works 
Automatic optimizer statistics collection is enabled by default when you create a database with the 
DBCA. If you’ve disabled automatic statistics collection, you can enable it by executing the procedure 
shown in the “Solution” section. Once you enable automatic statistics collection, the database collects 
statistics whenever they get stale—the database determines this based on the changes made to the 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

450 

tables and indexes. Automating statistics collection eliminates all the work involved in collecting 
statistics yourself. 

When you enable automatic optimizer statistics collection, the “auto optimizer stats collection” task 
calls the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure. This procedure is virtually identical to 
the DBMS_STATS.GATHER_DATABASE_STATS procedure—the big difference is that the database will collect 
the statistics only during the maintenance window that you specify. If you don’t specify a maintenance 
window, the database uses the default maintenance window, which opens every night from 10 p.m. to 6 
a.m. and all day on weekends. The “auto optimizer stats collection” job collects statistics first for those 
objects that need the new statistics the most. Thus, the auto statistics collection job will first collect 
statistics for objects that don’t have any statistics, or objects that underwent substantial modifications 
(usually about 10% of the rows). This way, if the statistics collection job doesn’t complete before the end 
of the maintenance window, the database ensures that objects with the stalest statistics are refreshed  
for sure. 

You can query the DBA_OPTSTAT_OPERATIONS view to find out the beginning and ending times for the 
automatic statistics collection job, as shown here: 

SQL> select operation,target,start_time,end_time from dba_optstat_operations 
2*   where operation='gather_database_stats(auto)'; 
 
OPERATION                          START_TIME                        END_TIME 
---------------------    ----------------------------             ---------------------------- 
gather_database_stats     26-APR-11 10.00.02.970000 PM            26-APR-11 10.03.11.671000 PM  
… 
SQL> 

■ Tip Automatic statistics collection works very well with OLTP databases whose data changes moderately on 
a day-to-day basis, but not for most data warehouses that perform nightly data loading from ETL jobs. 

The DBA_TAB_MODIFICATIONS view stores information about the inserts, deletes, and updates to a 
table. By default, the OPTIONS parameter for the GATHER_DATABASE_STATS procedure is set to the value 
GATHER AUTO. What this means is that once you enable automatic statistics collection, the database will 
collect statistics for all tables where more than 10% of the rows have been affected by insert, delete, 
and update operations. 

Automatic statistics collection by the database works well for most OLTP databases. However, in a 
data warehouse environment, you may run into issues because the automatic statistics collection job 
runs during the nightly maintenance window. If your ETL or ELT jobs load data into a table after the 
auto job has already collected statistics for that table, you could end up with unrepresentative statistics 
for that table. In a data warehouse environment, it’s a good idea to collect statistics manually right after 
the load process completes and disable the default automatic statistics collection job. 

Note that in addition to collecting statistics for all schema objects, the auto stats job also gathers 
dictionary statistics (for the SYS and SYSTEM schemas). 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

451 

13-3. Setting Preferences for Statistics Collection 

Problem 
You want to set default values for the parameters used by the DBMS_STATS procedures that gather various 
types of statistics. 

Solution 
Use the appropriate DBMS_STATS.SET_*_PREFS procedure to change the default values for parameters that 
control statistics collection. Use the following procedures for changing the default values of the 
parameters used at various levels of statistics collection: 

• SET_TABLE_PREFS: Lets you specify default parameters to be used by the 
DBMS_STATS.GATHER_*_STATS procedures for a specific table 

• SET_SCHEMA_PREFS: Lets you change the default parameters to be used by the 
DBMS_STATS.GATHER_*_STATS procedures for all objects in a specific schema 

• SET_DATABASE_PREFS: Lets you change the default parameters to be used by the 
DBMS_STATS.GATHER_*_STATS procedures for the entire database, including all user 
schemas and system schemas such as SYS and SYSTEM 

• SET_GLOBAL_PREFS: Sets global statistics preferences; this procedure lets you 
change the default statistic collection parameters for any object in the database 
that doesn’t have an existing preference at the table level. If you don’t set table-
level preferences or you don’t set any parameter explicitly in the 
DBMS_STATS.GATHER_*_STATS procedure, the parameters default to their global 
settings. 

Here’s an example that shows how to set default preferences at the database level by invoking the 
SET_DATABASE_PREFS procedure: 

SQL>  execute dbms_stats.set_database_prefs('ESTIMATE_PERCENT','20'); 

Once you set a preference for a parameter at the database level, it applies to all tables in the 
database. Note that the SET_*_PREFS procedures accept three parameters: 

• pname refers to the name of the preference, such as the ESTIMATE_PERCENT 
preference used in the previous example. 

•  pvalue lets you specify a value for the preference. If you specify NULL as the value 
for the pvalue parameter, the preference’s value will be set to the Oracle default 
values. 

•  add_sys is an optional parameter that, if set to TRUE, will also include all Oracle-
owned tables in the statistics collection process. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

452 

How It Works 
All DBMS_STATS.GATHER_*_STATS procedures use default values for the various parameters. There are two 
ways you can handle the specification of values for the various parameters that are part of the 
procedures in the DBMS_STATS package such as the GATHER_TABLE_STATS procedure. You can specify the 
preference values when you execute a procedure such as GATHER_TABLE_STATS to collect statistics. 
Alternatively, you can change the default values of the preferences at the table, schema, database, or 
global level with the appropriate DBMS_STATS.SET_*_PREFS procedure, as shown in the “Solution” section. 
If you don’t specify a value for any of the statistics gathering parameters, the database uses the default 
value for that parameter. 

You can find the default value of any preference by executing the DBMS_STATS.GET_PREFS procedure. 
The following example shows how to find the value of the current setting of the STALE_PERCENT 
parameter: 

SQL> select dbms_stats.get_prefs ('STALE_PERCENT','SH') stale_percent from dual; 
 
STALE_PERCENT 
-------------------------------------------------------------------------------- 
 
10 
 
SQL> 

You specify similar preferences when you collect statistics at the table, schema, or database level. 
Here is a description of the various preferences you can specify to control the way the database gathers 
statistics. 

CASCADE 
This specifies whether the database should collect index statistics along with the table statistics. By 
default, the database automatically collects statistics (cascade=true) for all of a table’s indexes. 

DEGREE 
This specifies the degree of parallelism the database must use when gathering statistics. Oracle 
recommends using the default setting of the constant DBMS_STATS.AUTO_DEGREE. Oracle chooses the 
correct degree of parallelism based on the object and the parallelism-related initialization parameters. 
When you use the default DBMS_STATS.AUTO_DEGREE setting, Oracle determines the degree of parallelism 
based on the size of the object. If the object is small enough, Oracle collects statistics serially, and if the 
object is large, Oracle uses the default degree of parallelism based on the number of CPUs. Note that the 
default degree is NULL, which means that the database collects statistics using parallelism only if you set 
the degree of parallelism at the table level with the DEGREE clause. 

ESTIMATE_PERCENT 
This specifies the percentage of rows the database must use to estimate the statistics. For large tables, 
estimation is the only way to complete the statistics collection process within a reasonable time—
statistics collection is not a trivial process—it’s resource-intensive and consumes a lot of time for large 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

453 

tables. You can set a value between 0 and 100 for the estimate_percent parameter. A rule of thumb here 
is that the more uniform a table’s data, the smaller the sample size can be. On the other hand, if a table’s 
data is highly skewed, you should use a higher sample size to capture the variations in the data 
distribution. Of course, setting this parameter to 100 means that the database isn’t doing an 
estimation—it will collect statistics for each row in a table. Often, DBAs set the estimate_percent 
parameter too high, because they’ve had bad experiences with a table when they set a small sample size. 
If you think the data is uniformly distributed, even a 1 or 2% sample will get you very accurate statistics, 
and save you a bunch of time and processing overhead. 

■ Tip In Oracle Database 11g, the NDV (number of distinct values) count, which is a key statistic calculated by 
setting the estimate_percent parameter to DBMS_STATS.AUTO_SAMPLE_SIZE, is statistically identical to the NDV 
count calculated by a 100% complete statistics collection. The best practice is to start with the AUTO_SAMPLE_SIZE 
and set your own sample size only if you have to. 

It’s not easy to select the best size for the estimate_percent parameter—if you set it too high, it’ll 
take a long time to collect statistics. If you set it too low, you can gather the statistics quickly all right, but 
those statistics can very well be inaccurate. By default, the database uses the constant 
DBMS_STATS.AUTO_SAMPLE_SIZE to determine the best sample size. You specify the AUTO value for the 
estimate_percent parameter in the following way: 

SQL> exec dbms_stats.gather_table_stats(NULL, 'MASSIVE_TABLE', estimate_percent=>   
dbms_stats.auto_sample_size)   

When you set the AUTO value for the estimate_percent parameter, not only does the database 
automatically determine the sampling size, but it also adjusts the size of the sample as the data 
distribution changes. NDV is a good criterion to calculate the accuracy of the statistics collected with 
varying samples sizes. The NDV of a column is defined as follows: 

accuracy rate = 1 - (estimated NDV - actual NDV) /actual NDV 

The accuracy rate can range over 0 to 100%. A 100% sample size will always give you a 100% 
accuracy rate—what is significant is that in Oracle 11g, auto sampling provides accuracy rates that are 
very close to 100%, and take a fraction of the time it takes to collect complete statistics for a large table. 

METHOD_OPT 
You can specify two things with the METHOD_OPT parameter: the columns for which the database will 
collect statistics, and the columns on which the database will create histograms. You can also specify the 
number of the buckets in the histograms. You can specify one of the following options for this 
parameter: 

FOR ALL [INDEXED  |  HIDDEN]  COLUMNS  [size_clause] 
FOR COLUMNS [size_clause]  column  [size_clause]  [,COLUMN  [size_clause]…] 

The FOR ALL option lets you specify that the database must collect statistics for all columns, or only 
for the indexed columns. If you specify the INDEXED COLUMNS option, the database will collect statistics 
only for those columns that have an index on them. Be careful with this option, as the database will not 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

454 

collect statistics on the table’s columns, instead using basic default statistics for the columns. Using the 
FOR ALL INDEXED COLUMNS in a data warehouse environment could be especially problematic, as indexes 
aren’t heavily used in that environment. 

The FOR COLUMNS option lets you specify one or more columns on which the database must gather 
statistics, instead of on all columns in a table, which is the default behavior. Here’s how to specify the 
column clause in this context: 

column:= column_name  |  extension name |  extension 

The column_name clause refers to the name of the column, and extension can be either a column 
group (in the format column_name, column_name [,…]) or an expression. 

The key clause for both the FOR ALL and the FOR COLUMNS options is the size_clause. The 
size_clause determines whether the database should collect histograms for a column, and under what 
conditions. One option is to supply an integer value indicating the number of histogram buckets—in the 
range 1 through 254—that you would like—for example: 

SQL> exec dbms_stats.gather_table_stats('HR','EMPLOYEES',method_opt=> 'for columns size 254 
job_id') 
 
PL/SQL procedure successfully completed. 
SQL> 

When you execute this procedure, the database collects histograms, and there will be 254 histogram 
buckets. 

■ Note A value of 1 for the integer clause (for example, 'FOR ALL COLUMNS SIZE 1') won’t really create any 
histograms on the columns, because all the data is placed into a single bucket. Also, if there’s already a 
histogram(s) on a table, setting the value 1 for the integer clause will remove the histogram(s). 

Another option for the size_clause is to specify one of the following three values: 

REPEAT: Specifies that the database must collect histograms on only those columns that already have 
histograms collected for them; setting the value repeat instead of the integer 1 value ensures that 
you retain any useful histograms. 

AUTO: Lets the database determine for which columns it should collect histograms, based on each 
column’s data distribution (whether it’s uniform or skewed) and the actual column usage statistics 

SKEWONLY: Lets the database determine for which columns it should collect histograms, based on 
each column’s data distribution 

Here is an example that specifies SKEWONLY: 

SQL> exec dbms_stats.gather_table_stats('HR','EMPLOYEES',method_opt=> 'for all columns size 
skewonly') 
PL/SQL procedure successfully completed. 
SQL> 

When you specify SKEWONLY, the database will look at the data distribution for each column to 
determine if the data is skewed enough to warrant the creation of a histogram. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

455 

The default value for the METHOD_OPT parameter is FOR ALL COLUMNS SIZE AUTO. That is, the database 
will collect statistics for all columns in a table, and it automatically selects the columns for which it 
should create histograms. 

NO_INVALIDATE 
You can set three different values for this parameter. The value TRUE means that the database doesn’t 
invalidate the dependent cursors of the table for which it’s collecting statistics. The value FALSE means 
that the database immediately invalidates the dependent cursors. Finally, you can set this parameter to 
the value DBMS_STATS.AUTO_INVALIDATE, to let Oracle decide to invalidate the cursors—this is also the 
default value for the NO_INVALIDATE parameter. 

GRANULARITY 
This parameter determines how the database handles statistics gathering for partitioned tables. Here are 
the various options you can specify for the GRANULARITY parameter: 

ALL: Gathers subpartition-, partition-, and global-level statistics; this setting provides a very accurate 
set of table statistics, but is extremely resource-intensive and takes much longer to complete than a 
statistics collection job with the other options. 

GLOBAL: Gathers just global statistics for a table 

PARTITION: Gathers only partition-level statistics—the partition-level statistics are rolled up at the 
table level, and may not be very accurate at the table level. 

GLOBAL AND PARTITION: Gathers the global- and partition-level statistics, but not the subpartition-
level statistics 

SUBPARTITION: Gathers only subpartition statistics 

AUTO: This is the default value for the GRANULARITY parameter and determines the granularity based 
on the partitioning type. 

Note that the ALL setting could take a long time to complete besides using up a lot of resources. It’s 
not really necessary to gather statistics at the subpartition level for composite partitioned tables. In most 
cases, the default setting of AUTO works well. The ALL setting is definitely overkill, and isn’t necessary in 
most, probably all situations. 

PUBLISH 
By default, the database publishes all statistics right after it completes the statistics gathering process. 
You can specify that the database keep newly collected statistics as pending statistics by setting the 
PUBLISH parameter to FALSE. 

INCREMENTAL 
The INCREMENTAL preference determines whether the database maintains a partitioned table’s statistics 
without having to perform a full table scan. The default value of this parameter is FALSE, meaning the 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

456 

database does a full table scan to maintain global statistics. Recipe 13-19 discusses incremental statistics
collection in detail. 

STALE_PERCENT 
The STALE_PERCENT preference determines the proportion of a table’s rows that must change before the
database considers the table’s statistics as “stale” and starts gathering fresh statistics. By default, the
STALE_PERCENT parameter is set to 10%. Don’t collect statistics on tables that haven’t changed at all, or
have changed very little, as you’d be collecting unnecessary statistics. 

AUTOSTATS_TARGET 
This preference is valid only for auto stats collection, and you specify it when setting global statistics
preferences with the SET_GLOBAL_STATS procedure. You can set the following values for this preference: 

ALL: Collects statistics for all objects in the database 

ORACLE: Collects statistics for all Oracle-owned objects 

AUTO: The database determines for which objects it should collect statistics. 

The default value for the AUTOSTATS_TARGET parameter is AUTO. Note that currently the ALL and the
AUTO (default) settings work the same way. Oracle recommends that you set the AUTOSTATS_TARGET
preference to the value ORACLE, to ensure that the database collects fresh dictionary statistics (for objects
owned by SYS and SYSTEM). 

We’ve incorporated several Oracle best practices for statistics collection in this recipe. Try to stick
with the default settings for the preferences unless you have strong reasons to do otherwise. Remember
that if you’re creating a new table, you can load the data first and collect statistics just for the table.
Create the indexes afterward, because the database automatically computes statistics for the indexes
during index creation time. 

13-4. Manually Generating Statistics 

Problem 
You’re trying to determine if you should let the database automatically collect the optimizer statistics, or
if you must manually collect the statistics. 

Solution 
In most cases, the automatic statistics collection task is good enough to collect the optimizer statistics.
In fact, there are many production databases that automate statistics collection as shown in Recipe 13-2
and never use a manual statistic collection process. However, there are cases where manual statistic
collection may be necessary. Here are two cases when you must manually collect statistics. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

457 

Volatile Tables 
If your database contains volatile tables that experience numerous deletes (or even truncates) 
throughout the day, then an automatic stats collection job that runs during the nightly maintenance 
window isn’t adequate. There are a couple of strategies you can use in this type of situation, where a 
table’s data keeps fluctuating throughout the day: 

• Collect the statistics when the table has the number of rows that represent its 
“typical” state. Once you do this, lock the statistics to prevent the automatic 
statistics collection job from collecting fresh statistics for this table during the 
nightly maintenance window. 

• The other option is to make the statistics of the table null. 

You make the statistics of a table null by deleting the statistics first and then locking the table’s 
statistics right after that, as shown in the following example: 

SQL> execute dbms_stats.delete_table_stats('OE','ORDERS'); 
 
PL/SQL procedure successfully completed. 
 
SQL> execute dbms_stats.lock_table_stats('OE','ORDERS'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

Bulk Loaded Tables 
For tables that you bulk load data into, you must collect statistics immediately after loading the data. If 
you don’t collect statistics right after bulk loading data into a table, the database can still use dynamic 
sampling to estimate the statistics, but these statistics aren’t as comprehensive as the statistics that you 
collect. 

How It Works 
Before Oracle introduced the automatic optimizer statistics collection feature in the Oracle Database 10g 
release, every DBA collected scripts using the recommended DBMS_STATS package (or even the older 
analyze table command). With automatic statistics collection, DBAs don’t have to collect optimizer 
statistics by scheduling DBMS_STATS jobs. However, you may still run into situations where automatic 
statistics collection isn’t appropriate. The “Solution” section describes two such cases, and how to 
handle them by manually collecting the statistics. 

You can manually collect statistics at the table, schema, or database level, by using the appropriate 
DBMS_STATS.GATHER_*_STATS procedure. 

When you’re manually gathering the optimizer statistics, it’s a good idea to stick with the default 
settings for the various parameters that control how the database collects the statistics. Often, 
performance of the statistics gathering job (how fast) and the quality of the statistics itself improve when 
you revert to the default settings. For example, many DBAs set too high a sample size with the 
estimate_percent parameter, rather than letting the database use the appropriate sample size based on 
the DBMS_STATS.AUTO_SAMPLE_SIZE constant. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

458 

13-5. Locking Statistics 

Problem 
You want to lock the statistics for a table or a schema, to freeze the statistics. 

Solution 
You can lock a table or a schema’s statistics by executing the appropriate DBMS_STATS.LOCK_* procedures. 
For example, you can lock a table’s statistics with the LOCK_TABLE_STATS procedure in the DBMS_STATS 
package: 

SQL> execute dbms_stats.lock_table_stats(ownname=>'SH',tabname=>'SALES'); 
 
PL/SQL procedure successfully completed. 
SQL> 

You can unlock the table’s statistics by executing the following procedure: 

SQL> execute dbms_stats.unlock_table_stats(ownname=>'SH',tabname=>'SALES'); 
 
PL/SQL procedure successfully completed. 
 
SQL>  

You can lock a schema’s statistics with the DBMS_STATS.LOCK_SCHEMA_STATS procedure, as shown 
here: 

SQL> execute dbms_stats.lock_schema_stats('SH'); 
 
PL/SQL procedure successfully completed. 
SQL> 

Unlock the statistics with the UNLOCK_SCHEMA_STATS procedure: 

SQL> execute dbms_stats.unlock_schema_stats('SH'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

How It Works 
You may want to lock a table’s statistics to freeze the current set of statistics. You may also lock the 
statistics after you delete the existing statistics first—in this case, you are forcing the database to use 
dynamic sampling to estimate the table’s statistics. Deleting a table’s statistics and then locking the 
statistics is in effect the same as setting the statistics on a table to null. You have the option of setting the 
force argument with the GATHER_TABLE__STATS procedure to override a table’s lock on its statistics. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

459 

■ Note Locking a table also locks all statistics that depend on that table, such as index, histogram and column 
statistics. 

13-6. Handling Missing Statistics 

Problem 
Certain tables in your database are missing statistics, because the tables have had data loaded into them 
outside the nightly batch window. You can’t collect statistics on the table during the day when the 
database is handling other workload. 

Solution 
Oracle uses dynamic sampling to compensate for missing statistics. The database will scan a random 
sample of data blocks in a table when you enable dynamic sampling. You enable/disable dynamic 
sampling in the database by setting the optimizer_dynamic_sampling initialization parameter. Dynamic 
sampling is enabled by default, as you can see from the following: 

SQL> sho parameter dynamic 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- ----- 
optimizer_dynamic_sampling           integer     2 
SQL> 

The default level of dynamic sampling is 2—setting it to 0 disables dynamic sampling. You can 
modify the default value by setting a different sampling level as shown here: 

SQL> alter system set optimizer_dynamic_sampling=4 scope=both; 
System altered. 
 
SQL> 

How It Works 
Ideally, you should gather optimizer statistics with the DBMS_STATS package (manually or through 
automatic statistics collection). In cases where you don’t have a chance to collect statistics for a newly 
created or newly loaded table, the table won’t have any statistics until the database automatically 
generates the statistics through its automatic stats collection job or when you schedule a manual 
statistics collection job. Even if you don’t collect any statistics, the database uses some basic statistics 
such as table and index block counts to estimate the selectivity of the predicates in a query. Dynamic 
sampling goes a step further, augmenting these basic statistics by dynamically gathering additional 
statistics at compile time. Dynamic sampling is of particular help when dealing with frequently executed 
queries that involve tables with no statistics. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

460 

■ Note Oracle doesn’t perform dynamic sampling for external tables. 

There’s a cost to dynamic sampling, because the database uses resources to gather statistics during 
query compilation. If you don’t execute these queries many times, the database incurs an overhead each 
time it executes a query involving table(s) for which it must dynamically collect statistics. For dynamic 
sampling to really pay off, it must help queries that are executed frequently. 

It’s important to understand the significance of the dynamic sampling levels, which can range from 
0 to 10. Note that the sample size used for dynamic sampling at various sampling levels is in terms of 
data blocks, not rows. Here is a brief description of the various dynamic sampling levels. 

Level 1: Uses dynamic sampling for all tables that don’t have statistics, provided there’s at least one 
non-partitioned table without statistics in the query; the table must also not have any indexes and it 
must be larger than 32 blocks, which is the sample size for this level. 

Level 2: Uses dynamic sampling if at least one table in the query has no statistics; sample size is 64 
blocks. 

Level 3: Uses dynamic sampling if the query meets the Level 2 criteria and it has one or more 
expressions in a WHERE clause predicate; sample size is 64 blocks. 

Level 4: Uses dynamic sampling if the query meets all Level 3 criteria, and in addition it uses 
complex predicates such as an OR/AND operator between multiple predicates; sample size is 64 
blocks. 

Levels 5–9: Use dynamic sampling if the statement meets the Level 4 criteria; each of these levels 
differs only in the sample size, which ranges from 128 to 4086 blocks. 

Level 10: The most comprehensive level—it uses dynamic sampling for all statements, and the 
sample it uses isn’t really a sample, because it checks all data blocks to get the statistics. 

Dynamic sampling is a complement to the statistics collected by the DBMS_STATS package’s 
procedures. Oracle doesn’t expect you to use this in general, due to the additional overhead for 
gathering optimizer statistics during the generation of an execution plan. Dynamic sampling does help 
in getting better cardinality estimates, but is more suitable for longer-running queries in a data 
warehouse or a decision support system, rather than for queries in an OLTP database, due to the 
overhead involved. You must also keep in mind that the statistics collected through dynamic sampling 
are by no means the same as the statistics collected through the DBMS_STATS procedures. Dynamic 
sampling merely collects rudimentary statistics such as the number of data blocks and the high and low 
values of columns. If you must set a dynamic sampling level, do so at the session level with an alter 
session statement, rather than setting it database-wide. 

13-7. Exporting Statistics 

Problem 
You want to export a set of statistics from your production database to a much smaller test database. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

461 

Solution 
You can export optimizer statistics from one database to another by using the 
DBMS_STATS.EXPORT_*_STATS procedures. These procedures let you export optimizer statistics from a 
source table, schema, or database. Once you complete the export of the statistics, you must execute one 
of the DBMS_STATS.IMPORT_*_STATS procedures to import the statistics into a different database. You can 
export statistics at the table, schema, or database level. Here’s an example that explains how to export 
statistics from a table. 

1. Create a table to hold the exported statistics: 

SQL> execute dbms_stats.create_stat_table(ownname=>'SH',stattab=>'mytab', 
                                                tblspace=>'USERS') 
 
PL/SQL procedure successfully completed. 
 
SQL> 

2. Export the statistics for the table SH.SALES from the data dictionary into the 
mytab table, using the DBMS_STATS.EXPORT_*STATS procedure. 

SQL> exec dbms_stats.export_table_stats(ownname=> 'SH',tabname=>'SALES',stattab= 
>'mytab') 
 
PL/SQL procedure successfully completed. 
 
SQL> 

3. In a different database, import the statistics using the 
DBMS_STATS.IMPORT_*STATS procedure. 

SQL> exec dbms_stats.import_table_stats(ownname=>'SH',tabname=>'SALES',stattab=> 
'MyTab',no_invalidate=>true); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

How It Works 
The EXPORT_TABLE_STATS procedure exports the current statistics for a table from the data dictionary and 
stores them in a table that you create. Note that this procedure doesn’t generate fresh statistics and the 
database will continue to use the current statistics for the table (SH.SALES in our example). By default, the 
cascade option is true, meaning the procedure will export statistics for all indexes in the SH.SALES table 
along with the column statistics.  

You can make the optimizer use the exported statistics only after you import them into the data 
dictionary, in the same or a different database. The IMPORT_TABLE_STATS procedure imports the statistics 
you’ve exported earlier, into the data dictionary. Setting the no_invalidate parameter to true (default is 
false) ensures that any dependent cursors aren’t invalidated. By default, you can’t import a table’s 
statistics when the statistics are locked. You can override this property by setting the force parameter to 
true. If you’re importing the statistics into a different database from the one from which you exported 
the statistics, you must export the table in which you stored the statistics to the target database. You 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

462 

must then import the table into the target database before you can execute the IMPORT_TABLE_STATS 
procedure. 

Exporting and importing statistics is an ideal way to present the same statistics to the optimizer in a 
test system as those in a production system, to ensure consistent explain plans. It’s also a good strategy 
when you want to preserve a known set of good statistics for a longer period than what is allowed by the 
“restore statistics” feature explained in Recipe 13-8. The ability to export and import statistics enables 
you to test different sets of statistics before deciding which set of parameters is the best for your 
database. 

In this recipe, we showed you how to export and import table-level statistics. The DBMS_STATS 
package also contains procedures to export and import statistics at the column, index, schema, and 
database level. In addition, there are procedures for exporting and importing dictionary statistics, 
statistics for fixed objects, and system statistics. 

13-8. Restoring Previous Versions of Statistics 

Problem 
Performance of certain queries has deteriorated suddenly after collecting fresh statistics. You want to see 
if you can use an older set of statistics that you knew worked well. 

Solution 
Use the DBMS_STATS.RESTORE_STATS procedure to revert to an older set of optimizer statistics. Before you 
restore older statistics, check how far back you can go to restore older statistics: 

SQL> select dbms_stats.get_stats_history_availability from dual; 
 
GET_STATS_HISTORY_AVAILABILITY 
---------------------------------------------------------------------- 
19-APR-11 07.49.26.718000000 AM -04:00 
 
SQL> 

The output of this query shows that you can restore statistics to a timestamp that’s more recent than 
the timestamp shown, which is 19-APR-11 07.49.26.718000000 AM -04:00. 

Execute the RESTORE_*_STATS procedures of the DBMS_STATS package to revert to statistics from an 
earlier period. The following example shows how to restore statistics at the schema level. 

SQL> exec dbms_stats.restore_schema_stats(ownname=>'SH',as_of_timestamp=>'19-MAY 
-11 01.30.31.323000 PM -04:00',no_invalidate=>false) 
 
PL/SQL procedure successfully completed. 
 
SQL> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

463 

How It Works 
When the database collects fresh statistics, it doesn’t get rid of the previous set of statistics. Instead, it 
retains the older versions for a set number of days. You have the ability to restore older statistics by 
executing the DBMS_STATS.RESTORE_*_STATS procedures, which replace the current statistics with the 
statistics from the time you specify. Restore statistics when you want the optimizer to use the same 
execution plans as it did when it had access to an older set of statistics. By default, the database manages 
the retention and purging of historical statistics. Here’s how to find out how many days’ worth of 
statistics the database retains by default. 

SQL> select dbms_stats.get_stats_history_retention from dual; 
 
GET_STATS_HISTORY_RETENTION 
--------------------------- 
                         31 
SQL> 

The database automatically purges statistics it has collected more than 31 days ago (provided newer 
statistics exist!). You can manually purge all old versions of statistics by executing the 
DBMS_STATS.PURGE_STATS procedure. You can change the number of days the database retains statistics 
by executing the following command: 

SQL> exec dbms_stats.alter_stats_history_retention(retention=>60); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

The command tells the database to save historical statistics for a period of 60 days. 
In the example shown in the “Solution” section, we showed how to restore statistics for a schema. 

You can similarly restore statistics for a database with the RESTORE_DATABASE_STATS procedure or for a 
table with the RESTORE_TABLE_STATS procedure. You can also restore dictionary stats with the 
RESTORE_DICTIONARY_STATS procedure and system stats with the RESTORE_SYSTEM_STATS procedure. 

13-9. Gathering System Statistics 

Problem 
You know the optimizer uses I/O and CPU characteristics of a system during the selection of an 
execution plan. You’d like to ensure that the optimizer is using accurate system statistics. 

Solution 
You can collect two types of system statistics to capture your system’s I/O and CPU characteristics. You 
can collect workload statistics or noworkload statistics to enable the optimizer to better estimate the true 
I/O and CPU costs, which are a critical part of query optimization. 

When the database gathers noworkload statistics, it simulates a workload. Here’s how you collect 
noworkload statistics, using the DBMS_STATS.GATHER_SYSTEM_STATS procedure: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

464 

SQL> execute dbms_stats.gather_system_stats() 
 
PL/SQL procedure successfully completed. 
 
SQL>  

You can also gather system statistics while the database is processing a typical workload. These 
system statistics, called workload statistics, are more representative of actual system I/O and CPU 
characteristics and present a more accurate system hardware picture to the optimizer. You can collect 
workload system statistics by executing the DBMS_STATS.GATHER_SYSTEM_STATS procedure with the “start” 
and “stop” options: 

SQL> execute dbms_stats.gather_system_stats('start') 
 
PL/SQL procedure successfully completed. 
SQL> 

You can execute the previous command before the beginning of the workload window. Once the 
workload window ends, stop the system statistics gathering by executing the following command: 

SQL> execute dbms_stats.gather_system_stats('stop') 
 
PL/SQL procedure successfully completed. 
 
SQL> 

You can also execute the GATHER_SYSTEM_STATS procedure with an interval parameter, to instruct 
the database to collect workload system statistics over a period of time that you specify and 
automatically stop the statistics gathering process at the end of the period. Here’s an example: 

SQL> execute dbms_stats.gather_system_stats('interval',90); 
PL/SQL procedure successfully completed. 
SQL> 

The previous command collects workload statistics for 90 minutes. 
Once you collect noworkload or workload system statistics, you can check the values captured for 

the various system statistics in the sys.aux_stats$ view, shown in the next section. 

■ Tip Oracle highly recommends the gathering of system statistics in order to provide more accurate CPU and 
I/O cost estimates to the optimizer. 

How It Works 
Accurate system statistics are critical for the optimizer’s evaluation of alternative execution plans. It’s 
through its estimates of various system performance characteristics such as I/O speed and CPU speed 
that the optimizer calculates the cost of, say, a full table scan vs. an indexed read. 

You can pass up to nine optimizer system statistics to the optimizer, by collecting system statistics. 
The database gathers the first three statistics during a noworkload simulated statistics gathering process. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

465 

It gathers all nine system statistics during a workload mode system statistics collection. Here’s a 
summary of the nine system statistics: 

cpuspeedNW: Shows the noworkload CPU speed, in terms of the average number of CPU cycles per 
second 

ioseektim: The sum of seek time, latency time, and OS overhead time 

iotfrspeed: Stands for I/O transfer speed and tells the optimizer how fast the database can read 
data in a single read request 

cpuspeed: Stands for CPU speed during a workload statistics collection 

maxthr: The maximum I/O throughput 

slavethr: Average parallel slave I/O throughput 

sreadtim: The Single Block Read Time statistic shows the average time for a random single block 
read. 

mreadtim: The Multiblock Read Time statistic shows the average time (in seconds) for a sequential 
multiblock read. 

mbrc: The Multi Block Read Count statistic shows the average multiblock read count in blocks. 

When you collect the noworkload system statistics, the database captures only the cpuspeedNW, 
ioseektim, and iotfrspeed system statistics. Here’s a query that shows the default system statistics in an 
Oracle 11g database (on a Windows system). 

SQL> select pname, pval1 from sys.aux_stats$ where sname = 'SYSSTATS_MAIN'; 
 
PNAME                               PVAL1 
------------------------------ ---------- 
CPUSPEED 
CPUSPEEDNW                     1183.90219 
IOSEEKTIM                              10 
IOTFRSPEED                           4096 
MAXTHR 
MBRC 
MREADTIM 
SLAVETHR 
SREADTIM 
 
9 rows selected. 
 
SQL> 

The database uses noworkload systems statistics by default, with the values of the three noworkload 
statistics—I/O transfer speed (IOTFRSPEED), I/O seek time (IOSEEKTIM), and CPU speed (CPUSPEEDNW)—
initialized to default values when you start the instance. Once you collect the noworkload statistics as 
shown in the “Solution” section, some or all of the three noworkload system statistics may change. In 
our case, once we collected the noworkload statistics, the value of CPUSPEEDNW changed to 2039.06 and 
the value of the IOSEEKTIM statistic changed to 14.756. However, the value of the IOTFRSPEED statistic 
remained constant at 4096. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

466 

If you notice that the sys.aux_stats$ view continues to show the default values for noworkload
statistics even after you manually gather the statistics a few times, you can manually set the statistics
values to known specifications of your I/O or CPU system by using the DBMS_STATS.SET_SYSTEM_STATS
procedure. You can use this procedure to set values for any of the nine system statistics. 

When you gather system statistics in the workload mode, you’ll see values for some or all of the
remaining six system statistics. In our example, these are the system statistics collected by running the
GATHER_SYSTEM_STATS procedure in the workload mode. 

SQL>  select pname, pval1 from sys.aux_stats$ where sname = 'SYSSTATS_MAIN'; 

PNAME                               PVAL1
------------------------------ ---------- 
CPUSPEED                             2040
CPUSPEEDNW                        2039.06
IOSEEKTIM                          14.756
IOTFRSPEED                           4096
MAXTHR 
MBRC                                    7
MREADTIM                        46605.947
SLAVETHR 
SREADTIM                        51471.538 

9 rows selected. 

SQL> 

If the database performs any full table scans during the workload statistics collection period, Oracle
uses the value of the mbrc and the mreadtim statistics to estimate the cost of a full table scan. In the
absence of these two statistics, the database uses the value of the db_file_multiblock_read_count
parameter to estimate the cost of full table scans. 

You can delete all system statistics by executing the DELETE_SYSTEM_STATS procedure: 

SQL> execute dbms_stats.delete_system_stats() 

PL/SQL procedure successfully completed. 

SQL> 

According to Oracle, collecting workload statistics doesn’t impose an additional overhead on your
system. However, ensure that you specify a specific interval or stop the statistics collection after a brief
period, to avoid potential overhead. 

13-10. Validating New Statistics 

Problem 
You’re collecting new statistics, but you don’t want the database to automatically use those statistics
until you validate them. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

467 

Solution 
In this example, we’ll show how to keep the database from automatically publishing new statistics for a 
table. Here are the procedures you must follow to do this. 

1. Execute the following statement to keep the database from automatically 
publishing new statistics it collects for the SH.SALES table. 

SQL> execute dbms_stats.set_table_prefs('SH','SALES','PUBLISH','false'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

The statement sets the preference for the PUBLISH parameter to false 
(default=true) for the SH.SALES table. From here on, the database won’t 
automatically publish the statistics you collect for the SH.SALES table. Rather, it 
keeps those statistics in abeyance, pending your approval. These statistics are 
called pending statistics, because the database hasn’t made them available to 
the optimizer yet. 

2. Collect new statistics for the SH.SALES table: 

SQL> exec dbms_stats.gather_table_stats('sh','sales'); 
 
PL/SQL procedure successfully completed. 
SQL> 

3. Tell the optimizer to use the newly collected pending statistics, so you can test 
your queries with those statistics: 

SQL>  alter session set optimizer_use_pending_statistics=true; 
 
Session altered. 
 
SQL> 

4. Perform your tests by running a workload against the SH.SALES table and 
checking the performance and the execution plans. 

5. If you’re happy with the new set of (pending) statistics, make them public by 
executing this statement: 

SQL> execute dbms_stats.publish_pending_stats('SH','SALES'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 
 
 
 
 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

468 

6. If you want to delete the new statistics instead, execute the following 
command: 

SQL> exec dbms_stats.delete_pending_stats('SH','SALES'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

How It Works 
By default the database immediately starts using all statistics it gathers. However, you can specify that 
the database not automatically use the new statistics it collects until you decide that the statistics are 
going to improve or at least don’t degrade current execution plans. You do this by keeping the new 
statistics in a pending state. Making the statistics available to the optimizer so it can use them in figuring 
out execution plans is called publishing the statistics. The database stores published statistics in its data 
dictionary. If you aren’t sure about the efficacy of a new set of statistics, you can keep the database from 
automatically publishing statistics until you complete testing them first. When you keep statistics in the 
pending state, the database won’t store them in the data dictionary—instead, it stores them in a private 
area, and makes those statistics available to the optimizer only if you set the 
optimizer_use_pending_statistics parameter to true. 

After specifying that the database must keep newly collected statistics in the pending status, you can 
choose to either publish the new statistics or delete them. Use the publish_pending_stats procedure to 
publish the statistics and the delete_pending_stats procedure to delete the statistics. If you delete the 
pending statistics for an object, the database will use existing statistics for that object. 

In this example, we showed how to change the PUBLISH setting for statistics at the table level. You 
can also do this at the schema level, but not at the database level. If working at the schema level, you 
need to run the following statements instead (the schema name is SH). 

SQL> execute dbms_stats.set_schema_prefs('SH','PUBLISH','false');  
SQL> execute dbms_stats.publish_pending_stats(null,null); 
SQL> execute dbms_stats.delete_pending_stats('SH'); 

13-11. Forcing the Optimizer to Use an Index 

Problem 
You know that using a certain index on a column is going to speed up a query, but the optimizer doesn’t 
use the index in its execution plans. You want to force the optimizer to use the index. 

Solution 
You can force the optimizer to use an index when it isn’t doing so, by adjusting the 
optimizer_index_cost_adj initialization parameter. You can set this parameter at the system or session 
level. Here’s an example that shows how to set this parameter at the session level: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

469 

SQL> alter session set optimizer_index_cost_adj=50; 
 
Session altered. 
SQL> 

The default value for the optimizer_index_cost_adj parameter is 100, and you can set the parameter 
to a value between 0 and 10000. The lower the value of the parameter, the more likely it is for the 
optimizer to use an index. 

How It Works 
The optimizer_index_cost_adj parameter lets you adjust the cost of an index access. The optimizer uses 
a default value of 100 for this parameter, which means that it evaluates an indexed access path based on 
the normal costing model. Based on the optimizer’s estimate of the cost of performing an indexed read, 
it makes the decision of whether to use the index. Usually this works fine. However, in some cases, the 
optimizer doesn’t use an index even if it leads to a better execution plan, because the optimizer’s 
estimates of the cost of the indexed access path may be off. Since it uses a default value of 100 for the 
optimizer_index_cost_adj parameter, you make the index cost seem lower to the optimizer by setting 
this parameter to a smaller value. Any value less than 100 makes the use of an index look cheaper (in 
terms of the cost of an indexed read) to the optimizer. Often, when you do this, the optimizer starts using 
the index you want it to use. In our example, we set the optimizer_index_cost_adj parameter to 50, 
making the cost of an index access path appear half as expensive as its normal cost (100). The lower you 
set the value of this parameter, the cheaper an index cost access path appears to the optimizer, and the 
more likely it will be to prefer an index access path to a full table scan. 

 We recommend that you set the optimizer_index_cost_adj parameter only at the session level for a 
specific query, because it has the potential to change the execution plans for many queries if you set it at 
the database level. By default, if you set the ALL_ROWS optimizer goal, there’s a built-in preference for full 
table scans by the optimizer. By setting the optimizer_index_cost_adj parameter to a value less than 
100, you’re inducing the optimizer to prefer an index scan over a full table scan. Use the 
optimizer_index_cost_adj parameter with confidence, especially in an OLTP environment, where you 
can experiment with low values such as 5 or 10 for the parameter to force the optimizer to use an index. 

By default, the optimizer assumes that the cost of a multiblock read I/O associated with a full table 
scan and the single block read cost associated with an indexed read are identical. However, a single 
block read is likely to be less expensive than a multiblock read. The optimizer_index_cost_adj 
parameter lets you adjust the cost of a single block read associated with an index read more accurately to 
reflect the true cost of an index read vis-à-vis the cost of a full table scan. The default value of 100 means 
that a single block read is 100% of a multiblock read—so it’s telling the optimizer to treat the cost of an 
indexed read as identical to the cost of a multiblock I/O full table scan. When you set the parameter to a 
value of 50, you’re telling the optimizer that the cost of a single block I/O (index read) is only half the 
cost of a multiblock I/O. This makes the optimizer choose the indexed read over a full table scan. 

Note that accurate system statistics (mbrc, mreadtim, sreadtim, etc.) have a bearing on the use of 
indexes vs. full table scans. Ideally, you should collect workload system statistics and leave the 
optimizer_index_cost_adj parameter alone. You can also calculate the relative costs of a single block 
read and a multiblock read and set the optimizer_index_cost_adj parameter value based on those 
calculations. However, the best strategy is to simply use the parameter at the session level for a specific 
statement and not at the database level. Simply experiment with various levels of the parameter until the 
optimizer starts using the index. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

470 

You can also use a more “scientific” way to figure out the correct setting for the 
optimizer_index_cost_adj parameter, by setting it to a value that reflects the “true” difference between 
single and multiblock reads. You can simply compare the average wait times for the db file sequential 
read wait event (represents a single block I/O) and the db file scattered read wait event (represents 
multiblock I/O), to arrive at an approximate value for the optimizer_index_cost_adj parameter. Issue 
the following query to view the average wait times for both of the wait events. 

 SQL> select event, average_wait from v$system_event  
      where event like 'db file s%read'; 
EVENT                                                            AVERAGE_WAIT 
---------------------------------------------------------------- ------------ 
db file sequential read                                                   .91 
db file scattered read                                                   1.41 
 
SQL> 

Based on the output of this query, single block sequential reads take roughly 75% of the time it takes 
to perform a multiblock (scattered) read. This indicates that the optimizer_cost_index_adj parameter 
should be set to somewhere around 75. However, as we mentioned earlier, setting the parameter at the 
database level isn’t recommended—instead, use this parameter sparingly for specific statements where 
you want to force the use of an index. 

13-12. Enabling Query Optimizer Features 

Problem 
You’ve upgraded your database, but you want to ensure the query plans don’t change due to new 
optimizer features in the new release. 

Solution 
By default, the database enables all query optimizer features in the current database version. You can 
control the set of optimizer features enabled in a database by setting the optimizer_features_enable 
initialization parameter. For example, if you’re running an Oracle Database 11g Release 2 database, the 
optimizer features are set to the 11.2 release, as shown here: 

SQL> show parameter optimizer_features_enable 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- ---------- 
optimizer_features_enable            string      11.2.0.1 
SQL> 

You can set the optimizer features of a database to an earlier release by setting the 
optimizer_features_enable parameter to a different value from its default value (same as the database 
release). For example, in an 11.x release, you can do this: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

471 

SQL> alter system set optimizer_features_enable='10.2.0.5'; 
 
System altered. 
SQL> 

You can now check the current value of the parameter: 

SQL> show  parameter optimizer_features_enable 
 
NAME                                 TYPE        VALUE 
------------------------------------ ----------- -------------- 
optimizer_features_enable            string      10.2.0.5 
SQL>  

You can set the optimizer_features_enable parameter to any past major release or a point release, 
all the way back to the Oracle Database 8.0 release. 

How It Works 
Setting the optimizer_features_enable parameter to the value of the previous database release ensures 
that when you upgrade the database, the optimizer will behave exactly the same way as it did before the 
upgrade. This is a strategy that DBAs commonly use to ensure that query plans don’t suddenly 
deteriorate following an upgrade. Once you understand the new optimizer features better, you can set 
the value of the optimizer_features_enable parameter to the same value as the upgraded database 
release. 

Of course, you won’t be able to take advantage of any of the new optimizer features when you set 
the optimizer_features_enable parameter to a lower value than the current release—but you aren’t 
going to be surprised by any sudden changes in the execution plans either. Optimizer features don’t 
change drastically between releases, but it all depends on the database release. For example, there are 
six major new optimizer features in the 11.1.0.6 release that weren’t in the 10.2.0.2 release. These include 
the enhanced bind peeking feature and the ability to use extended statistics to estimate selectivity. 
Different applications will behave differently following the introduction of a new optimizer feature—
that’s where the ability to retain the current optimizer feature set during an upgrade provides you a 
safety net. You get the opportunity to fully test and understand the implications of the new optimizer 
features before enabling them in a production database. 

The example shown in the “Solution” section shows how to set the optimizer features level for an 
entire database. You can, however, enable it just at the session level (alter session …) to test for 
regressions in execution plans following an upgrade. You can also specify the release number with a 
hint, so you can test a query with optimizer features from a specific release, as shown here in an 11.2 
release database. 

SQL>  select /*+ optimizer_features_enable ('11.1.0.6')  */ sum(sales) from sales 
      order by product_id; 

This SELECT statement was executed in an 11.2 release database, but uses optimizer features from 
the 11.1 release. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

472 

13-13. Keeping the Database from Creating Histograms 

Problem 
You think that the presence of a histogram on a particular column is leading to sub-optimal execution 
plans. You’d like the database not to use any histograms on that column. 

Solution 
You need to do two things if you want to keep Oracle from using the histogram it’s automatically 
collecting on a column: 

1. Drop the histogram by executing the DELETE_COLUMN_STATS procedure: 

SQL> begin 
  2  dbms_stats.delete_column_stats(ownname=>'SH',tabname=>'SALES', 
  3  colname=>'PROD_ID',col_stat_type=>'HISTOGRAM'); 
  4  end; 
  5  / 
 
PL/SQL procedure successfully completed. 
 
SQL> 

2. Once you drop the histogram, tell Oracle not to create a histogram on the 
PROD_ID column by executing the following SET_TABLE_PREFS procedure: 

SQL> begin 
  2  dbms_stats.set_table_prefs('SH','SALES','METHOD_OPT','FOR  ALL COLUMNS SIZE      
     AUTO, 
     FOR COLUMNS  SIZE 1 PROD_ID'); 
  3  end; 
  4  / 
 
PL/SQL procedure successfully completed. 
 
SQL> 

How it Works 
For various reasons, DBAs often would sometimes like to keep the optimizer from using a histogram on 
a column, If there's already a histogram on  a column, you must first get rid of it and then use the  
dbms_stats.set_table_prefs procedure to keep the database from creating a histogram on that column. 
In the Oracle Database 10g release, you drop the histogram first, freeze the statistics (with the 
lock_table_stats procedure) and then manually collect statistics on the table, specifying that the 
database must not collect statistics for the column for which you dropped the histogram. Because you 
locked the statistics, you must also specify the force=true option when executing the 
dbms_stats.gather_table_stats procedure to manually collect statistics on a table. As you can see, the 
dbms_stats.set_table_prefs procedure in the 11g release makes things a lot simpler. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

473 

In the command shown in the Solution section, FOR ALL COLUMNS SIZE AUTO option tells the 
database to create histograms on any column that Oracle deems skewed. However, the FOR COLUMNS 
SIZE 1 PROD_ID tells the database not to create a histogram for the column PROD_ID in the SH.SALES table. 
The SIZE column accepts values 1–254, with the integer number you specify representing the number of 
buckets in the histogram. Telling the database to use just a single bucket (N=1) means that all data will be 
in a single bucket—i.e., the database won’t create a histogram on that column. 

13-14. Improving Performance When Not Using Bind 
Variables 

Problem 
For various reasons, your developers didn’t specify bind variables in the code. You notice heavy latch 
contention and poor response times due to the non-use of bind variables. You want to improve the 
performance of the database in a situation like this, where you can’t change existing code. 

Solution 
If your applications aren’t using bind variables, there will be an increase in expensive hard-parsing in the 
database. To avoid this, you need to set the cursor_sharing initialization parameter to a non-default 
value. The default value for this parameter is EXACT. You can set the cursor_sharing parameter to either 
FORCE or SIMILAR to determine which SQL statements can share the same cursors. 

Here’s how you can set the cursor_sharing parameter to force or similar. 

SQL> alter system set cursor_sharing=force; 
SQL> alter system set cursor_sharing=similar; 

Setting the cursor_sharing parameter to a non-default value has several implications, as the next 
section explains. 

How It Works 
The best practice in writing SQL code is to use bind variables so the SQL statements are shareable. 
During the parse stage, the optimizer will compare a SQL statement’s text with the texts of existing 
statements that are stored in the shared pool. The database considers the current statement identical to 
another statement only if it matches the other statement in all respects, including each character, space, 
and even case. When you leave the cursor_sharing parameter at its default value of EXACT, Oracle will 
reuse the shared SQL area when it reexecutes a SQL statement that uses bind variables. There’s no need 
for hard-parsing the new statement because a parsed version already exists in the shared pool. The new 
statement can use an existing cursor (thus it's called a shared cursor) and not create its own parent 
cursor. 

If the code doesn’t use bind variables, but the new SQL statement the database is parsing is the 
same in all respects to a previously parsed statement in the shared pool, the statement is considered 
similar to the previous statement. 

 By default, the database shares cursors when SQL statements are identical, but not when they are 
similar. The database will perform a heavy amount of hard-parsing if applications use literal values 

v
www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

474 

instead of bind variables, and in a busy system, it could put enormous pressure on the shared pool and 
the cursor cache. You can make the database share cursors when the new statement is similar (but not 
identical) to an existing parsed statement, by setting the cursor_sharing parameter to either FORCE or 
SIMILAR. Setting the cursor_sharing parameter to either FORCE or SIMILAR lets the database replace the 
literal values with system-generated bind variables. The goal here is to reduce the number of parent 
cursors in the shared pool. Sharing cursors even when the application doesn’t use bind variables relieves 
the pressure on the shared pool by reducing the number of parent cursors in the cursor cache (in the 
shared pool). Leaving the cursor_sharing parameter at its default value will make the database perform 
a hard parse if the statement it’s parsing isn’t identical to an existing statement in the shared pool. 
However, if you set the parameter to FORCE or SIMILAR, the database will perform the much cheaper soft 
parse when it finds a similar statement in the shared pool. 

When to Set CURSOR_SHARING to a Non-default Value 
Ideally, you should leave the cursor_sharing parameter at its default value of EXACT. However, if your 
response time is suffering due to a heavy amount of library cache misses, and the SQL statements aren’t 
using bind variables, consider setting the cursor_sharing parameter to FORCE or SIMILAR. If the 
application doesn’t use bind variables, your hands are tied—the fixes will be long in coming, and 
meanwhile, you have a slow-performing database on your hands. Go ahead and change the 
cursor_sharing parameter from its default setting under these circumstances. There are really no issues 
with setting the cursor_sharing parameter to a non-default value, except minor drawbacks such as the 
non-support for star transformation, for example. 

■ Tip Oracle recommends using the FORCE setting for the CURSOR_SHARING parameter, in an OLTP 
environment. 

Oracle recommends that, if possible, you should leave the cursor_sharing parameter at its default 
value of EXACT, and use shareable SQL by employing bind variables in your code instead of literal values. 
If you do decide to change the default setting to SIMILAR or FORCE due to pressure in the shared pool and 
latch contention, be aware that there are some performance implications in doing so. If you set the 
cursor_sharing parameter to FORCE, the database uses system-generated bind values, uses the same 
execution plan for each execution of a statement, and uses one parent cursor and one child cursor for 
each distinct SQL statement. If you set the parameter to SIMILAR and there are no histograms on the 
column for which the database generates bind values, the behavior is the same as with the FORCE setting. 
If there are histograms, on the other hand, the SIMILAR setting will result in a different plan based on the 
value of the bind variable, and thus there’ll be a different child cursor for each execution. When there’s 
no histogram, the database acts as if bind variables are not used, under the SIMILAR setting. 

 Although Oracle has historically recommended the SIMILAR setting for the cursor_sharing 
parameter, in Oracle Database 11g, unless you’re in a DSS environment, Oracle recommends that you 
set the cursor_sharing parameter to FORCE, because it limits the growth of child cursors when compared 
to setting the parameter to the SIMILAR value. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

475 

Implications of Setting CURSOR_SHARING to a Non-default Value 
Both the FORCE and the SIMILAR settings can help you get around the non-use of bind variables in an 
application, by letting the database generate bind values (system-generated bind values, as opposed to 
user-specified)). However, you should be aware of the differences in the behavior of the optimizer when 
you set the cursor_sharing parameter to FORCE as opposed to the SIMILAR setting. The key thing to 
understand here is that there’s a conflict between query performance and the space used in the shared 
pool by multiple executions of a query. Here is a summary of the performance implications of setting the 
cursor_sharing parameter to EXACT, FORCE, and SIMILAR. Let’s assume the following query, which 
contains a literal: 

select * from employees where job = 'Clerk' 

Note that if the query were to use bind variables instead of literals, it would be of the following form: 

select * from employees where job=:b 

EXACT: The database doesn’t replace any literals, and the optimizer sees the query as it’s presented to 
the optimizer. The optimizer generates a different plan for each execution of the statement, based 
on the literal values in the statement. The plan would thus be an optimal one, but each statement 
has its own parent cursor, and therefore a statement that’s executed numerous times can use a 
considerable amount of space in the shared pool. This could potentially lead to latch contention 
and a slowdown in performance. 

FORCE: Regardless of whether there’s a histogram, the optimizer will replace the literal values with a 
bind value and optimize this query as if it were in the following form: 

select * from employees where job=:b 

 The optimizer uses a single plan for each SQL statement, regardless of the literal values. Thus, the 
execution plan won’t be optimal, as the plan is generic, and not based on the literal values. If a query 
uses literal values, the optimizer will use those values to find the most efficient execution plan. If 
there are no literals in the SQL statement, it’s very hard for the optimizer to figure out the best 
execution plan. By “peeking” at the value of the bind variables, the optimizer can get a better idea of 
the selectivity of the where clause condition—it is almost as if literals had been used in the SQL 
statement. The optimizer peeks at the bind values during the hard parse state. Since the execution 
plan is based on the specific value of the bind variable that the optimizer happened to peek at, the 
execution plan may not be optimal for all possible values of the bind variable. 

In this example, the optimizer uses bind peeking based on the specific value of the JOB column it 
sees. In this case, the optimizer uses the value Clerk to estimate the cardinality for the query. When 
it executes the same statement (with a different value in the JOB column, say, Manager), the optimizer 
will use the same plan that it generated the first time (JOB=Clerk). Since there is only one parent 
cursor and just child cursors for the distinct statements, there’s less pressure on the shared pool. 
Note that a child cursor uses far less space in the shared pool than a parent cursor. Often, setting the 
cursor_sharing parameter to FORCE immediately resolves serious latch contention in the database, 
making this one of the few magic bullets that can help you quickly reduce latch contention. 

SIMILAR (without a histogram on the JOB column): The database will use literal replacement—it uses 
a system-generated bind value instead of the literal value for the JOB column (Clerk). This is because 
the absence of a histogram on the JOB column tells the optimizer that the data in the JOB column 
isn’t skewed, and therefore the optimizer chooses the same plan for each execution of the 
statement, even though the literal values are different. The optimizer thinks it shouldn’t make any 
changes to the execution plans for the statements that differ only in literal values because the data is 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

476 

uniformly distributed. The SIMILAR setting without a histogram on the columns in a query provides
the same query performance and a similar impact on the shared pool as when you specify the FORCE
setting. 

SIMILAR (with a histogram on the JOB column): When the optimizer sees the histogram in the JOB
column, it realizes that the column is skewed—this tells the optimizer that the results of the query
may vary widely depending on the literal value of the JOB column. Consequently, the optimizer
generates a different plan for each statement based on the literal values—thus the plans are very
efficient, as in the case when you specify the EXACT setting. The SIMILAR option with a histogram in
place does use more space in the shared pool, but not as much as when you use the EXACT setting.
The reason for this is that each statement has its own child cursor instead of a parent cursor. 

The choice among the various settings of the cursor_sharing parameter really boils down to an
assessment of what’s more critical to database performance: using the default EXACT setting or SIMILAR
(with a histogram on the relevant column) does provide better query performance but leads to the
generation of numerous parent cursors (EXACT setting) or child cursors (SIMILAR setting). If there’s a
severe pressure in the shared pool, and consequent latch contention, the entire database will perform
poorly. Under these circumstances, you’re better off implementing a system-wide solution by setting the
cursor_sharing parameter to FORCE, as this guarantees that there’s only a single child cursor for each SQL
statement. If you’re concerned about the impact of a single SQL statement, just drop the histogram on
the relevant columns used in the SQL statement and set the cursor_sharing parameter to FORCE—this
will ensure that the optimizer uses system-generated bind values for the column(s) and ensures that the
SQL statement uses much less space in the shared pool. As you’ll see in the next section, Oracle
Database 11g’s adaptive cursor sharing offers an even better solution, if you set the cursor_sharing
parameter to FORCE and keep the histograms on the columns. 

13-15. Understanding Adaptive Cursor Sharing 

Problem 
Your database uses user-defined bind variables. You want to know if there’s anything you can do to
optimize database behavior so it doesn’t “blindly” use the same execution plan for all bind variable
values. 

Solution 
In prior releases, Oracle used a single execution plan for each execution of a SQL statement, regardless of
the values of the bind variables. In Oracle Database 11g, the database feature called adaptive cursor
sharing enables a SQL statement with bind variables to use multiple execution plans, with each
execution plan based on the values of the bind variable(s). Adaptive cursor sharing is enabled by default,
and you can’t disable it. 

How It Works 
The adaptive cursor-sharing feature is designed to improve the execution plans for SQL queries that
contain bind variables. To understand how adaptive cursor sharing helps, it’s important to understand
how Oracle’s bind peeking feature works. Bind peeking (introduced in Oracle 9i) lets the optimizer peek 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

477 

at the value of a bind variable when the database invokes the cursor for the first time. The optimizer uses 
the “peeked value” to determine the selectivity of the WHERE clause. 

The problem with using user-defined bind variables is that the execution plan doesn’t have an 
accurate measure of the selectivity of the WHERE clause. Bind peeking helps improve matters by letting 
the optimizer act as if it were actually using a literal value instead of the bind variable, thus helping it 
generate better execution plans for SQL statements with bind variables. Bind peeking works well when 
the values of the column in the WHERE clause have a uniform distribution. If the column values are 
skewed, the plan the optimizer chooses by peeking at the value of the user-defined bind variable may 
not necessarily be good for all possible values of the bind variable. You thus end up with a situation 
where the execution plan will be very efficient if the SQL statement has the bind variable value that the 
optimizer has peeked at—and inefficient execution plans for all other possible values of the bind 
variable. 

Let’s learn how adaptive cursor sharing works, with the help of an example that involves a column 
with skewed data. 

Our test table, DEMO, has 78,681 rows. The data has three columns, which are all skewed. Thus, when 
we gathered statistics for this table, we created histograms on the three columns, as shown here. 

SQL> select column_name,table_name,histogram from user_TAB_COLUMNS 
     where table_name='DEMO'; 
 
COLUMN_NAME                    TABLE_NAME                     HISTOGRAM 
------------------------------ ------------------------------ --------------- 
RNUM                            DEMO                           HEIGHT BALANCED 
RNAME                           DEMO                           HEIGHT BALANCED 
STATUS                          DEMO                           FREQUENCY 

Note that when the optimizer notices that there’s a histogram on a table, it marks the data in that 
column as skewed. The column STATUS has two values: Coarse and Fine. Only 157 rows have the value of 
Coarse, and 78,524 rows have the value Fine, making the data extremely skewed. 

Let’s perform a sequence of operations to illustrate how adaptive cursor sharing works. Issue a 
query with the bind variable set to the value Coarse. Since very few rows in the DEMO table have this value, 
we expect the database to use an index range scan, which is exactly what the optimizer does. Here is our 
query and its execution: 

SQL> var b varchar2(6) 
SQL> exec :b:='Coarse'; 
 
PL/SQL procedure successfully completed. 
 
SQL> select /*+ ACS */ count(*) from demo where status = :b; 
  COUNT(*) 
---------- 
       157 
 
SQL> select * from table(dbms_xplan.display_cursor); 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
SQL_ID  cxau3vvabpzd0, child number 0 
------------------------------------- 
select /*+ ACS */ count(*) from demo where status = :b 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

478 

Plan hash value: 3478245284 
-------------------------------------------------------------------------------- 
| Id  | Operation         | Name       | Rows  | Bytes | Cost (%CPU)| Time     | 
-------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |            |       |       |     1 (100)|          | 
|   1 |  SORT AGGREGATE   |            |     1 |     6 |            |          | 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
|*  2 |   INDEX RANGE SCAN| IDX01_DEMO |   157 |   942 |     1   (0)| 00:00:52 | 
-------------------------------------------------------------------------------- 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
   2 - access("STATUS"=:B) 
19 rows selected. 

Next issue the following statement to check whether the database has marked the STATUS column as 
bind-sensitive or bind-aware or both: 

SQL> select child_number, executions, buffer_gets, is_bind_sensitive as 
  2  "BIND_SENSI", is_bind_aware as "BIND_AWARE", is_shareable as "BIND_SHARE" 
  3  from v$SQL 
  4* where sql_text like 'select /*+ ACS */%' 
SQL> / 
CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI   BIND_AWARE  BIND_SHARE 
------------ ---------- ----------- -----------  ----------  ----------- 
           0          1          43          Y            N            Y 
 
SQL> 

Note that the database marks the STATUS column as bind-sensitive, because there’s a histogram on 
the column STATUS. Each time you execute the query with a different value for the bind variable, the 
database compares the execution statistics with those from the prior execution. If the execution statistics 
differ significantly, it marks the column as bind-aware. One of the inputs the database uses in deciding 
whether to mark a statement as bind-aware is the number of rows processed. Once a cursor is marked 
bind-aware, the optimizer will choose an execution plan based on the value of the bind variable. Here, 
the IS_BIND_AWARE column is marked N, because there are no prior execution statistics to compare. The 
BIND_SHAREABLE column is marked Y. 

Issue the query again, with the bind variable set to the value Fine. Since almost all of the rows have 
the STATUS column set to the value Fine, we expect the optimizer to prefer a full table scan. However, the 
optimizer picks exactly the same plan as before (INDEX RANGE SCAN). The reason for this is that the 
database is using the same execution plan from the first execution—for example: 

SQL> exec :b := 'Fine'; 
 
PL/SQL procedure successfully completed. 
 
SQL> select /*+ ACS */ count(*) from demo where status = :b; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

479 

  COUNT(*) 
---------- 
     78524 
 
SQL> select * from table(dbms_xplan.display_cursor); 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
SQL_ID  cxau3vvabpzd0, child number 0 
------------------------------------- 
select /*+ ACS */ count(*) from demo where status = :b 
 
Plan hash value: 3478245284 
-------------------------------------------------------------------------------- 
| Id  | Operation         | Name       | Rows  | Bytes | Cost (%CPU)| Time     | 
-------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |            |       |       |     1 (100)|          | 
|   1 |  SORT AGGREGATE   |            |     1 |     6 |            |          | 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
|*  2 |   INDEX RANGE SCAN| IDX01_DEMO |   157 |   942 |     1   (0)| 00:00:52 | 
 
-------------------------------------------------------------------------------- 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
   2 - access("STATUS"=:B) 
 
19 rows selected. 

Since the cursor for the SQL statement is marked bind-sensitive, the optimizer uses the same 
execution plan (INDEX RANGE SCAN) as before. Note in the following example that the BIND_AWARE column 
is still marked N. The optimizer is using the same cursor as before (child_number 0). 

SQL> select child_number, executions, buffer_gets, is_bind_sensitive as 
  2  "BIND_SENSI", is_bind_aware as "BIND_AWARE", is_shareable as "BIND_SHARE" 
  3  from v$sql 
  4  WHERE sql_text like 'select /*+ ACS */%'; 
 
CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI   BIND_AWARE  BIND_SHARE 
------------ ---------- ----------- -----------  ----------  ----------- 
           0          2         220           Y           N            Y 
            
SQL>  

Execute the query again, with the same value for the STATUS column as in the previous query ('Fine'). 
Voila! The optimizer now uses an INDEX FAST FULL SCAN, instead of the INDEX RANGE SCAN. The change in 
execution plans is automatic—it is as if the optimizer is learning as it goes along and modifies the plan 
when it’s certain that the new plan is more efficient. Here is the execution and the new plan: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

480 

SQL>  exec :b := 'Fine'; 
PL/SQL procedure successfully completed. 
 
SQL> select /*+ ACS */ count(*) from demo where status = :b; 
  COUNT(*) 
---------- 
     78524 
 
SQL> select * from table(dbms_xplan.display_cursor); 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
SQL_ID  cxau3vvabpzd0, child number 1 
------------------------------------- 
select /*+ ACS */ count(*) from demo where status = :b 
 
Plan hash value: 2683512795 
-------------------------------------------------------------------------------- 
| Id  | Operation             | Name       | Rows  | Bytes | Cost (%CPU)| Time   | 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT      |            |       |       |    45 (100)| 
   | 
|   1 |  SORT AGGREGATE       |            |     1 |     6 |            | 
   | 
|*  2 |   INDEX FAST FULL SCAN| IDX01_DEMO | 78524 |   460K|    45   (0)| 00:38: 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
37 | 
-------------------------------------------------------------------------------- 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
   2 - filter("STATUS"=:B) 
19 rows selected. 

Note that the BIND_AWARE column now shows the value Y. When we execute the query with the same 
bind variable value (Fine) the second time, since the query is marked as bind-sensitive, the database 
evaluates the execution statistics from the previous execution. Since the statistics are different, it marks 
the cursor as bind-aware. The optimizer then decides a new plan is more optimal and thus performs a 
hard parse and generates a new execution plan that uses an INDEX FAST FULL SCAN instead of an INDEX 
RANGE SCAN. The following query shows details about the child cursors as well as whether the query is 
bind-sensitive or bind-aware. 

SQL> select child_number, executions, buffer_gets, is_bind_sensitive as 
  2  "BIND_SENSI", is_bind_aware as "BIND_AWARE", is_shareable as "BIND_SHARE" 
  3  from v$sql 
  4  WHERE sql_text like 'select /*+ ACS */%'; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

481 

CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI   BIND_AWARE  BIND_SHARE 
------------ ---------- ----------- -----------  ----------  ----------- 
           0          2         220           Y           N            Y 
           1          1         184           Y           Y            Y 
 
SQL> 

Note that the IS_BIND_AWARE column shows the value Y now. Notice also that there is a new child 
cursor (child_number 1) that represents the new execution plan containing the INDEX FAST FULL SCAN—
this new cursor is marked bind-aware. 

We execute the query again, but this time with the original bind variable value Coarse. The optimizer 
will choose the correct execution plan, by performing an INDEX RANGE SCAN. Here’s the information 
about the child cursors, as well as whether the query is bind-sensitive or bind-aware. 

SQL> select child_number, executions, buffer_gets, is_bind_sensitive as 
  2  "BIND_SENSI", is_bind_aware as "BIND_AWARE", is_shareable as "BIND_SHARE" 
  3  from v$sql 
  4  where sql_text like 'select /*+ ACS */%'; 
 
CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI   BIND_AWARE  BIND_SHARE 
------------ ---------- ----------- -----------  ----------  ----------- 
           0          2         220           Y           N            N 
           1          1         184           Y           Y            Y 
           2          1           2           Y           Y            Y 
 
 
SQL> 

The database creates a new child cursor (child_number=2) for this query and marks the original 
cursor (child_cursor=0) as not being bind-aware. Eventually the database will remove this cursor from 
the shared pool. 

In our example, we used only two values for the bind variable in our tests. What happens if there are 
dozens of different bind variable values? Oracle doesn’t always perform a hard parse for each distinct 
bind variable value. Initially it performs a hard parse for some values of the bind variable, during which 
it determines the relationships between various bind variables and the associated execution plan. After 
the initial mapping of the bind variable values and the associated execution plans, Oracle is smart 
enough to simply pick the optimal child cursor from the cache without performing a hard parse for other 
bind values. 

Adaptive cursor sharing is a new feature introduced in the Oracle Database 11g release. In earlier 
releases, DBAs often flushed the shared pool (and worse, sometimes restarted the database) when 
confronted with situations where the database apparently started using an inappropriate execution plan 
for a SQL statement, due to the bind peeking effect. In the 11g release, you don’t have to do anything—
the optimizer automatically changes execution plans when it encounters skewed data. With adaptive 
cursor sharing, the database uses multiple execution plans for a statement that uses bind variables, 
ensuring that the best execution plan is always used, depending on the value of the bind variable. 
Adaptive cursor sharing means that when different bind variable values indicate different amounts of 
data to be handled by the query, Oracle adapts its behavior by using different execution plans for the 
query instead of sticking to the same plan for all bind values. Since adaptive cursor sharing works only 
where literal values are replaced with binds, Oracle encourages you to use the FORCE setting for the 
cursor_sharing parameter. If you set the parameter to SIMILAR and you have a histogram on a column, 
the optimizer doesn’t perform a literal replacement with bind variables, and thus adaptive cursor 
sharing won’t take place. You must set the cursor_sharing parameter to FORCE for adaptive cursor 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

482 

sharing to work, thus letting the optimizer select the optimal execution plan for different values of the 
bind variable. 

13-16. Creating Statistics on Expressions 

Problem 
You want to create statistics on an expression such as an user-created function. 

Solution 
Execute the GATHER_TABLE_STATS procedure of the DBMS_STATS package in the following way, to gather 
statistics on an expression. In this example, we’re gathering statistics for the lower function, which 
transforms the cust_state_province column. 

SQL> execute dbms_stats.gather_table_stats('sh','customers',- 
   > method_opt =>'for all columns size skewonly - 
   > for columns(lower(cust_state_province)) size skewonly'); 
 
PL/SQL procedure successfully completed. 
 
SQL>  

Alternatively, you can collect expression statistics by invoking the create_extended_stats 
function—for example: 

SQL> select 
  2  dbms_stats.create_extended_stats(null,'customers','(lower(cust_state_province))') 
  3  from dual; 

Note that (lower (cust_state_province)) is called an extension, because collecting statistics on 
functions is a type of Oracle extended statistics. Any statistics you collect for expressions and column 
groups (see Recipe 13-17) are called “extended statistics.” 

How It Works 
The optimizer knows the selectivity of a table’s column and uses the selectivity estimates for creating 
optimal execution plans. However, applying a function to a column in the WHERE clause of a query throws 
the optimizer off, because it can’t estimate the selectivity of the underlying column. Here’s an example 
of a function that makes the optimizer’s job harder: 

SQL> select count(*) from customers 
     where lower(cust_state_province) = 'CA'; 

Expression statistics on functions enable the optimizer to obtain a vastly more accurate selectivity 
value for predicates that involve expressions. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

483 

You can issue the following query to find details about expression statistics on a table’s columns: 

SQL> select extension_name, extension 
     from user_stat_extensions 
     where table_name='CUSTOMERS'; 
 
EXTENSION_NAME                                  EXTENSION 
------------------------------------           ------------------------------ 
SYS_STUBPHJSBRKOIK9O2YV3W8HOUE                 (LOWER("CUST_STATE_PROVINCE")) 
SQL> 

You can delete expression statistics you’ve collected on a table by using the drop_extended_stats 
function: 

SQL> exec dbms_stats.drop_extended_stats(null,'customers','(lower(cust_state_pro 
vince))'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

Note that extended statistics include both statistics on expressions such as a function and statistics 
gathered for a column group that consists of two or more related columns. Recipe 13-17 shows how to 
collect statistics on column groups. 

13-17. Creating Statistics for Related Columns 

Problem 
You’re aware that certain columns from a table that are part of a join condition are correlated. You want 
to make the optimizer aware of this relationship. 

Solution 
In order to generate statistics for two or more related columns, you must first create a column group and 
then collect fresh statistics for the table so the optimizer can use the newly generated “extended 
statistics.” Use the DBMS_STATS.CREATE_EXTENDED_STATS function to define a column group that consists 
of two or more columns from a table. Here’s how you execute this function to create a column group 
that consists of the COUNTRY_ID and CUST_STATE_PROVINCE columns in the table SH.CUSTOMERS. 

SQL> select dbms_stats.create_extended_stats(null,'CUSTOMERS', '(country_id,cust 
_state_province)') from dual; 
 
DBMS_STATS.CREATE_EXTENDED_STATS(NULL,'CUSTOMERS','(COUNTRY_ID,CUST_STATE_PROVIN 
-------------------------------------------------------------------------------- 
 
SYS_STUJGVLRVH5USVDU$XNV4_IR#4 
SQL> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

484 

Once you create the column group, gather fresh statistics for the CUSTOMERS table to generate 
statistics for the new column group. 

SQL> exec dbms_stats.gather_table_stats(null,'customers'); 
 
PL/SQL procedure successfully completed. 
 
SQL> 

How It Works 
Often, values in one column of a table influence the values of another column in that table, due to 
natural relationships that exist between the data stored in the two columns. For example, the values of 
the CUST_STATE_PROVINCE column in the SH.CUSTOMERS table are influenced by the values of the 
COUNTRY_ID column. You can find a CUST_STATE_PROVINCE value of Florida only in the United States. The 
optimizer doesn’t know about real-life relationships and thus tends to produce wrong estimates of the 
all-important cardinality statistic when multiple related columns appear in the WHERE clause of a query or 
in a group_by key. Column group statistics help the optimizer capture the correlation among a table’s 
columns. If a query includes the predicates CUST_STATE_PROVINCE ='Florida' and COUNTRY_ID=U.S., 
Oracle can derive a better estimate of the combined selectivity of these two predicates by looking up the 
statistics for the column group instead of using separate statistics for the two columns. 

The statistics the database gathers on the column groups that you create are called extended 
statistics. These statistics provide much more accurate cardinality estimates to the optimizer, which 
helps the optimizer  produce more efficient execution plans. When you create extended statistics, Oracle 
maintains a subset of statistics for the column groups that you create, including the number of distinct 
values, nulls, and histograms for the group. Even if a query contains columns in addition to the columns 
that are part of a column group, the optimizer takes advantage of the extended stats that are available to 
it. For example, suppose you’ve created a column group as shown in this recipe, using the 
CUST_STATE_PROVINCE and the COUNTRY_ID columns. If the WHERE clause for a query includes these two 
columns as well as the CUST_CITY column, Oracle will still take advantage of the extended statistics on the 
CUST_STATE_PROVINCE and COUNTRY_ID columns. 

13-18. Automatically Creating Column Groups 

Problem 
You know that creating extended statistics by generating statistics on correlated table columns helps 
generate better execution plans. You want to find out how to select candidate column groups for 
creating extended statistics. 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

485 

Solution 
In Oracle Database 11.2.0.2 and later releases, you can use the Auto Column Group Creation feature  
to let the database tell you which column groups you must create. You can use this feature only for 
creating column groups, but not for collecting extended statistics for columns with expressions (see 
Recipe 13-16). 

In order to use the Auto Column Group Creation capability and let the database provide advice on 
which column groups to create in the database, you must let the database monitor the workload in the 
database. Begin by executing the DBMS_STATS.SEED_COL_USAGE procedure to determine the appropriate 
column groups that you must create: 

SQl> begin 
     dbms_stats.seed_col_usage(null,null,900); 
     end; 
     / 

By executing this procedure, you’re telling the database to monitor the workload for 15 minutes (900 
seconds) to determine if you need to create any column groups. The procedure captures the column 
usage information and stores it in the sys.col_group_usage$ view. 

Next run some queries to create the workload. If the queries are long-running, you can just run 
explain plan statements for the queries so the database can capture the column group information. 
Once the monitoring period (15 minutes) is over, review the captured column usage information by 
using the following query: 

SQL> select dbms_stats.report_col_usage(user,'customers') from dual; 

The REPORT_COL_USAGE procedure shows a column usage report for the CUSTOMERS table, based on the 
queries you’ve executed, and the explain plans that you ran. The column usage shows how the database 
used each column of the CUSTOMERS table, and lists column usage in the following format: 

• Equality predicates (EQ): If a column was used in an equality predicate such as 
in the clause where COUNTRY_ID='US', that column was used independently. No 
extension statistics are called for in this case. 

• FILTER: If a set of columns was used in a SELECT statement that contained one or 
more of those columns in a GROUP BY clause, all columns in the SELECT statement 
are recorded as a column group filter. 

• GROUP_BY: All columns used together in a GROUP_BY clause. 

Once you view the column usage report, you can let Oracle automatically create the column groups 
for the columns used in the filter predicates and the columns used in the GROUP_BY clause. Do that by 
executing the following procedure: 

SQL>select dbms_stats.create_extended_stats(user,'customers') from dual; 

Alternatively, you can create column groups only for columns that you specify, by issuing the 
following command: 

SQL> select dbms_stats.create_extended_stats(null,'CUSTOMERS', '(cust_city,cust_ 
state_province,country_id)') from dual 
SQL> / 
DBMS_STATS.CREATE_EXTENDED_STATS(NULL,'CUSTOMERS','(CUST_CITY,CUST_STATE_PROVINC 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

486 

-------------------------------------------------------------------------------- 
SYS_STUMZ$C3AIHLPBROI#SKA58H_N 
SQL> 

At this point, you’ve created the column group, but there are no statistics on the column group.
Regather statistics for the CUSTOMERS table to generate statistics for the new column group—for example: 

SQL> exec dbms_stats.gather_table_stats(user,'customers')
PL/SQL procedure successfully completed. 
SQL> 

How It Works 
Letting Oracle point out potential column groups based on the actual column usage during a workload is
far more efficient than your trying to figure out the appropriate column groups for each table. Once you
run the workload, you can view the column usage report and ask the database to create all proposed
column groups for  an entire schema at the same time, by executing the
dbms_stats.create_extended_stats function and passing the value NULL for the table_name parameter. 

13-19. Maintaining Statistics on Partitioned Tables 

Problem 
You load data into one or more partitions frequently, and the maintenance of global statistics is a
problem. You want to collect new global statistics without having to go through a time- and resource-
consuming process. 

Solution 
You can use the incremental statistics maintenance feature in the Oracle 11g release to maintain global
statistics after each load into a new partition. For example, if you want to maintain global statistics for
the SH.SALES table, here are the steps to follow: 

1. Turn on incremental statistics collection for the SH.SALES table: 

SQL> exec dbms_stats.set_table_prefs('SH','SALES','INCREMENTAL','TRUE'); 

PL/SQL procedure successfully completed. 

SQL> 

2. After each load into a partition, gather global table-level statistics as shown
here: 

SQL> exec dbms_stats.gather_table_stats('SH','SALES'); 

PL/SQL procedure successfully completed. 

SQL> 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

487 

In order to set the incremental statistics collection feature for partitioned tables, you must specify 
the AUTO_SAMPLE_SIZE value for the ESTIMATE_PERCENT parameter and the AUTO value for the GRANULARITY 
parameter. 

How It Works 
The incremental statistics collection feature is disabled by default. You enable the feature by setting the 
INCREMENTAL preference. In our example, we showed how to set the INCREMENTAL preference at the table 
level, but you can also set it at the schema or database level. 

When dealing with a partitioned table, the optimizer uses both global statistics (statistics for the 
entire table) and  statistics for the individual partitions to select the optimal execution plan. By default, 
following a change in a partition’s data, the database uses a two-pass scanning technique to maintain 
accurate table statistics. Under this two-pass technique, the database will do the following: 

• Scan the entire table to gather the global statistics during the first pass. 

• Scan the changed partitions in the second pass, to gather the partition statistics. 

When you load data into (or delete data from) a partition(s) as part of a nightly batch job, for 
example, the database will scan the partition(s) to gather the partition-level statistics. In addition, it 
scans the entire table to gather the table-level global statistics. The database scans not only the changed 
partitions, but also all the other partitions in the table as well. As you can tell, this full scan of the table 
each time a partition’s data changes is an expensive process, especially when dealing with very large 
tables. 

Once you turn the incremental statistics collection feature on, Oracle uses a far more efficient 
technique to maintain a partitioned table’s statistics. When a partition’s data changes, the database 
gathers just the statistics for that partition and derives the global table statistics without scanning any of 
the other partitions. How does the database maintain the global statistics without scanning the entire 
table? Oracle can derive some global statistics from partition-level statistics—for example, it derives the 
total number of rows by just adding up the rows in each partition. For deriving the number of distinct 
values (NDVs), Oracle makes use of a structure called a synopsis, which is something like a sample of the 
NDVs in a column. Oracle derives the global NDV by merging all partition synopses. In summary, when 
you implement incremental statistics collection, Oracle skips the default full table scan to gather the 
table’s statistics and instead does the following: 

1. Gathers statistics for the partition you loaded and creates synopses for that 
partition 

2. Creates a global synopsis by merging all the partition-level synopses 

3. Computes the global statistics from the partition-level statistics and the global 
synopses 

Incremental statistics collection is extremely efficient and something you must consider using when 
dealing with large partitioned tables, especially when you’re loading data into one or more empty 
partitions frequently, as is the case in many data warehouses. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

488 

13-20. Concurrent Statistics Collection for Large Tables 

Problem 
You want to minimize the amount of time it takes to gather statistics by taking advantage of your multi-
processor environment. 

Solution 
In Oracle Database 11g Release 2 (11.2.0.2), you can specify the concurrent statistics gathering mode to 
gather statistics on multiple tables and multiple partitions (and subpartitions) within a table 
concurrently. By doing this, you can take advantage of your multi-processor environment and complete 
the statistics collection process much faster. 

By default, concurrent statistics gathering is disabled. You enable it by executing the 
SET_GLOBAL_PREFS procedure. Follow these steps to enable concurrent statistics gathering. 

1. Set the job_queue_processes parameter to at least 4. 

SQL>alter system set job_queue_processes=4; 

If you don’t plan on using parallel execution for gathering statistics (see the 
following section), but want to fully utilize your system resources, you must set 
the job_queue_processes parameter to two times the number of CPU cores on 
the server. 

2. Enable concurrent statistics gathering. 

SQL> begin 
     dbms_stats.set_global_prefs('CONCURRENT','TRUE'); 
     end; 
     / 

Make sure the user executing this command has the CREATE JOB, MANAGE SCHEDULER, and the MANAGE 
ANY QUEUE privileges. 

How It Works 
The goal of concurrent statistics gathering is to reduce the statistics gathering time for large tables and 
partitions. When you enable concurrent statistics gathering, Oracle uses the job scheduler and advanced 
queuing capabilities of the database to create multiple concurrent statistics gathering jobs. The 
job_queue_processes parameter determines the maximum number of concurrent statistics gathering 
jobs. In a RAC environment, you must set this parameter on each node. Concurrent statistics gathering 
works somewhat differently depending on the level of statistics gathering (table level or not), as 
explained here. 

If you execute the DBMS_STATS.GATHER_TABLE_STATS procedure to collect statistics on a partitioned 
table, Oracle will create a separate statistics collection job for each partition (and subpartition) in the 
table. The scheduler determines how many jobs to run concurrently, and how many jobs it must queue, 
based on the system capacity.  

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

489 

■ Note The value of the job_queue_processes parameter determines the maximum number of concurrent 
statistics collection jobs. 

If you execute the GATHER_DATABASE_STATS, GATHER_SCHEMA_STATS, or the GATHER_DICTIONARY_STATS 
procedures, Oracle creates a separate statistics collection job for each table and each partition in a 
partitioned table. To prevent potential deadlocking issues, Oracle won’t process multiple partitioned 
tables concurrently. Oracle creates a coordinator job for each partitioned table, to manage the partition 
statistics collection jobs. Each job is either a coordinator for a table’s partition-level jobs (if the table is 
partitioned), or is an actual statistics gathering job. If you have multiple partitioned tables, the database 
queues all partitioned tables except one; as it finishes gathering statistics for each partitioned table, it 
dequeues and starts another job for a partitioned table. This queuing behavior doesn’t apply to non-
partitioned tables. 

Using a Parallel Execution Strategy 
If you’re gathering statistics for very large tables, you can enable parallel execution of the individual 
statistics gathering jobs. To do this, you must disable the parallel_adaptive_multi_user initialization 
parameter as shown here: 

SQL> alter system set parallel_adaptive_multi_user=false; 

Although not necessary, Oracle also recommends that you enable parallel statement queuing by 
activating the resource manager, creating a temporary resource plan, and enable queuing for the 
consumer group OTHER _GROUPS. Here’s a simple example that shows how to create a temporary resource 
plan and enable the resource manager: 

begin 
  dbms_resource_manager.create_pending_area(); 
  dbms_resource_manager.create_plan('parallel_test', 'parallel_test'); 
  dbms_resource_manager.create_plan_directive( 
        'parallel_test', 
        'OTHER_GROUPS', 
        'OTHER_GROUPS directive for parallel test', 
        parallel_target_percentage => 90); 
  dbms_resource_manager.submit_pending_area(); 
end; 
/ 
ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'parallel_test' SID='*'; 

Monitoring Concurrent Stats Collection Jobs 
Use the DBA_SCHEDULER_JOBS view to monitor the concurrent statistics gathering jobs. You can view all 
the concurrent statistics collection jobs in your database by issuing the following statement: 

SQL> select job_name,state,comments 
     from dba_scheduler_jobs 
     where job_class like 'CONC%'; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 13 ■ CONFIGURING THE OPTIMIZER 

 

490 

If you want to limit the output to currently executing jobs, add the line “and state='RUNNING'” to the 
previous query. Similarly, you can add the line “and state='SCHEDULED'” to view only the scheduled jobs 
that are waiting to run. You can check the elapsed time for the currently executing statistics gathering 
jobs by issuing the following query: 

SQL> select job_name,elapsed_time  
     from dba_scheduler_running_jobs 
     where job_name like 'ST$%'; 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 4 
 

 

    

 

   

 

  

 

 

  

 

491 

Implementing Query Hints 

Placing hints in SQL is a common and simple approach to improve performance. Hints influence 
Oracle’s optimizer to take a specific path to accomplish a given task, overriding the default path the 
optimizer may have chosen. Hints can also be viewed as a double-edged sword. If not implemented and 
maintained properly, they can hurt performance in the long run. 

The most popular reason to use hints is simply to get data out of the database faster, and many of 
the available hints are geared for that purpose. The Oracle database supports more than 60 hints, so it is 
apparent that hints can be placed in SQL for a multitude of reasons. The purpose of this chapter is to 
categorize these hints into subsets, and then to show specific examples of some of the popular and most 
performance-impacting hints. 

Some of the reasons to place hints in SQL are to change the access path to the database, change the 
join order or join type for queries that are doing joins, hints for DML, and hints for data warehouse–
specific operations, to name a few. In addition, there are new Oracle 11g hints to take advantage of some 
of the new features of Oracle 11g. 

14-1. Writing a Hint 

Problem 
You want to place a hint into a SQL statement. 

Solution 
Place your hint into the statement using the /*+ hint */ syntax—for example: 

SELECT /*+ full(emp) */ * FROM emp; 

Be sure to leave a space following the plus sign. The /*+ sequence is exactly three characters long, 
with no spaces. Generally, you want to place your hint immediately following the SQL verb beginning 
the statement. While it is not required to place this sequence of characters after the SQL verb, it is 
customary to do this. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

492 

How It Works 
Hints are delimited by special characters placed within your SQL statement. Each hint starts with a 
forward slash, followed by the star and plus characters. They end with a star and forward slash: 

SELECT /*+ full(emp) */ * FROM emp; 

Table 14-1 breaks down many of the most popular hints into specific categories. This table is meant 
to make it easier to zero in on a hint based on your specific need, so keep in mind that some of these 
hints actually can fit into multiple categories. Another thing to remember about hints is that for many of 
them, you can enable a particular feature or aspect, and you can disable that same feature or aspect. For 
example, there is an INDEX hint to enable the use of an index. There is also a NO_INDEX hint, which 
disables the use of an index. This is true for many of the available hints within the Oracle database. 

For a complete listing of hints, refer to the Oracle Database Performance Tuning Guide for your 
version of the database. 

Table 14-1. Hints by Category 

Category Hint Names 

Access path (table) FULL 
HASH 
CLUSTER 

Access path (index) INDEX / NO_INDEX 
INDEX_ASC / INDEX_DESC 
INDEX_FFS / NO_INDEX_FFS 
INDEX_SS / NO_INDEX_SS 
INDEX_SS_ASC / INDEX_SS_DESC 
INDEX_COMBINE / INDEX_JOIN 

Join order ORDERED 
LEADING 

Join method USE_HASH 
USE_NL 
USE_MERGE 

Data warehousing STAR_TRANSFORMATION 
FACT 
REWRITE 

Optimizer hints FIRST_ROWS 
ALL_ROWS 
OPTIMIZER_FEATURES_ENABLE 
GATHER_PLAN_STATISTICS 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

493 

Category Hint Names 

Parallelism PARALLEL / NO_PARALLEL 
PARALLEL_INDEX / NO_PARALLEL_INDEX
PQ_DISTRIBUTE 

DML-related hints APPEND 
APPEND_VALUES 

Oracle 11g-related hints RESULT_CACHE 
STATEMENT_QUEUING 

Miscellaneous hints CACHE 
DRIVING_SITE 
DYNAMIC_SAMPLING 
CURSOR_SHARING_EXACT 

14-2. Changing the Access Path 

Problem 
You have a query that you have determined is not taking the access path you desire. 

Solution 
You can change the access path of your SQL statement by placing an access path hint in your query. The 
two most common access path hints to place in a query tell the Oracle optimizer to do a full table scan, 
or use an index. Often, the optimizer does a good job of choosing the best or at least a reasonable path to 
the data needed for a query. Sometimes, though, because of the specific makeup of data in a table, the 
statistics for the objects, or the specific configuration of a given database, the optimizer doesn’t 
necessarily make the best choice. In these cases, you can influence the optimizer by placing a hint in 
your query. 

By the time you decide to place a hint in a query, you should already know that the optimizer isn’t 
making the choice you want. Let’s say you want to place a hint in your query to tell the optimizer to 
modify the access path to either perform a full table scan, or change how the optimizer will access the 
data from table. Full table scans are appropriate if your query will be returning a large number of rows. 
For example, if you want to perform a full table scan on your table, your hint will appear as follows: 

SELECT /*+ full(emp) */ empno, ename  
FROM emp 
WHERE DEPTNO = 20; 

The foregoing hint instructs the optimizer to bypass the use of any possible indexes on the EMP table, 
and simply scan the entire table in order to retrieve the data for the query. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

494 

Conversely, let’s say you are retrieving a much smaller subset of data from the EMP table, and you 
want to get the average salary for those employees in department 20. You can tell the optimizer to use an 
index on a given table in the query: 

SELECT /*+ index(emp emp_i2) */ avg(sal)  
FROM emp 
WHERE deptno = 20; 

■ Tip Hints with incorrect or improper syntax are ignored by the optimizer. 

How It Works 
Access path hints, like many hints, are placed in your query because you already know what access path 
the optimizer is going to take for your query, and you believe it will be more efficient using the method 
you specify with the hint. It is very important that before you use a hint, you validate that you are not 
getting the access path you desire or think you should be getting. You can also gauge the potential 
performance gain by analyzing the optimizer’s cost of the query with and without the hint. 

For example, you want to compare your salary to other jobs in your company, so you write the 
following query to get, by job title, the minimum, average, and maximum salary. 

SELECT job, min(sal), avg(sal), max(sal)  
FROM emp 
WHERE deptno=20 
GROUP BY job; 
 
----------------------------------------------- 
| Id  | Operation                    | Name   | 
----------------------------------------------- 
|   0 | SELECT STATEMENT             |        | 
|   1 |  HASH GROUP BY               |        | 
|   2 |   TABLE ACCESS BY INDEX ROWID| EMP    | 
|   3 |    INDEX RANGE SCAN          | EMP_I2 | 
----------------------------------------------- 

If you want to bypass the use of the index in the query, placing the FULL hint in the query will 
instruct the optimizer to bypass the use of the index: 

SELECT /*+ full(emp) */ job, min(sal), avg(sal), max(sal) 
FROM emp 
WHERE deptno=20 
GROUP BY job; 
 
----------------------------------- 
| Id  | Operation          | Name | 
----------------------------------- 
|   0 | SELECT STATEMENT   |      | 
|   1 |  HASH GROUP BY     |      | 
|   2 |   TABLE ACCESS FULL| EMP  | 
----------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

495 

Another way you can tell the optimizer to bypass the use of an index is by telling the optimizer to 
not use indexes to retrieve the data for a given query. In this particular case, it has the same effect as the 
FULL hint: 

SELECT /*+ no_index(emp) */ job, min(sal), avg(sal), max(sal) 
FROM emp 
WHERE deptno=20 
GROUP BY job; 

You can also explicitly state the name of the index you wish to bypass: 

SELECT /*+ no_index(emp emp_i2) */ job, min(sal), avg(sal), max(sal) 
FROM emp 
WHERE deptno=20 
GROUP BY job; 

In both of the foregoing cases, the result is a full table scan. In a different case, you may have a query 
that could possibly use different indexes. For instance, on our EMP table, we have an index on the DEPTNO 
column, and we also have an index on the HIREDATE column. If we wanted to execute a query to get the 
employees that started in the year 1980 for department 20, our query would look like this: 

SELECT empno, ename 
FROM emp 
WHERE DEPTNO = 20 
AND hiredate 
BETWEEN to_date('1980-01-01','yyyy-mm-dd') 
AND to_date('1980-12-31','yyyy-mm-dd'); 
 
---------------------------------------------- 
| Id  | Operation                   | Name   | 
---------------------------------------------- 
|   0 | SELECT STATEMENT            |        | 
|   1 |  TABLE ACCESS BY INDEX ROWID| EMP    | 
|   2 |   INDEX RANGE SCAN          | EMP_I1 | 
---------------------------------------------- 

In this case, the optimizer chose the EMP_I1 index, which is the index on the HIREDATE column. We 
can instruct the optimizer to bypass the use of that index: 

SELECT /*+ no_index(emp emp_i1) */ job, min(sal), avg(sal), max(sal) 
FROM emp 
WHERE deptno=20 
GROUP BY job; 

In this case, we don’t necessarily know what the optimizer is going to do next. It may decide to use 
our other index on the DEPTNO column, or it could choose to perform a full table scan. It is good practice 
in using hints to be as specific as possible when instructing the optimizer what to do. Therefore, if we 
place an index hint to tell the optimizer to use the index on the DEPTNO column, we can see that the 
optimizer now uses that index: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

496 

SELECT /*+ index(emp emp_i2) */ empno, ename
FROM emp 
WHERE DEPTNO = 20 
AND hiredate 
BETWEEN to_date('1980-01-01','yyyy-mm-dd')
AND to_date('1980-12-31','yyyy-mm-dd'); 

---------------------------------------------- 
| Id  | Operation                   | Name   |
---------------------------------------------- 
|   0 | SELECT STATEMENT            |        |
|   1 |  TABLE ACCESS BY INDEX ROWID| EMP    |
|   2 |   INDEX RANGE SCAN          | EMP_I2 |
---------------------------------------------- 

Other examples of index hints are the INDEX_FFS for an index fast full scan, and the INDEX SS for an
index skip scan. The INDEX_SS hint is appropriate if you have a table with composite, multi-column
indexes. It is possible to have Oracle use the index, even if the query does not use the leading column of
the index. At times, the INDEX_SS hint can be beneficial to retrieve data fast, even if the column noted in
the WHERE clause isn’t the leading column of an index. For example, if we want to get the names of all
employees that received a commission, our query would look like this: 

SELECT ename, comm FROM emp
WHERE comm > 0; 

---------------------------------- 
| Id  | Operation         | Name |
---------------------------------- 
|   0 | SELECT STATEMENT  |      |
|   1 |  TABLE ACCESS FULL| EMP  |
---------------------------------- 

As noted in the explain plan, no index is used. We happen to know there is a composite index on the
SAL and COMM columns of our EMP table. We can add a hint to use this index to gain the benefit of having
an index on the COMM column, even though it is not the leading column of the index: 

SELECT /*+ index_ss(emp emp_i3) */ ename, comm FROM emp
WHERE comm > 0; 

---------------------------------------------- 
| Id  | Operation                   | Name   |
---------------------------------------------- 
|   0 | SELECT STATEMENT            |        |
|   1 |  TABLE ACCESS BY INDEX ROWID| EMP    |
|   2 |   INDEX SKIP SCAN           | EMP_I3 |
---------------------------------------------- 

■ Note Hints influence the optimizer, but the optimizer may still choose to ignore any hints specified in the
query. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

497 

14-3. Changing the Join Order 

Problem 
You have a performance issue with a query where you are joining multiple tables, and the Oracle 
optimizer is not choosing the join order you desire. 

Solution 
There are two hints—the ORDERED hint, and the LEADING hint—that can be used to influence the join order 
used within a query. 

Using the ORDERED Hint 
You are running a query to join two tables, EMP and DEPT, as you want to get the department names for 
each employee. By placing an ORDERED hint into the query, you can see how the hint alters the execution 
access path—for example: 

SELECT ename, deptno 
FROM emp JOIN dept USING(deptno); 
 
--------------------------------------- 
| Id  | Operation          | Name     | 
--------------------------------------- 
|   0 | SELECT STATEMENT   |          | 
|   1 |  HASH JOIN         |          | 
|   2 |   INDEX FULL SCAN  | PK_DEPT  | 
|   3 |   TABLE ACCESS FULL| EMP      | 
--------------------------------------- 
 
SELECT /*+ ordered */ ename, deptno 
FROM emp JOIN dept USING(deptno); 
 
--------------------------------------- 
| Id  | Operation          | Name     | 
--------------------------------------- 
|   0 | SELECT STATEMENT   |          | 
|   1 |  NESTED LOOPS      |          | 
|   2 |   TABLE ACCESS FULL| EMP      | 
|   3 |   INDEX UNIQUE SCAN| PK_DEPT  | 
--------------------------------------- 

Using the LEADING Hint 
As with the example using the ORDERED hint, you have the same control to specify the join order of the 
query. The difference with the LEADING hint is that you specify the join order from within the hint itself, 
while with the ORDERED hint, it is specified in the FROM clause of the query. Here’s an example: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

498 

SELECT /*+ leading(dept, emp) */ ename, deptno 
FROM emp JOIN dept USING(deptno); 
 
--------------------------------------- 
| Id  | Operation          | Name     | 
--------------------------------------- 
|   0 | SELECT STATEMENT   |          | 
|   1 |  NESTED LOOPS      |          | 
|   2 |   TABLE ACCESS FULL| EMP      | 
|   3 |   INDEX UNIQUE SCAN| PK_DEPT  | 
--------------------------------------- 

From the foregoing query, we can see that the table order specified in the FROM clause is irrelevant, as 
the order specified in the LEADING hint itself specifies the join order for the query. 

How It Works 
The main purpose of specifying either of these hints is for multi-table joins where the most optimal join 
order is known. This is usually known from past experience with a given query, based on the makeup of 
the data and the tables. In these cases, specifying either of these hints will save the optimizer the time of 
having to process all of the possible join orders in determining the optimal join order. This can improve 
query performance, especially as the number of tables to join within a query increases. 

When using either of these hints, you instruct the optimizer about the join order of the tables. 
Because of this, it is critically important that you know that the hint will improve the query’s 
performance. Oracle recommends, where possible, to use the LEADING hint over the ORDERED hint, as the 
LEADING hint has more versatility built in. When specifying the ORDERED hint, you specify the join order 
from the list of tables in the FROM clause, while with the LEADING hint, you specify the join order within the 
hint itself. 

14-4. Changing the Join Method 

Problem 
You have a query where the optimizer is choosing a non-optimal join type for your query, and you wish 
to override the join type by placing the appropriate hint in the query. 

Solution 
There are three possible types of joins: nested loops, hash, and sort merge. Depending on the size of 
your tables, certain join types perform better than others. You can use hints to specify the join order that 
you prefer. 

Nested Loops Join Hint 
To invoke a nested loops join, use the USE_NL hint, and place both tables needing the join within 
parentheses inside the USE_NL hint: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

499 

SELECT /*+ use_nl(emp, dept)  */ ename, dname 
FROM emp JOIN dept USING (deptno); 
 
----------------------------------------------- 
| Id  | Operation                    | Name   | 
----------------------------------------------- 
|   0 | SELECT STATEMENT             |        | 
|   1 |  NESTED LOOPS                |        | 
|   2 |   NESTED LOOPS               |        | 
|   3 |    TABLE ACCESS FULL         | DEPT   | 
|   4 |    INDEX RANGE SCAN          | EMP_I2 | 
|   5 |   TABLE ACCESS BY INDEX ROWID| EMP    | 
----------------------------------------------- 

The nested loops join is usually best when joining small tables together. In a nested loops join, one 
table is considered the “driving” table. This is the outer table in the join. For each row in the outer, 
driving table, each row in the inner table is searched for matching rows. In the execution plan for the 
foregoing statement, the EMP table is the driving, outer table, and it is seen in the execution plan as the 
outermost part of the plan. The DEPT table is the inner table, and is shown as the innermost part of the 
execution plan. 

Hash Join Hint 
To invoke a hash join, use the USE_HASH hint, and place both tables needing the join within parentheses 
inside the USE_HASH hint: 

SELECT /*+ use_hash(emp_all, dept)  */ ename, dname 
FROM emp_all JOIN dept USING (deptno); 
 
---------------------------------------------- 
| Id  | Operation          | Name    | Rows  | 
---------------------------------------------- 
|   0 | SELECT STATEMENT   |         |  1037K| 
|   1 |  HASH JOIN         |         |  1037K| 
|   2 |   TABLE ACCESS FULL| DEPT    |     4 | 
|   3 |   TABLE ACCESS FULL| EMP_ALL |  1037K| 
---------------------------------------------- 

For the optimizer to use a hash join, it must be an equijoin condition. Hash joins are best used when 
joining large amounts of data or where a large percentage of rows from a table is needed. The smaller of 
the two tables is used by the optimizer to build a hash table on the join key between the two tables. In 
the foregoing example, the DEPT table is the smaller table, and will be used to build the hash table. For 
best performance, the hash table completely resides in memory. 

Sort Merge Join Hint 
To invoke a sort merge join, use the USE_MERGE hint, and place both tables needing the join within 
parentheses inside the USE_MERGE hint: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

500 

SELECT /*+ use_merge(emp, dept)  */ ename, dname 
FROM emp JOIN dept USING (deptno) 
WHERE deptno != 20; 
 
------------------------------------------------ 
| Id  | Operation                    | Name    | 
------------------------------------------------ 
|   0 | SELECT STATEMENT             |         | 
|   1 |  MERGE JOIN                  |         | 
|   2 |   TABLE ACCESS BY INDEX ROWID| DEPT    | 
|   3 |    INDEX FULL SCAN           | PK_DEPT | 
|   4 |   SORT JOIN                  |         | 
|   5 |    TABLE ACCESS FULL         | EMP     | 
------------------------------------------------ 

Sort merge joins, like hash joins, are used to join a large volume of data. Unlike the hash join, the 
sort merge join is used when the join condition between the tables is not an equijoin. The hash join will 
generally perform better than the sort merge join, unless the data is already sorted on the two tables. 
During this operation, the input data from both tables is sorted on the join key, and then merged 
together. 

Join Hints When Querying Multiple Tables 
If you are joining several tables, and wish to invoke a specific join method between all of the associated 
tables in the query, you must add a hint for each join condition—for example: 

SELECT /*+ use_hash(employees, department) use_hash(departments, locations)  */  
last_name, first_name, department_name,  city, state_province 
FROM employees JOIN departments USING (department_id) 
JOIN locations USING (location_id); 
 
----------------------------------------------------- 
| Id  | Operation               | Name              | 
----------------------------------------------------- 
|   0 | SELECT STATEMENT        |                   | 
|   1 |  HASH JOIN              |                   | 
|   2 |   HASH JOIN             |                   | 
|   3 |    TABLE ACCESS FULL    | LOCATIONS         | 
|   4 |    TABLE ACCESS FULL    | DEPARTMENTS       | 
|   5 |   VIEW                  | index$_join$_001  | 
|   6 |    HASH JOIN            |                   | 
|   7 |     INDEX FAST FULL SCAN| EMP_NAME_IX       | 
|   8 |     INDEX FAST FULL SCAN| EMP_DEPARTMENT_IX | 
----------------------------------------------------- 

How It Works 
Table 14-2 summarizes the hints available for each of the different join methods. Hints to instruct the 
optimizer to choose a join method are sometimes necessary because of several factors: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

501 

• Status of statistics on the table 

• Size of the PGA 

• If the data is sorted at join time 

• An unexplained choice of the optimizer 

Oracle advises against using hints as much as possible, as over time what was optimal at one 
moment under one circumstance and one version of the database software may not be optimal the next 
time. However, sometimes these hints can simply be helpful in fulfilling the short-term need or simply 
may be the only way to get the optimizer to do what you want it to do. 

Table 14-2. Join Methods and Their Hints 

Method Hint Description 

Nested loops USE_NL / 
NO_USE_NL  / 
USE_NL_WITH_INDEX 

Nested loops joins are efficient when processing a small 
number of rows. The optimizer chooses a driving table, which 
is the “outer” table in the join. For each row in the outer table, 
each row in the inner table is searched. 

Hash USE_HASH / 
NO_USE_HASH 

Hash joins are efficient when processing a large number of 
rows. Hash joins are used only for equijoins. 

Sort merge USE_MERGE / 
NO_USE_MERGE 

A sort merge join is ideal for pre-sorted rows and full table 
scans. The sort merge join is used for non-equality joins. Both 
tables are sorted on the join key, and then merged. It out-
performs nested loops joins for large sets of rows. 

■ Tip The size of your PGA can affect which join method the optimizer uses for your query. 

14-5. Changing the Optimizer Version 

Problem 
You have upgraded to a newer version of Oracle, and you are having query performance problems 
related to the newer version of Oracle. The problem is isolated to a small number of queries, so you want 
to place a hint in these queries to use the previous version of the optimizer’s rules and features. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

502 

Solution 
In order to specify a version of the optimizer for a given query, you specify the version of the optimizer 
you desire within the optimizer_features_enable hint. Within parentheses, place the desired version of 
the database within single quotes. 

SELECT /*+ optimizer_features_enable('10.2') */ * 
FROM EMP JOIN DEPT USING(DEPTNO); 

This method is mostly used as an interim measure to improve performance immediately following 
an upgrade, until analysis can be done and a resolution found with the query and the upgraded version 
of the database. 

How It Works 
You can modify the version of the optimizer for a given query. This can be done via the 
optimizer_features_enable hint, and will be in effect only for a given query. The primary reason this hint 
is used is that a query that performed well under one specific version of Oracle has seen performance 
degrade immediately following an Oracle database version upgrade. 

There is an Oracle initialization parameter, optimizer_features_enable, that can be changed for the 
entire database instance, and it is an option when widespread performance problems occur within 
queries immediately after you’ve upgraded your database. Often, however, changing this parameter at 
the database instance level is not feasible, nor even desired, as the primary reason for upgrading is to 
take advantage of new features. So, unless there are significant and widespread performance issues, it is 
not recommended to change the optimizer_features_enable parameter for an entire database instance. 

If you have a given query or a small subset of critical queries that are performing at a substandard 
performance level after an upgrade, a quick method to return to the pre-upgrade performance is to use 
the optimizer_features_enable hint to point to a specific version of the optimizer for a given query. 

14-6. Choosing Between a Fast Response and Overall 
Optimization 

Problem 
When you execute a query, you can choose between two goals: 

• Fast, initial response: Get to the point of returning some rows as quickly as 
possible. 

• Overall optimization: Minimize overall cost at the expense of upfront processing 
time. 

Your instance will have a default goal configured for it. You can specify hints on a query-by-query 
basis to override the default goal and get the behavior that you want for a given query. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

503 

Solution 
There are hints that can be used to override the optimization goal of your database instance. Before 
using any of the hints related to the optimizer_mode, you first want to validate what your database 
instance is currently set to. If you have the SELECT ANY DICTIONARY system privilege, you can see what 
value is set for the optimizer_mode parameter. 

SQL> show parameter optimizer_mode 
 
NAME                 TYPE                 VALUE 
-------------------- -------------------- -------------------- 
optimizer_mode       string               ALL_ROWS 

If we run an explain plan for an example query, we can see what the execution plan is by using the 
default optimizer_mode setting for our database instance. 

SELECT * 
FROM employees NATURAL JOIN departments; 
 
------------------------------------------ 
| Id  | Operation          | Name        | 
------------------------------------------ 
|   0 | SELECT STATEMENT   |             | 
|   1 |  HASH JOIN         |             | 
|   2 |   TABLE ACCESS FULL| DEPARTMENTS | 
|   3 |   TABLE ACCESS FULL| EMPLOYEES   | 
------------------------------------------ 

Since the foregoing query is doing full table scans against the tables, and we want to see some rows 
as soon as possible, but not necessarily the full result set, we can pass in a FIRST_ROWS hint to accomplish 
this task. It is apparent that this changes the optimizer’s execution plan in order to provide results as 
soon as possible. 

SELECT /*+ first_rows */ * 
FROM employees NATURAL JOIN departments; 
 
---------------------------------------------------- 
| Id  | Operation                    | Name        | 
---------------------------------------------------- 
|   0 | SELECT STATEMENT             |             | 
|   1 |  NESTED LOOPS                |             | 
|   2 |   NESTED LOOPS               |             | 
|   3 |    TABLE ACCESS FULL         | EMPLOYEES   | 
|   4 |    INDEX UNIQUE SCAN         | DEPT_ID_PK  | 
|   5 |   TABLE ACCESS BY INDEX ROWID| DEPARTMENTS | 
---------------------------------------------------- 

If we needed the reverse situation, and the database’s default optimizer_mode was set to FIRST_ROWS, 
we can supply an ALL_ROWS hint to tell the optimizer to use that mode when determining the execution 
plan: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

504 

SQL> alter system set optimizer_mode=first_rows scope=both; 
 
System altered. 
 
SQL> show parameter optimizer_mode 
 
NAME                 TYPE                 VALUE 
-------------------- -------------------- -------------------- 
optimizer_mode       string               FIRST_ROWS 
 
SELECT /*+ all_rows */ * 
FROM employees NATURAL JOIN departments; 
 
------------------------------------------ 
| Id  | Operation          | Name        | 
------------------------------------------ 
|   0 | SELECT STATEMENT   |             | 
|   1 |  HASH JOIN         |             | 
|   2 |   TABLE ACCESS FULL| DEPARTMENTS | 
|   3 |   TABLE ACCESS FULL| EMPLOYEES   | 
------------------------------------------ 

How It Works 
The fast, initial response goal is often a good choice for queries when a user is awaiting results. It causes 
the database engine to make choices that allow rows to begin coming back from the query almost 
immediately. For example, optimizing for initial response often results in a nested loops join, because 
such a join can begin returning rows from the very beginning. The trade-off is possibly a longer overall 
execution time. 

The goal of reducing overall query cost is usually a good choice for batch processes. No live, human 
user is awaiting results, so it is acceptable to spend more time on upfront processing in order to reduce 
overall query cost. An example might be to execute a hash join, which can’t begin returning rows until 
the join is done, but which might execute in less overall time than a nested loops join. 

You can use either the FIRST_ROWS or the ALL_ROWS hint in your query in order to change the 
optimizer mode, which controls which of the preceding two goals applies to a given query. 

To check what the current optimizer mode is for your database instance, check the value of the 
optimizer_mode initialization parameter. By specifying an optimizer goal hint, it overrides the optimizer 
mode set at the database instance level, as well as any settings at the session level. 

 The FIRST_ROWS hint is very popular, as it can quickly return the first possible rows back from a 
query. The FIRST_ROWS hint is also very common because ALL_ROWS is the default value for the 
optimizer_mode parameter. It’s thus unusual to need to specify ALL_ROWS. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

505 

14-7. Performing a Direct-Path Insert 

Problem 
You are doing a DML INSERT statement, and it is performing slower than needed. You want to optimize 
the INSERT statement to use a direct-path insert technique. 

Solution 
By using the APPEND or APPEND_VALUES hint, you can significantly speed up the process of performing an 
insert operation on the database. Here is an example of the performance savings using the APPEND hint. 
First, we have a query that does a conventional insert between two tables: 

INSERT INTO emp_dept  
SELECT * FROM emp_ctas_new; 
 
19753072 rows created. 
 
Elapsed: 00:01:17.86 
 
------------------------------------------------- 
| Id  | Operation                | Name         | 
------------------------------------------------- 
|   0 | INSERT STATEMENT         |              | 
|   1 |  LOAD TABLE CONVENTIONAL | EMP_DEPT     | 
|   2 |   TABLE ACCESS FULL      | EMP_CTAS_NEW | 
------------------------------------------------- 

If we place the APPEND hint inside of the same INSERT statement, we see a considerable gain in 
performance: 

INSERT /*+ append */ INTO emp_dept  
SELECT * FROM emp_ctas_new; 
 
19753072 rows created. 
 
Elapsed: 00:00:12.15 
 
------------------------------------------- 
| Id  | Operation          | Name         | 
------------------------------------------- 
|   0 | INSERT STATEMENT   |              | 
|   1 |  LOAD AS SELECT    | EMP_DEPT     | 
|   2 |   TABLE ACCESS FULL| EMP_CTAS_NEW | 
------------------------------------------- 

The APPEND hint works with an INSERT statement only with a subquery; it does not work with an 
INSERT statement with a VALUES clause. For that, you need to use the APPEND_VALUES hint. Here are two 
examples of an INSERT statement with a VALUES clause, and we can see the effect the hint has on the 
execution plan: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

506 

INSERT INTO emp_dept 
VALUES (15867234,'Smith, JR','Sales',1359,'2010-01-01',200,5,20); 

--------------------------------------------- 
| Id  | Operation                | Name     |
--------------------------------------------- 
|   0 | INSERT STATEMENT         |          |
|   1 |  LOAD TABLE CONVENTIONAL | EMP_DEPT |
--------------------------------------------- 

INSERT /*+ append_values */ INTO emp_dept 
VALUES (15867234,'Smith, JR','Sales',1359,'2010-01-01',200,5,20); 

------------------------------------- 
| Id  | Operation        | Name     |
------------------------------------- 
|   0 | INSERT STATEMENT |          |
|   1 |  LOAD AS SELECT  | EMP_DEPT |
|   2 |   BULK BINDS GET |          |
------------------------------------- 

How It Works 
The APPEND hint works within statements performing DML insert operations from another table, that is,
using a subquery from within an INSERT SQL statement. This is appropriate for when you need to copy a
large volume of rows between tables. By bypassing the Oracle database buffer cache blocks and
appending the data directly to the segment above the high water mark, it saves significant overhead.
This is a very popular method for inserting rows into a table very quickly. 

When you specify one of these hints, Oracle will perform a direct-path insert. In a direct-path insert,
the data is appended at the end of a table, rather than using free space that is found within current
allocated blocks for that table. The APPEND and APPEND_VALUES hints, when used, automatically convert a
conventional insert operation into a direct-path insert operation. In addition, if you are using parallel
operations during an insert, the default mode of operation is to use the direct-path mode. If you want to
bypass performing direct-path operations, you can use the NOAPPEND hint. 

Keep in mind that if you are running with either of these hints, there is a risk of contention if you
have multiple application processes inserting rows into the same table. If two append operations are
inserting rows at the same time, performance will suffer, as since the insert append operation appends
the data above the high water mark for a segment, only one operation should be done at one time.
However, if you have partitioned objects, you can still run several concurrent append operations, as long
as each insert operates on separate partitions for a given table. 

14-8. Placing Hints in Views 

Problem 
You are creating a view, and want to place a hint in the view’s query in order to improve performance on
any queries that access the view. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

507 

Solution 
Hints can be placed in views, as a view is simply a stored query in the database. Depending on the type 
of hint used, as well as the type of view that is being queried, you can determine if your hint will be used. 
It is important to understand what type of view you have so you can determine what impacts hints will 
have on that view. To understand this, you first need to determine  which of the following describes your 
view: 

• Mergeable or non-mergeable view 

• Simple or complex view 

A simple view is a view that references only one table, and there are not any grouping functions or 
expressions: 

CREATE view emp_high_sal 
AS SELECT /*+ use_index(employees) */ employee_id, first_name, last_name, salary 
FROM employees 
WHERE salary > 10000; 

A complex view can reference multiple tables, or it will have grouping clauses, or use functions and 
expressions: 

CREATE or replace view dept_sal 
AS SELECT /*+ full(employees) */ department_id, department_name, 
departments.manager_id, SUM(salary) total_salary, AVG(salary) avg_salary 
FROM employees JOIN departments USING(department_id) 
GROUP BY department_id, department_name, departments.manager_id; 

A mergeable view is simply one in which the optimizer can replace the query calling the view with 
the query within the view definition itself. For example, we simply want to query all the rows from our 
EMP_HIGH_SAL view. The optimizer simply has to go directly to the EMPLOYEES table: 

SELECT * FROM emp_high_sal; 
 
--------------------------------------- 
| Id  | Operation         | Name      | 
--------------------------------------- 
|   0 | SELECT STATEMENT  |           | 
|   1 |  TABLE ACCESS FULL| EMPLOYEES | 
--------------------------------------- 

The optimizer has simply replaced the query with the query that defined the view: 

SELECT /*+ full(employees) */ department_id, department_name, 
departments.manager_id, SUM(salary) total_salary, AVG(salary) avg_salary 
FROM employees JOIN departments USING(department_id) 
GROUP BY department_id, department_name, departments.manager_id; 

With a mergeable view, the hint inside the view is preserved because the essential structure of the 
view definition is intact based on the query calling the view. See Table 14-3 for the guidelines for hints 
regarding mergeable views. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

508 

Table 14-3. Rules for Using Hints in Mergeable Views 

Hint Category Placing Hints Inside Views Placing Hints in Queries Accessing a View 

Access path /join Used only if the query referencing 
the view does not reference any 
other tables or views 

Ignored unless single-table view; if so, 
hint applied to the single table inside the 
view 

Optimizer mode hints  Are used unless there are 
conflicting hints inside the view, in 
which case they are all ignored 

Hints used regardless of hints inside the 
views 

 
For a non-mergeable view, the optimizer must break the work up into two pieces. It first must 

execute the query that defines the view, and then must execute the top-level query. Because of this, the 
hints defined within the view itself are preserved. For instance, we are querying our DEPT_SAL view. We 
can see from the explain plan that the query is broken up into pieces: 

SELECT manager_id, sum(total_salary) 
FROM dept_sal 
GROUP BY manager_id; 
 
------------------------------------------------------- 
| Id  | Operation                       | Name        | 
------------------------------------------------------- 
|   0 | SELECT STATEMENT                |             | 
|   1 |  HASH GROUP BY                  |             | 
|   2 |   VIEW                          | DEPT_SAL    | 
|   3 |    HASH GROUP BY                |             | 
|   4 |     MERGE JOIN                  |             | 
|   5 |      TABLE ACCESS BY INDEX ROWID| DEPARTMENTS | 
|   6 |       INDEX FULL SCAN           | DEPT_ID_PK  | 
|   7 |      SORT JOIN                  |             | 
|   8 |       TABLE ACCESS FULL         | EMPLOYEES   | 
------------------------------------------------------- 

See Table 14-4 for the guidelines for hints regarding non-mergeable views. 

Table 14-4. Rules for Using Hints in Non-mergeable Views 

Hint Category Placing Hints Inside Views Placing Hints in Queries Accessing a View 

Access path  Preserved Ignored 

Join Preserved Preserved 

Optimizer mode hints Ignored They are used, if present. 

 
It can be confusing to understand all the possible scenarios with hints and views, so they need to be 

used sparingly, and only when other means of tuning have not met the needed requirements. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

509 

How It Works 
Since a view, as mentioned, is simply a stored query, hints can be placed easily inside the view as they 
would be inside any query. The type of hint placed in the view will determine how and if a hint can be 
used within the view. Much like performing DML on a view, there are limitations on when hints are used 
or ignored. 

As a rule of thumb, the simpler a view is, the more likely hints can be effective. Because of the 
uniqueness of each application, each query, and each view, the only true way to know if a hint will be 
used is to simply try the hint and perform an explain plan to validate whether a given hint is used. 

Oracle does not recommend placing hints in views, as since the underlying objects can change over 
time, you can expect unpredictable execution plans. Also, views can be created for one specific use, but 
could be used for other purposes later, and any hints in the views may not help every scenario. In 
addition, hints placed within views are managed differently than if you were simply executing the query 
itself. Before any hint placed inside a view is used, the optimizer needs to determine if the view can be 
merged with the query calling the view. 

You can also consider placing hints within queries that access views. It is important to understand 
the rules of precedence when hints are placed within queries that access the views that have hints within 
themselves. This especially underlines the need for caution before placing a hint within a view. 

■ Tip Hints in queries that reference a complex view are ignored. 

14-9. Caching Query Results 

Problem 
You want to improve the performance on a given set of often-used queries, and want to use Oracle’s 
result cache to store the query results, so they can be retrieved quickly for future use when the same 
query has been executed. 

Solution 
The result cache is new to Oracle 11g, and was created in order to store results from often-used queries 
in memory for quick and easy retrieval. If you run an explain plan on a given query, you can see if the 
results will be stored in the result cache: 

SELECT /*+ result_cache */ 
job_id, min_salary, avg(salary) avg_salary, max_salary 
FROM employees JOIN jobs USING (job_id) 
GROUP BY job_id, min_salary, max_salary; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

510 

--------------------------------------------------------------------- 
| Id  | Operation                      | Name                       | 
--------------------------------------------------------------------- 
|   0 | SELECT STATEMENT               |                            | 
|   1 |  RESULT CACHE                  | 5t4cc5n1gdyfh46jdhfttnhx4g | 
|   2 |   HASH GROUP BY                |                            | 
|   3 |    NESTED LOOPS                |                            | 
|   4 |     NESTED LOOPS               |                            | 
|   5 |      TABLE ACCESS FULL         | EMPLOYEES                  | 
|   6 |      INDEX UNIQUE SCAN         | JOB_ID_PK                  | 
|   7 |     TABLE ACCESS BY INDEX ROWID| JOBS                       | 
--------------------------------------------------------------------- 

If you then query the V$RESULT_CACHE_OBJECTS view, you can validate whether the results of a query 
are stored in the result cache by looking at the cache ID value from the explain plan. 

SELECT ID, TYPE, to_char(CREATION_TIMESTAMP,'yyyy-mm-dd:hh24:mi:ss') cr_date, 
BLOCK_COUNT blocks, COLUMN_COUNT columns, PIN_COUNT pins, ROW_COUNT "ROWS" 
FROM   V$RESULT_CACHE_OBJECTS 
WHERE  CACHE_ID = '5t4cc5n1gdyfh46jdhfttnhx4g'; 
 
 
        ID TYPE    CR_DATE              BLOCKS  COLUMNS  PINS       ROWS 
---------- ------- ------------------- ------- -------- ----- ---------- 
         4 Result  2011-03-19:15:20:43       1        4     0         19 

If for some reason your database is set with a default mode of FORCE at the database or table level, 
you can use the NO_RESULT_CACHE hint to bypass the result cache. If we run our previous query with the 
result cache mode set to FORCE, it is evident that the result cache is used automatically. 

SQL> show parameter result_cache_mode 
 
NAME                 TYPE                 VALUE 
-------------------- -------------------- -------------------- 
result_cache_mode    string               FORCE 
 
 
select job_id, min_salary, avg(salary) avg_salary, max_salary 
from employees join jobs using (job_id) 
group by job_id, min_salary, max_salary; 
 
--------------------------------------------------------------------- 
| Id  | Operation                      | Name                       | 
--------------------------------------------------------------------- 
|   0 | SELECT STATEMENT               |                            | 
|   1 |  RESULT CACHE                  | 5t4cc5n1gdyfh46jdhfttnhx4g | 
|   2 |   HASH GROUP BY                |                            | 
|   3 |    NESTED LOOPS                |                            | 
|   4 |     NESTED LOOPS               |                            | 
|   5 |      TABLE ACCESS FULL         | EMPLOYEES                  | 
|   6 |      INDEX UNIQUE SCAN         | JOB_ID_PK                  | 
|   7 |     TABLE ACCESS BY INDEX ROWID| JOBS                       | 
--------------------------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

511 

If we then rerun with the NO_RESULT_CACHE hint, the result cache is not used and the statement is 
executed: 

SELECT /*+ no_result_cache */ job_id, min_salary, avg(salary) avg_salary, max_salary 
FROM employees JOIN jobs USING (job_id) 
GROUP BY job_id, min_salary, max_salary; 
 
 
--------------------------------------------------- 
| Id  | Operation                     | Name      | 
--------------------------------------------------- 
|   0 | SELECT STATEMENT              |           | 
|   1 |  HASH GROUP BY                |           | 
|   2 |   NESTED LOOPS                |           | 
|   3 |    NESTED LOOPS               |           | 
|   4 |     TABLE ACCESS FULL         | EMPLOYEES | 
|   5 |     INDEX UNIQUE SCAN         | JOB_ID_PK | 
|   6 |    TABLE ACCESS BY INDEX ROWID| JOBS      | 
--------------------------------------------------- 

The following query was run twice, first not using the result cache, and the second time using the 
result cache, and the performance difference is significant: 

SELECT /*+ no_result_cache */ 
j.job_id, min_salary, avg(salary) avg_salary, max_salary, department_name 
FROM employees_big e, jobs j, departments d 
WHERE e.department_id = d.department_id 
AND e.job_id = j.job_id 
AND salary BETWEEN 5000 AND 9000 
GROUP BY j.job_id, min_salary, max_salary, department_name; 
 
 
JOB_ID     MIN_SALARY AVG_SALARY MAX_SALARY DEPARTMENT_NAME 
---------- ---------- ---------- ---------- ------------------------------ 
ST_MAN           5500       7280       8500 Shipping 
SA_REP           6000       7494      12000 Sales 
HR_REP           4000       6500       9000 Human Resources 
AC_ACCOUNT       4200       8300       9000 Accounting 
IT_PROG          4000       7500      10000 IT 
FI_ACCOUNT       4200       7920       9000 Finance 
MK_REP           4000       6000       9000 Marketing 
 
7 rows selected. 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

512 

Elapsed: 00:00:21.80 
 
SELECT /*+ result_cache */ 
j.job_id, min_salary, avg(salary) avg_salary, max_salary, department_name 
FROM employees_big e, jobs j, departments d 
WHERE e.department_id = d.department_id 
AND e.job_id = j.job_id 
AND salary BETWEEN 5000 AND 9000 
GROUP BY j.job_id, min_salary, max_salary, department_name; 
 
Elapsed: 00:00:00.08 

How It Works 
The result cache hint, if placed in a query, will override any database-level, table-level, or session-level 
result cache settings. Before using hints in your queries, you need to determine the configuration of the 
result cache on your database. There are two separate result caches to look at: the server-side result 
cache and the client-side result cache. The server-side result cache is part of the shared pool of the SGA, 
and stores SQL query results and PL/SQL function results. Query time can be improved significantly, as 
query results are checked within the result cache first, and if the results exist, they are simply pulled from 
memory, and the query is not executed. The result cache is most appropriately used for often-run 
queries that produce the same results. 

The result cache can be configured at several levels. As Table 14-5 indicates, it can be configured at 
the database level, the session level, the table level, or the statement level. The statement level is where 
hints are specified. If you decide to configure the result cache in your database, there are several 
initialization parameters that need to be configured. Table 14-6 reviews these parameters. Some are 
specific parameters for the result cache, while the remaining memory-related parameters need to be 
analyzed to see if they need to be changed to accommodate the result cache. 

Table 14-5. Result Cache Configuration Hierarchy 

Configuration Level How to Configure Result Cache 

Database level  Configured via initialization parameters (see Table 14-6) 

Table level Configured with the CREATE TABLE or ALTER TABLE statements—for example, ALTER 
TABLE EMPLOYEES RESULT_CACHE (MODE FORCE) 

Session level Configured via the ALTER SESSION statement—for example, ALTER SESSION SET 
RESULT_CACHE_MODE=FORCE 

Statement level Configured via the RESULT_CACHE or NO_RESULT_CACHE hints 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

513 

Table 14-6. Result Cache Initialization Parameters 

Key Result Cache Initialization Parameters Description 

RESULT_CACHE_MODE Indicates if result cache is active for all activity or only for 
manually run activities; MANUAL is the default, which means 
the result cache is not used unless specified at the table, 
session, or statement level. FORCE means it will be enabled 
for all queries for a database instance. 

RESULT_CACHE_MAX_SIZE Determines memory allocated for server-side result cache 
for database 

RESULT_CACHE_MAX_RESULT Determines maximum size for single result for server-side 
result cache 

CLIENT_RESULT_CACHE_SIZE Determines maximum size for each client-side session 
result cache 

MEMORY_TARGET By default, 0.25% of total is allocated for result cache if this 
parameter is configured. 

SGA_TARGET By default, 0.5% of total is allocated for result cache if this 
parameter is configured. 

SHARED_POOL_SIZE By default, 1% of total is allocated for result cache if this 
parameter is configured. 

14-10. Directing a Distributed Query to a Specific Database 

Problem 
You are joining two or more tables together that exist on different databases, and want to direct the work 
to take place on a particular database, as the remote database is where most of the data resides. 

Solution 
By default, when you are joining tables that exist on different databases, the database where the query 
originated is where the majority of the work takes place. You can change this behavior and tell the 
optimizer which database will do the work: 

SELECT /*+ driving_site(employees) */ first_name, last_name, department_name 
FROM employees@to_emp_link JOIN departments USING(department_id); 

9
www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

514 

Specifying the remote site as the driver is most appropriate if the volume on the remote site is large, 
or if you are querying many tables on the remote site. In order to process a distributed query, the 
optimizer first has to bring rows from remote tables over to the local site, before processing the overall 
query. This can be very resource-intensive on the temporary tablespace(s) on the local database. 
Therefore, by instructing the optimizer to perform the work at the site where the biggest percentage of 
the data resides, you can drastically improve your query performance. 

When specifying the hint, you simply need to specify the remote table or table alias within your hint 
to direct the optimizer to the site that will do the work. There is no need to specify any hint if you wish 
the optimizer to do the work on the local database; the hint needs to be specified when you want to 
direct the work to a remote database. 

How It Works 
Distributed queries can be a blessing and a curse. By being able to join tables from remote databases, it 
gives users the impression of data transparency, that is, that the data they need to retrieve appears to be 
in one place, as they can assemble a single query to retrieve data, when in fact the data may reside on 
two or more databases. This simplicity in assembling queries is a key advantage of being able to perform 
distributed queries. The key disadvantage is that optimization of distributed queries is difficult. 
Essentially, the originating or local database where the query is initiated becomes the “driver” database 
by default. The optimizer at the local site has no knowledge of the makeup or volume of data at the 
remote site, and therefore the work is split up into pieces, and the query is not, by default, optimized as a 
single unit. Therefore, it is important to understand the makeup of the data on each database, in order to 
attempt to best optimize the query. The key decision you need to make with a distributed query is which 
database you want to be the “driving” site. The biggest factors in determining which site should be the 
driving site are as follows: 

• How many tables are in the distributed query? 

• How many databases are involved in the distributed query? 

• Which database contains the most tables involved in the query? 

• Which database contains the greatest volume of data? 

In essence, if a majority of tables or a large volume of data resides remotely, it may be beneficial to 
use a remote database as the driving site. Let’s say we are joining three tables together, and we want to 
get employee information along with the department they work in, and their work address. In this 
scenario, the employee table, being the largest, resides on one database, while two smaller tables, the 
department and location tables, reside on our local database: 

SELECT first_name, last_name, department_name, street_address, city 
FROM employees@to_emp_link JOIN departments USING(department_id) 
JOIN locations USING (location_id); 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

515 

------------------------------------------- 
| Id  | Operation           | Name        | 
------------------------------------------- 
|   0 | SELECT STATEMENT    |             | 
|   1 |  HASH JOIN          |             | 
|   2 |   HASH JOIN         |             | 
|   3 |    TABLE ACCESS FULL| LOCATIONS   | 
|   4 |    TABLE ACCESS FULL| DEPARTMENTS | 
|   5 |   REMOTE            | EMPLOYEES   | 
------------------------------------------- 

From the execution plan, we can see that the EMPLOYEES table is the remote table. What this means is 
before the join to the employee data can occur, all of that employee data must be brought over to the 
local database before the query can be completed. In this case, the employee data is by far the largest 
table of the three. There are far more employees than there are departments or locations, and therefore a 
large volume of data will be brought over to the local database before the remainder of the query can be 
processed. So, in this case, performance many improve by having the work done on the database where 
the employee data resides: 

SELECT /*+ driving_site(employees) */ 
first_name, last_name, department_name, street_address, city 
FROM employees@to_emp_link JOIN departments USING(department_id) 
JOIN locations USING (location_id); 
 
 
--------------------------------------------------------------- 
| Id  | Operation                | Name                       | 
--------------------------------------------------------------- 
|   0 | SELECT STATEMENT REMOTE  |                            | 
|   1 |   HASH JOIN              |                            | 
|   2 |    VIEW                  | index$_join$_001           | 
|   3 |     HASH JOIN            |                            | 
|   4 |      INDEX FAST FULL SCAN| EMP_DEPARTMENT_IX          | 
|   5 |      INDEX FAST FULL SCAN| EMP_NAME_IX                | 
|   6 |    HASH JOIN             |                            | 
|   7 |     REMOTE               | DEPARTMENTS                | 
|   8 |     REMOTE               | LOCATIONS                  | 
--------------------------------------------------------------- 

Now the explain plan shows the two smaller tables as remote tables, since the database where the 
EMPLOYEES table resides is now the driving site for the query. Sometimes you may simply need to 
determine this by trial and error, when it is not obvious which site should be the driving site. 

Another easy way to determine this is simply by determining which query returns faster. If we want 
to get the average salary for each department and location, the query would look like the following: 

SELECT department_name, city, avg(salary) 
FROM employees_big@to_emp_link JOIN departments USING(department_id) 
JOIN locations USING (location_id) 
GROUP BY department_name, city 
ORDER BY 2,1; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

516 

DEPARTMENT_NAME                CITY                           AVG(SALARY)
------------------------------ ------------------------------ ----------- 
Human Resources                London                                6500
Public Relations               Munich                               10000
Sales                          Oxford                          8955.88235
Accounting                     Seattle                              10150
Administration                 Seattle                               4400
Executive                      Seattle                         19333.3333
Finance                        Seattle                               8600
Purchasing                     Seattle                               4150
Shipping                       South San Francisco             3475.55556
IT                             Southlake                             5760
Marketing                      Toronto                               9500 

11 rows selected. 

Elapsed: 00:00:42.87 

Since no driving site hint is specified, the local site is the driving site. If we issue the same query
specifying the remote and larger table to be the driving site, we see a benefit simply from the time the
query takes to execute: 

SELECT /*+ driving_site(employees_big) */ department_name, city, avg(salary)
FROM employees_big@to_emp_link JOIN departments USING(department_id) 
JOIN locations USING (location_id) 
GROUP BY department_name, city 
ORDER BY 2,1; 

Elapsed: 00:00:22.24 

One more way you can try to determine which site should be the driving site is by figuring out
exactly what work is being performed on each site. For example, using the foregoing query as an
example, if we do not use the hint, perform the following: 

1. Retrieve an explain plan for the query. 

2. On the remote database, determine what part of the query is running
remotely. 

First, we can see the execution plan of our query. Again, we are not using the driving_site hint. 

---------------------------------------------- 
| Id  | Operation            | Name          |
---------------------------------------------- 
|   0 | SELECT STATEMENT     |               |
|   1 |  SORT GROUP BY       |               |
|   2 |   HASH JOIN          |               |
|   3 |    HASH JOIN         |               |
|   4 |     TABLE ACCESS FULL| LOCATIONS     |
|   5 |     TABLE ACCESS FULL| DEPARTMENTS   |
|   6 |    REMOTE            | EMPLOYEES_BIG |
---------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

517 

Second, we can determine that the operation occurring on the remote database is the SELECT 
statement and columns for the remote EMPLOYEES_BIG table. You can retrieve this information directly 
from the data dictionary on the remote database, or a tool such as Enterprise Manager. 

SELECT "SALARY","DEPARTMENT_ID" 
FROM "EMPLOYEES_BIG" "EMPLOYEES_BIG" 

If we repeat the foregoing two steps with the same query, only this time we insert a driving_site 
hint for the EMPLOYEES table, we get the following results. First, we can get the execution plan of our query 
with the driving_site hint: 

------------------------------------------------------------- 
| Id  | Operation              | Name                       | 
------------------------------------------------------------- 
|   0 | SELECT STATEMENT REMOTE|                            | 
|   1 |  RESULT CACHE          | 326m75n1yb5kt2qysx7f37cy2y | 
|   2 |   SORT GROUP BY        |                            | 
|   3 |    HASH JOIN           |                            | 
|   4 |     HASH JOIN          |                            | 
|   5 |      REMOTE            | LOCATIONS                  | 
|   6 |      REMOTE            | DEPARTMENTS                | 
|   7 |     TABLE ACCESS FULL  | EMPLOYEES_BIG              | 
------------------------------------------------------------- 

Second, we can see which part of the query is being performed on the remote site. In this case, the 
data was retrieved from Enterprise Manager: 

SELECT "A2"."DEPARTMENT_NAME","A1"."CITY",AVG("A3"."SALARY") 
FROM "EMPLOYEES_BIG" "A3","DEPARTMENTS"@! "A2","LOCATIONS"@! "A1" 
WHERE "A2"."LOCATION_ID"="A1"."LOCATION_ID" AND "A3"."DEPARTMENT_ID"="A2"."DEPARTMENT_ID" 
GROUP BY "A2"."DEPARTMENT_NAME","A1"."CITY" ORDER BY "A1"."CITY","A2"."DEPARTMENT_NAME" 

Without the driving site hint, we had to move all rows for the EMPLOYEES_BIG table for the SALARY and 
DEPARTMENT_ID columns. After transporting this data, the query results could be processed. 

With the driving_site hint, we had to move all rows for all columns of the DEPARTMENTS and 
LOCATIONS table to the remote database. Then, the query results could be processed. And, because we 
used the driving_site hint, after the query results were compiled, the complete result set had to be 
transported to the local database. Therefore, you need to factor in not only the data moving between 
databases for the query itself, but also, if you are using the driving_site hint, the results themselves 
being transported back to the local database where the query originated. 

14-11. Gathering Extended Query Execution Statistics 

Problem 
You want to gather extended explain plan statistics for a specific query, and do not want to adversely 
affect performance for an entire database instance while gathering this information. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

518 

Solution 
You can use the GATHER_PLAN_STATISTICS hint, which, if placed within a query at runtime, will generate 
extended runtime statistics. It is a two-step process: 

1. Execute the query with the gather_plan_statistics hint. 

2. Use dbms_xplan.display_cursor to display the results. 

See the following example: 

SELECT /*+ gather_plan_statistics */ 
city, round(avg(salary)) avg, min(salary) min, max(salary) max 
FROM employees JOIN departments USING (department_id) 
JOIN locations USING (location_id) 
GROUP BY city; 
 
CITY                                  AVG        MIN        MAX 
------------------------------ ---------- ---------- ---------- 
London                               6500       6500       6500 
Seattle                              8844       2500      24000 
Munich                              10000      10000      10000 
South San Francisco                  3476       2100       8200 
Toronto                              9500       6000      13000 
Southlake                            5760       4200       9000 
Oxford                               8956       6100      14000 

Then, you can use dbms_xplan to display the extended query statistics. Ensure that the SQL Plus 
setting SERVEROUTPUT is set to OFF, else results will not be properly displayed. 

SELECT * FROM table(dbms_xplan.display_cursor(format=>'ALLSTATS LAST')); 
 
------------------------------------------------------------------------------------------ 
| Id  | Operation                  | Name          | Starts | E-Rows | A-Rows |  Buffers | 
------------------------------------------------------------------------------------------ 
|   0 | SELECT STATEMENT           |               |      2 |        |      14|       23 | 
|   1 |   HASH GROUP BY            |               |      0 |     23 |       0|       23 | 
|*  2 |    HASH JOIN               |               |      0 |    106 |       0|       23 | 
|*  3 |     HASH JOIN              |               |      0 |     27 |       0|       16 | 
|   4 |      VIEW                  | index$_join$_4|      0 |     23 |       0|        8 | 
|*  5 |       HASH JOIN            |               |      0 |        |       0|        8 | 
|   6 |        INDEX FAST FULL SCAN| LOC_CITY_IX   |      0 |     23 |       0|        4 | 
|   7 |        INDEX FAST FULL SCAN| LOC_ID_PK     |      0 |     23 |       0|        4 | 
|   8 |      VIEW                  | index$_join$_2|      0 |     27 |       0|        8 | 
|*  9 |       HASH JOIN            |               |      0 |        |       0|        8 | 
|  10 |        INDEX FAST FULL SCAN| DEPT_ID_PK    |      0 |     27 |       0|        4 | 
|  11 |        INDEX FAST FULL SCAN| DEPT_LOC_IX   |      0 |     27 |       0|        4 | 
|  12 |     TABLE ACCESS FULL      | EMPLOYEES     |      0 |    107 |       0|        7 | 
------------------------------------------------------------------------------------------ 

There are many other options available using the DISPLAY_CURSOR procedure; refer to the Oracle 
PL/SQL Packages and Types Reference Guide for a more complete listing of these options. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

519 

How It Works 
The GATHER_PLAN_STATISTICS hint gathers runtime statistics; therefore the query needs to be executed in 
order to gather these statistics. If you already have a query that is performing at a substandard 
optimization level, it may be useful to run your query with the GATHER_PLAN_STATISTICS hint. This can 
quickly give you information that you simply do not have with a normal explain plan, as it shows you 
estimated and actual information regarding query statistics. From this, you can determine if the 
optimizer is optimally executing the SQL, and you can determine if any optimization is needed. 

Keep in mind that it does take some resources in order to gather these extra runtime statistics, so 
use this option with care. It may even be worthwhile to test the runtime differences in some cases. One 
key benefit of this hint is that the extra statistics are gathered only for the specific query. That way, the 
scope is limited and has no effect on other processes in the database, or even a particular session. If you 
wanted a more global setting to gather extended statistics, you can set STATISTICS_LEVEL=ALL at the 
session or instance level. One quick set of columns to review are the E-Rows and A-Rows columns. By 
looking at these columns, you can quickly tell if the optimizer is executing the query based on accurate 
statistics. If there is a large discrepancy between these columns, it is a sign of an inefficient execution 
plan. The one needed calculation for an accurate analysis is for the E-Rows column. You need to 
multiply the Starts column with E-Rows to accurately compare the total with A-Rows. 

14-12. Enabling Query Rewrite 

Problem 
You have materialized views in your database environment, and want to have queries that access the 
source tables that make up the materialized views go against the materialized views directly to retrieve 
the results. 

Solution 
The REWRITE hint can be used to direct the optimizer to use a materialized view. The materialized view 
must have query rewrite enabled, and statistics for the materialized view and the associated objects 
should be current to increase the likelihood for a query to be rewritten. See the following example: 

SELECT /*+ rewrite(dept_sal_mv) */ department_id, 
sum(nvl(salary+(salary*commission_pct),salary)) total_compensation 
FROM employees 
GROUP BY department_id 
having sum(nvl(salary+(salary*commission_pct),salary)) > 10000 
ORDER by 2; 

We can see here that the optimizer used the materialized view in the execution plan, rather than 
processing the entire query and recalculating the summary: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

520 

----------------------------------------------------- 
| Id  | Operation                     | Name        | 
----------------------------------------------------- 
|   0 | SELECT STATEMENT              |             | 
|   1 |  SORT ORDER BY                |             | 
|   2 |   MAT_VIEW REWRITE ACCESS FULL| DEPT_SAL_MV | 
----------------------------------------------------- 

How It Works 
Materialized views are very commonly used to store the result set for often-executed queries. While 
regular views are simply stored queries in the data dictionary, materialized views are essentially tables 
that store the result for these queries. Usually, they are created when there are complex joins, 
summaries, or aggregations occurring within a query. The following example is a materialized view that 
is calculating the total compensation for each department for a company. Let’s say this query is often 
used by executives of this company to determine how their particular department is doing in terms of 
distributing compensation to its employees: 

CREATE MATERIALIZED VIEW DEPT_SAL_MV 
ENABLE QUERY REWRITE 
AS 
SELECT department_id, 
sum(nvl(salary+(salary*commission_pct),salary)) total_compensation 
FROM employees 
GROUP BY department_id; 

Since the results are stored in the database, there is no need for the optimizer to reprocess the query 
to retrieve the data. The end-user community does not have to execute a complex join or aggregation 
over and over, so it is a considerable performance benefit. Some users may not be aware of the 
materialized views in your environment, and may be executing the raw queries against the star schema 
or other tables. It is here that the REWRITE hint may help in improving performance on queries that could 
use a materialized view. 

If you enable query rewrite for a materialized view, and if a query executes where the results can be 
found in that materialized view, the optimizer may choose to “rewrite” the query to go directly against 
the materialized view, rather than process the query itself. Generally, no hint is required, because if 
query rewrite is enabled, the optimizer will attempt to rewrite the query. However, it’s possible the 
optimizer may not choose to rewrite the query to use the materialized view, even though that is the 
desired outcome. In those instances, you can place a hint within your query to have the optimizer use 
the materialized view, regardless of the execution cost. You can place the actual view name within the 
hint, or place the hint without the view name: 

SELECT /*+ rewrite */ department_id, 
sum(nvl(salary+(salary*commission_pct),salary)) total_compensation 
FROM employees 
GROUP BY department_id 
having sum(nvl(salary+(salary*commission_pct),salary)) > 10000 
ORDER by 2; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

521 

Conversely, you can also use a NOREWRITE hint if, for some reason, you do not want the optimizer to 
use the materialized view. One possible reason is that the data in the materialized view is stale compared 
to the source table(s), and you want to ensure you are getting the most current data. Here we can see 
that the optimizer bypassed the use of the materialized view and resummarized the data directly from 
the EMPLOYEES table: 

SELECT /*+ norewrite */ department_id, 
sum(nvl(salary+(salary*commission_pct),salary)) total_compensation 
FROM employees 
GROUP BY department_id 
having sum(nvl(salary+(salary*commission_pct),salary)) > 10000 
ORDER by 2; 
 
------------------------------------------ 
| Id  | Operation            | Name      | 
------------------------------------------ 
|   0 | SELECT STATEMENT     |           | 
|   1 |  SORT ORDER BY       |           | 
|   2 |   FILTER             |           | 
|   3 |    HASH GROUP BY     |           | 
|   4 |     TABLE ACCESS FULL| EMPLOYEES | 
------------------------------------------ 

14-13. Improving Star Schema Query Performance 

Problem 
You work in a data warehouse environment that contains star schemas, and you want to improve the 
performance of queries. 

Solution 
Oracle has a specific solution called “star transformation,” which was designed to help improve 
performance against star schemas in the data warehouse environment. Oracle has the 
STAR_TRANSFORMATION and FACT hints to help improve query performance using star schemas. In your 
queries, you can use the STAR_TRANSFORMATION or the FACT hint, or you can use both. The following query 
is an example of how to use these hints: 

SELECT /*+ star_transformation */ pr.prod_category, c.country_id,  
t.calendar_year, sum(s.quantity_sold), SUM(s.amount_sold) 
FROM sales s, times t, customers c, products pr 
WHERE s.time_id = t.time_id 
AND   s.cust_id = c.cust_id 
AND   pr.prod_id = s.prod_id 
AND   t.calendar_year = '2011' 
GROUP BY pr.prod_category, c.country_id, t.calendar_year; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

522 

To use just the FACT hint, simply place the fact table name or alias within parentheses in the hint: 

SELECT /*+ fact(s) */ pr.prod_category, c.country_id, 

At times, the optimizer will be more likely to perform star transformation when both hints are 
present: 

SELECT /*+ star_transformation fact(s) */ pr.prod_category, c.country_id, 

Here is a typical explain plan that has undergone star transformation: 

----------------------------------------------------------------------- 
| Id  | Operation                              | Name                 | 
----------------------------------------------------------------------- 
|   0 | SELECT STATEMENT                       |                      | 
|   1 |  HASH GROUP BY                         |                      | 
|   2 |   HASH JOIN                            |                      | 
|   3 |    HASH JOIN                           |                      | 
|   4 |     HASH JOIN                          |                      | 
|   5 |      PARTITION RANGE ALL               |                      | 
|   6 |       TABLE ACCESS BY LOCAL INDEX ROWID| SALES                | 
|   7 |        BITMAP CONVERSION TO ROWIDS     |                      | 
|   8 |         BITMAP AND                     |                      | 
|   9 |          BITMAP MERGE                  |                      | 
|  10 |           BITMAP KEY ITERATION         |                      | 
|  11 |            BUFFER SORT                 |                      | 
|  12 |             TABLE ACCESS FULL          | CUSTOMERS            | 
|  13 |            BITMAP INDEX RANGE SCAN     | SALES_CUST_BIX       | 
|  14 |          BITMAP MERGE                  |                      | 
|  15 |           BITMAP KEY ITERATION         |                      | 
|  16 |            BUFFER SORT                 |                      | 
|  17 |             VIEW                       | index$_join$_016     | 
|  18 |              HASH JOIN                 |                      | 
|  19 |               INDEX FAST FULL SCAN     | PRODUCTS_PK          | 
|  20 |               INDEX FAST FULL SCAN     | PRODUCTS_PROD_CAT_IX | 
|  21 |            BITMAP INDEX RANGE SCAN     | SALES_PROD_BIX       | 
|  22 |      TABLE ACCESS FULL                 | TIMES                | 
|  23 |     TABLE ACCESS FULL                  | CUSTOMERS            | 
|  24 |    VIEW                                | index$_join$_004     | 
|  25 |     HASH JOIN                          |                      | 
|  26 |      INDEX FAST FULL SCAN              | PRODUCTS_PK          | 
|  27 |      INDEX FAST FULL SCAN              | PRODUCTS_PROD_CAT_IX | 
----------------------------------------------------------------------- 
 
Note 
----- 
   - star transformation used for this statement 

How It Works 
Before you start running star queries, there are two key configuration elements that need to be taken 
care of before star transformation can occur: 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14 ■ IMPLEMENTING QUERY HINTS 

 

523 

• Ensure the star_transformation_enabled parameter is set to TRUE. 

• Ensure that on the fact table, there is a bitmap index on every dimension foreign 
key column. 

If you are at a point to want to use a hint within a star schema, be it the FACT hint or the 
STAR_TRANSFORMATION hint, it is assumed you have a properly configured environment, else these hints 
will not be used by the optimizer. These hints are not required for star transformation, but by using 
either or these hints, the optimizer will look to do transformation. Even with the hint, however, the 
optimizer may choose to ignore the request, based on what it thinks the best execution plan will be for 
the query. Star queries are very efficient and perform very well, because the transformation is designed 
to operate specifically with star schemas. 

If, for some reason, you want to avoid the use of star transformation for your query, simply use the 
no_star_transformation hint, and the optimizer will bypass the use of star transformation: 

SELECT /*+ no_star_transformation */ pr.prod_category, c.country_id,  
t.calendar_year, sum(s.quantity_sold), SUM(s.amount_sold) 
FROM sales s, times t, customers c, products pr 
WHERE s.time_id = t.time_id 
AND   s.cust_id = c.cust_id 
AND   pr.prod_id = s.prod_id 
AND   t.calendar_year = '2011' 
GROUP BY pr.prod_category, c.country_id, t.calendar_year; 

From the explain plan, we can see that the optimizer did not transform our query: 

--------------------------------------------------------- 
| Id  | Operation                        | Name         | 
--------------------------------------------------------- 
|   0 | SELECT STATEMENT                 |              | 
|   1 |  HASH GROUP BY                   |              | 
|   2 |   NESTED LOOPS                   |              | 
|   3 |    NESTED LOOPS                  |              | 
|   4 |     NESTED LOOPS                 |              | 
|   5 |      NESTED LOOPS                |              | 
|   6 |       PARTITION RANGE ALL        |              | 
|   7 |        TABLE ACCESS FULL         | SALES        | 
|   8 |       TABLE ACCESS BY INDEX ROWID| PRODUCTS     | 
|   9 |        INDEX UNIQUE SCAN         | PRODUCTS_PK  | 
|  10 |      TABLE ACCESS BY INDEX ROWID | CUSTOMERS    | 
|  11 |       INDEX UNIQUE SCAN          | CUSTOMERS_PK | 
|  12 |     INDEX UNIQUE SCAN            | TIMES_PK     | 
|  13 |    TABLE ACCESS BY INDEX ROWID   | TIMES        | 
--------------------------------------------------------- 

At times, it can be tricky to get the star transformation to take place. It is critically important that 
you have properly configured the star schema with all the appropriate bitmap indexes. Even having one 
missing bitmap index can affect the ability to have star transformation occur for your queries, so it is 
important to be very thorough and validate the configuration, especially regarding the bitmap indexes. 
Some star schemas also employ the use of bitmap join indexes between the fact and dimension tables to 
aid in achieving star transformation.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 5 
 

 

    

 

   

 

  

 

 

  

 

525 

Executing SQL in Parallel 

Parallelism can help improve performance on particular operations simply by assigning multiple 
resources to a task. Parallelism is best used on systems with multiple CPUs, as the multiple processes 
used (that is, the parallel processes) will use those extra CPU resources to more quickly complete a  
given task. 

As a general rule, parallelism is also best used on large tables or indexes, and on databases with large 
volumes of data. It is ideal for use in data warehouse environments, which are large by their nature. 
Parallelism is not well suited for OLTP environments, just because of the transactional nature of those 
systems. 

In order to use parallelism properly, there are several important factors to understand: 

• The number of CPUs on your system 

• Proper configuration of the related initialization parameters 

• The key SQL statements that you want to tune for parallelization 

• The degree of parallelism (DOP) configured on your database 

• The actual performance vs. expected performance of targeted SQL operations 

One of the most common pitfalls of parallelism is overuse. It is sometimes seen as a magic bullet to 
tune and speed up SQL operations. In turn, parallelism can actually lead to poorer rather than better 
performance. Therefore, it is critically important for the DBA to understand the physical configuration of 
his or her system, and configure parallelism-related parameters to best suit the system. Educating 
developers and users of your database about basic questions will increase the success rate of parallel 
operations. When is it appropriate to use parallelism? How do you properly enable parallelism in SQL 
operations? What type of operations can be parallelized? Parallelism is a powerful tool to aid in 
drastically improving performance of database operations, but with that power comes responsibility. 

This chapter focuses on the methods to properly configure your database for parallelism, key 
operations that can be parallelized, how to induce parallelism in your SQL, and some tools to use to see 
if parallel operations are running optimally. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

526 

15-1. Enabling Parallelism for a Specific Query 

Problem 
You have a slow-running query accessing data from a large table. You want to see if you can speed up the 
query by instructing Oracle to use multiple processes to retrieve the data. 

Solution 
There are two distinct types of hints to place in your SQL to try to speed up your query by using multiple 
processes, or parallelism. One type of hint is for data retrieval itself, and the other is to help speed the 
process of reading the indexes on a table. 

Parallel Hints for Tables 
First, you need to determine the degree of parallelism (DOP) desired for the query. This instructs Oracle 
how many processes it will use to retrieve the data. Second, place a parallel hint inside of the query 
specifying the table(s) on which to execute parallel SQL, as well the degree of parallelism to use for the 
query—for example: 

SELECT /*+ parallel(emp,4) */  empno, ename  
FROM emp; 

If you use a table alias in your query, you must use it in your hint, else the Oracle optimizer will 
ignore the hint. 

SELECT/*+ parallel(e,4) */  empno, ename  
FROM emp e; 

The hints in the preceding two queries result in four processes dividing the work of reading rows 
from the EMP table. Four processes working together will get the job done faster in terms of wall-clock 
time than one process doing all the work by itself. 

Optionally, you can omit specifying a degree of parallelism within the hint. If you specify only the 
table name or alias in the hint, Oracle will derive the degree of parallelism based on the database 
initialization parameters, which may or may not give you the desired degree of parallelism: 

SELECT/*+ parallel(e) */  empno, ename  
FROM emp e; 

Parallel Hints for Indexes 
Specify the parallel_index hint to control parallel access to indexes. You can generally access an index 
in parallel only when the index is a locally partitioned index. In that case, you can apply the 
parallel_index hint. Here’s an example: 

SELECT /*+ parallel_index(emp, emp_i4 ,4) */ empno, ename  
FROM emp 
WHERE deptno = 10; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

527 

There are two arguments to the parallel_index hint: table name and index name. As with specifying
the degree of parallelism on tables, if you omit the degree of parallelism from within an index hint, the
database itself will compute the degree of parallelism for the query. 

If you alias your tables, then you must use the alias names in your hints. See the preceding section
on “Parallel Hints for Tables” for an example. 

How It Works 
In order to effectively use parallel hints, you need to take the following items into consideration: 

• The number of tables in your query 

• The size of table(s) in your query 

• The number of CPUs on your system 

• The filtering columns in your WHERE clause 

• What columns are indexed, if any 

You also must analyze and understand three key components of your system prior to using parallel
hints in queries: 

• System configuration, such as amount of memory and CPUs, and even disk
configuration 

• Database configuration parameters related to parallelism 

• The DOP specified on the objects themselves (tables and indexes) 

Parallel SQL must be used with caution, as it is common to overuse, and can cause an over-
utilization of system resources, which ultimately results in slower rather than faster performance.
Overuse is a very common mistake in the use of parallelism. 

Depending on the number of tables in your query, you may want to place parallelism on one or
more of the tables—depending on their size. A general rule of thumb is that if a table contains more than
10 million rows, or is at least 2 gigabytes in size, it may be a viable candidate for using parallelism. 

The degree of parallelism (DOP) should be directly related to the number of CPUs on your system. If
you have a single-CPU system, there is little, if any, benefit of using parallel SQL, and the result could
very well be returned slower than if no parallelism was used at all. 

To help determine if you can use parallelism on any indexes, you need to first determine if any of
the filtering columns in your WHERE clause are indexed. If so, check to see if the table is partitioned.
Typically, then, for a query on a large table, a parallel_index hint may help the speed of your query.
Overall, when trying to determine whether to use parallelism for your query, it’s helpful to perform an
explain plan to determine if parallelism will be used. Also, there may be parallelism already specified for
an object within your query, so it is also a good idea to check the DEGREE column in the USER_TABLES or
USER_INDEXES view prior to checking the degree of parallelism within a hint. 

Table 15-1 shows the different parallel hints that can be used. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

528 

Table 15-1. Types of Parallel Hints 

Table Head Parameters 

PARALLEL Table name, DOP 

PARALLEL_INDEX Table name, index name, DOP 

NO_PARALLEL -- 

NO_PARALLEL_INDEX -- 

PQ_DISTRIBUTE Table name, distribution value 

 
There are many options Oracle gives you to help you determine a proper DOP, and whether you 

want to specify it yourself, or you want Oracle to determine the DOP for your query. Table 15-2 briefly 
describes these options. 

Table 15-2. Degree of Parallelism Options 

Hint Name Description 
PARALLEL Statement always runs in parallel. 

PARALLEL (DEFAULT) Same as PARALLEL 

PARALLEL (AUTO) Optimizer computes DOP to be used. 

PARALLEL (MANUAL) Parallelism is based on object parallelism.

PARALLEL (integer) The DOP used is specified by the integer. 

Parallel Hints for Tables 
In order to determine if parallelism is being used in your query, first perform an explain plan on your 
query. The following are a simple query and its associated execution plan: 

select * from emp; 
 
-------------------------------------------------------------------------- 
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
-------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |      |    14 |  1218 |     3   (0)| 00:00:01 | 
|   1 |  TABLE ACCESS FULL| EMP  |    14 |  1218 |     3   (0)| 00:00:01 | 
-------------------------------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

529 

If parallelism isn’t being used, you can insert the parallel hint, and then rerun the explain plan to 
verify that the optimizer will use parallelism in the execution plan—for example: 

select /*+ parallel(emp,4) */ * from emp; 
 
---------------------------------------------------------------------- 
| Id  | Operation            | Name     |    TQ  |IN-OUT| PQ Distrib | 
---------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |          |        |      |            | 
|   1 |  PX COORDINATOR      |          |        |      |            | 
|   2 |   PX SEND QC (RANDOM)| :TQ10000 |  Q1,00 | P->S | QC (RAND)  | 
|   3 |    PX BLOCK ITERATOR |          |  Q1,00 | PCWC |            | 
|   4 |     TABLE ACCESS FULL| EMP      |  Q1,00 | PCWP |            | 
---------------------------------------------------------------------- 

■ Note The proper database initialization parameters need to be properly set in order for parallelism to be 
enabled via the use of hints. 

Parallel Hints for Indexes 
Although it is far less common to parallelize index-based queries, it may be of benefit in certain 
circumstances. For example, you may want to parallelize the query against a local index that is part of a 
partitioned table. The following is an example query and the resulting execution plan: 

SELECT /*+ parallel_index(emp, emp_i3) */ empno, ename  
FROM emp 
WHERE hiredate between '2010-01-01' and '2010-12-31'; 
 
------------------------------------------------------------------------------------------ 
| Id  | Operation                            | Name             |    TQ  |IN-OUT| PQ Dist| 
------------------------------------------------------------------------------------------ 
|   0 | SELECT STATEMENT                     |                  |        |      |        | 
|   1 |  PX COORDINATOR                      |                  |        |      |        | 
|   2 |   PX SEND QC (RANDOM)                | :TQ10000         |  Q1,00 | P->S |        | 
|   3 |    PX PARTITION RANGE ITERATOR       |                  |  Q1,00 | PCWC |        |  
|   4 |     TABLE ACCESS BY LOCAL INDEX ROWID| EMP              |  Q1,00 | PCWP |        |  
|   5 |      INDEX RANGE SCAN                | EMP_I3           |  Q1,00 | PCWP |        | 
------------------------------------------------------------------------------------------ 

When formatting the hint, you can specify all the parameters that tell the optimizer exactly which 
index to use, and what DOP you desire. In the following query, we’re telling the optimizer that we want 
to use the EMP_I3 index, with a DOP of 4. 

SELECT /*+ parallel_index(emp, emp_i3, 4) */ empno, ename  
FROM emp 
WHERE hiredate between '2010-01-01' and '2010-12-31'; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

530 

If you omit the DOP from the hint, the optimizer determines the DOP based on the initialization 
parameter settings. For instance, in the following example, the table name and index name are specified 
in the hint, but the DOP is not specified. Oracle will compute the DOP for us in these cases. 

SELECT /*+ parallel_index(emp, emp_i3) */ empno, ename  
FROM emp 
WHERE hiredate between '2010-01-01' and '2010-12-31'; 

You can also simply place the table name in the hint, and the optimizer will also determine which 
index, if any, can be used. If the optimizer determines that no index is suitable, then no index will be 
used. In the following example, only the table name is used in the hint: 

SELECT /*+ parallel_index(emp) */ empno, ename  
FROM emp 
WHERE hiredate between '2010-01-01' and '2010-12-31'; 

■ Note As of Oracle 11g Release 2, the NOPARALLEL and NOPARALLEL_INDEX hints have been deprecated. 
Instead, use NO_PARALLEL and NO_PARALLEL_INDEX. 

15-2. Enabling Parallelism at Object Creation 

Problem 
You have new tables to create in your database that will be growing to a very large size, and you want 
speed the queries against those tables. 

Solution 
Having a higher than default DOP on a table or index is an easy way to set a more consistent and fixed 
method of enabling multiple processes on tables and indexes. Enabling parallelism on tables or indexes 
is done within DDL commands. You can enable parallelism within the CREATE statement when creating a 
table or an index. 

For a new table, if you are expecting to have consistent queries that can take advantage of multiple 
processes, it may be easier to set a fixed DOP on your object, rather than having to place hints in your 
SQL, or let Oracle set the DOP for you. In the following example, we’ve specified a DOP of 4 on the EMP 
table: 

CREATE TABLE EMP 
( 
 EMPNO NUMBER(4) CONSTRAINT PK_EMP PRIMARY KEY, 
 ENAME VARCHAR2(10), 
 JOB VARCHAR2(9), 
 MGR NUMBER(4), 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

531 

 HIREDATE DATE, 
 SAL NUMBER(7,2), 
 COMM NUMBER(7,2), 
 DEPTNO NUMBER(2) CONSTRAINT FK_DEPTNO REFERENCES DEPT 
) 
PARALLEL(DEGREE 4); 

By placing a static DOP of 4 on the table, any user accessing the EMP table will get a DOP of 4 for each 
query executed. 

select * from emp; 
 
---------------------------------------------------------------------- 
| Id  | Operation            | Name     |    TQ  |IN-OUT| PQ Distrib | 
---------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |          |        |      |            | 
|   1 |  PX COORDINATOR      |          |        |      |            | 
|   2 |   PX SEND QC (RANDOM)| :TQ10000 |  Q1,00 | P->S | QC (RAND)  | 
|   3 |    PX BLOCK ITERATOR |          |  Q1,00 | PCWC |            | 
|   4 |     TABLE ACCESS FULL| EMP      |  Q1,00 | PCWP |            | 
---------------------------------------------------------------------- 

You can also specify a default DOP when creating an index. There are circumstances where it may 
be beneficial to create an index with a higher DOP. With large partitioned tables, it is common to have 
secondary locally partitioned indexes on often-used columns in the WHERE clause. Some queries that use 
these indexes may benefit from increasing the DOP. In the following DDL, we’ve created this index with 
a DOP of 4: 

CREATE INDEX EMP_I1 
ON EMP (HIREDATE) 
LOCAL 
PARALLEL(DEGREE 4); 

How It Works 
Placing parallelism on objects themselves helps multiple processes complete the task at hand sooner—
whether it be to speed up queries, or to help speed up the creation of an index. In order to be able to 
assess the proper DOP to place on an object, you should know the access patterns of the data. If less 
information is known about the objects, the more conservative the DOP should be. Placing a high DOP 
on a series of objects can hurt performance just as easily as it can help, so enabling DOP on objects 
needs to be done with careful planning and consideration. 

■ Tip If automatic DOP is enabled and configured properly (PARALLEL_DEGREE_POLICY=AUTO), then the 
parallelism that you set on objects is ignored, and the optimizer chooses the degree of parallelism to be used. See 
Recipe 15-10 for details on enabling automatic DOP. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

532 

15-3. Enabling Parallelism for an Existing Object 

Problem 
You have a series of slow-running queries accessing a set of existing database tables, and you want to 
take steps to reduce the execution time of the queries. 

Solution 
Setting a higher DOP on an existing table or index is an easy way to have a more consistent and fixed 
method of enabling multiple processes on tables and indexes. Setting the DOP for tables or indexes is 
done within DDL commands. You can change the DOP on a table or index by using the ALTER statement. 
For instance, if you have an existing table that needs to have the DOP changed to accommodate user 
queries that want to take advantage of multiple processes, they can be added easily to the table, which 
takes effect immediately. The following example alters the default DOP for a table: 

ALTER TABLE EMP 
PARALLEL(DEGREE 4); 

If, after a time, you wish to reset the DOP on your table, you can also do that with the ALTER 
statement. See the following two examples on how to reset the DOP for a table: 

ALTER TABLE EMP 
PARALLEL(DEGREE 1); 
 
ALTER TABLE EMP 
NOPARALLEL; 

If you have an already existing index that you think will benefit from a higher DOP, it can also easily 
be changed.  As with tables, the change takes effect immediately. The following example shows how to 
change the default DOP for an index: 

ALTER INDEX EMP_I1 
PARALLEL(DEGREE 4); 

As with tables, you can reset the DOP on an index either of the following two ways: 

ALTER INDEX EMP_I4 
PARALLEL(DEGREE 1); 
 
ALTER INDEX EMP_I4 
NOPARALLEL; 

How It Works 
Increasing the DOP on an existing object is a sign that you already have a performance issue for queries 
accessing tables within your database. Monitoring parallelism performance is a key factor in knowing if 
the DOP set for an object or set of objects is appropriate. Examine data in the V$PQ_TQSTAT to assist in 
determining the DOP that has been used, or V$SYSSTAT to assist in the extent that parallelism is being 
used on your database. Refer to Recipe 15-12 for some examples of using these data dictionary views. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

533 

15-4. Implementing Parallel DML 

Problem 
You want to induce parallelism when performing DML operations (INSERT, UPDATE, MERGE, DELETE) in 
order to speed performance and reduce transaction time. 

Solution 
If operating within a data warehouse environment or an environment with large tables that require a 
high volume of bulk transactions, parallel DML can help speed up processing and reduce the time it 
takes to perform these operations. Parallel DML is disabled by default on a database, and must be 
explicitly enabled with the following statement: 

ALTER SESSION ENABLE PARALLEL DML; 

By specifying the foregoing statement, it truly enables parallel DML to be possible in a session, but 
does not guarantee it. Parallel DML operations will occur only under certain conditions: 

• Hints are specified in a DML statement. 

• Tables with a parallel attribute are part of a DML statement. 

• The DML operations meet the appropriate rules for a statement to run in parallel. 
Key restrictions for using parallel DML are noted later in the recipe. 

You may desire, in certain circumstances, to force parallel behavior, regardless of the parallel degree 
you have placed on an object, or regardless of any hints you’ve placed in your DML. So, alternatively, 
you can force parallel DML with the following statement: 

ALTER SESSION FORCE PARALLEL DML; 

As a general rule, it is not good practice to force parallel DML in your regularly run DML, as it can 
quickly consume system resources to a point where performance begins to suffer. It is best used 
sparingly, and can help with occasional large DML operations. 

How It Works 
Parallel DML can work for any DML operation—INSERT, UPDATE, MERGE, and DELETE. The rules vary slightly 
depending on which DML operation you are running. If you want to run an INSERT statement in parallel, 
for instance, first enable parallelism for your session, and then execute your INSERT statement with the 
appropriate mechanism in order for the DML to run in parallel: 

ALTER SESSION ENABLE PARALLEL DML; 
 
INSERT /*+ PARALLEL(DEPT,4) */ INTO DEPT 
SELECT /*+ PARALLEL(DEPT_COPY,4) */ * FROM DEPT_COPY; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

534 

With the foregoing statement, we put a parallel hint into the INSERT statement, and also put a 
parallel HINT into the SELECT portion of the statement. A very important thing to remember is that even if 
parallelism is in effect for your DML statement, it does not directly impact any parallelism on a related 
query within the same statement. For instance, the following statement’s DML operation can run in 
parallel, but the corresponding SELECT statement will run in serial mode, as no parallelism is specified on 
the query itself. 

ALTER SESSION ENABLE PARALLEL DML; 
 
INSERT /*+ PARALLEL(DEPT,4) */ INTO DEPT 
SELECT * FROM DEPT_COPY; 

In order to take full advantage of parallel capabilities, try to parallelize all portions of a statement. If 
you parallelize the INSERT but not the SELECT, the SELECT portion becomes a bottleneck for the INSERT, 
and the INSERT performance suffers. 

Parallel DML operations can also occur on UPDATE, MERGE, and DELETE statements. Let’s say your 
company was generous and decided to give everyone in the accounting department a 1% raise: 

UPDATE /*+ PARALLEL(EMP,4) */ EMP 
SET SAL = SAL*1.01  
WHERE DEPTNO=10; 

Then, after a period of months, your company decides to lay off those employees they gave raises to 
in accounting: 

DELETE /*+ PARALLEL(EMP,4) */ FROM EMP 
WHERE DEPTNO=10; 

Another way to parallelize a DML transaction within your database is to use the 
DBMS_PARALLEL_EXECUTE PL/SQL package. Although more complex to configure, there are some key 
advantages of using this package to run your parallelized transactions: 

• The overall transaction is split into pieces, each of which has its own commit 
point. 

• Transactions are restartable. 

• Locks are done only on affected rows. 

• Undo utilization is reduced. 

• You have more control over how the work is divided. You can divide the work in 
several ways: 

• By column 

• By ROWID 

• By SQL statement 

The obvious benefits of using the DBMS_PARALLEL_EXECUTE package are greater control over how large 
transactions are run, increased functionality, and more efficient use of database resources. The key 
trade-off with using this package is it is simply more complex to configure, set up, and run—but may be 
well worth it when processing large volumes of data. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

535 

■ Tip You must execute the ALTER SESSION ENABLE | FORCE PARALLEL DML statement in order for parallel 
DML to occur for your transaction. 

Restrictions on Parallel DML 
There are plenty of restrictions in using parallel DML, and you need to understand that even if dealing 
with a large volume of data, parallel DML may not be possible in certain circumstances: 

• Individual inserts of rows (using VALUES clause) cannot be run in parallel. 

• You can modify a table only one time within a transaction. 

• Cannot be run for tables with triggers 

• Tables with certain constraints may not be eligible. 

• There is limited parallel DML functionality on tables with objects or LOB columns. 

• There is limited parallel DML functionality on temporary tables. 

• Distributed transactions cannot be parallelized. 

Degree of Parallelism 
Once you submit a parallelized DML operation for execution, Oracle determines, based on a set of 
precedence rules, what DOP will be used for the entire statement being submitted. It is important to 
understand these rules so you get the desired DOP you are expecting for your transaction. 

For DML transactions, Oracle applies the following base rules of precedence to determine DOP: 

1. Checks to see if an hint is specified on INSERT, UPDATE, MERGE, or DELETE 
statements 

2. Checks to see if there are any session-level instructions 

3. Checks the object-level parallelism on the target object 

4. Chooses maximum DOP specified between the queried table or any associated 
indexes for the query portion of the statement (insert only) 

After choosing the appropriate DOP for the insert and query portions of the statement, the query is 
executed. Note that the DOP chosen for each portion of the statement can be different. 

Other Considerations 
Using parallel DML can be complex, as there are many permutations of possibilities of the type of 
objects involved: whether they are partitioned, the DOP specified on the objects, the hints specified in 
statements, and the parallel parameter settings, just to name a few. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

536 

Here are some other factors that need to be considered when using parallel DML: 

• For parallelized insert transactions, direct-path loads are performed. 

• When deciding whether to use parallel DML, you must weigh the performance 
gain you will achieve with the space usage for that operation. Parallelized INSERT 
statements are fast, but cost you more space. If you have specified a DOP of 4 for 
an insert transaction, 4 extents will be allocated for that operation. You must 
determine based on your requirements what is more important. 

• If objects are partitioned, it can affect how a parallel DML transaction runs. 

15-5. Creating Tables in Parallel 

Problem 
You need to quickly create a table from an existing large table, and want to employ the use of multiple 
processes to help speed up the creation of the table. 

Solution 
If you are administering very large databases (VLDBs) or have to rebuild a large table, parallel DDL is fast 
and has advantages over running parallel DML. Speed is the biggest factor in choosing to use parallel 
DDL to create a table from an existing large table. Within your specific DDL command, there is a 
PARALLEL clause that determines if operations are to be performed in parallel. This is done by using the 
CREATE TABLE ... AS SELECT operation: 

CREATE TABLE EMP_COPY  
PARALLEL(DEGREE 4) 
AS 
SELECT * FROM EMP; 
 
------------------------------------------------------------------------ 
| Id  | Operation              | Name     |    TQ  |IN-OUT| PQ Distrib | 
------------------------------------------------------------------------ 
|   0 | CREATE TABLE STATEMENT |          |        |      |            | 
|   1 |  PX COORDINATOR        |          |        |      |            | 
|   2 |   PX SEND QC (RANDOM)  | :TQ10000 |  Q1,00 | P->S | QC (RAND)  | 
|   3 |    LOAD AS SELECT      | EMP_COPY |  Q1,00 | PCWP |            | 
|   4 |     PX BLOCK ITERATOR  |          |  Q1,00 | PCWC |            | 
|   5 |      TABLE ACCESS FULL | EMP      |  Q1,00 | PCWP |            | 
------------------------------------------------------------------------ 

How It Works 
The reason parallel DDL is popular is that it is a fast way to perform operations on a large amount of 
data. The work is divided up in several pieces and done concurrently. Let’s say you just bought a new 
house, and are in the process of moving. If you are loading a large moving truck with boxes, it will simply 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

537 

be faster with four people loading rather than one. Moreover, parallel DDL is an attractive way to
perform DML-type operations under the covers of DDL commands. 

The most common reasons to use the CREATE TABLE ... AS SELECT include the following: 

• The table structure has changed and you need to rebuild the table. 

• You are creating a like structure for some specific application purpose. 

• You are deleting a large number of rows from the table. 

• You need to drop multiple columns from a large table. 

Some of the foregoing operations could also be strictly handled with parallel DML, but using parallel
DDL has a distinct advantage over parallel DML. Since DDL operations cannot be rolled back, undo is
not generated for these operations, and it is simply a more efficient operation. 

The DOP for a parallel DDL operation is determined by the object DOP. This also includes the query
portion of the statement. If you choose to, you can override the DOP of the objects by issuing the
following command: 

ALTER SESSION FORCE PARALLEL DDL; 

If you have a very large table from which you need to delete many rows, consider using CREATE
TABLE ... AS SELECT rather than using a DML DELETE statement. Deleting rows is an expensive
operation. In large data warehouse environments, in scenarios where a large volume of rows needs to be
deleted, the cost and time of doing the delete can quickly become unmanageable. Because of the nature
of delete, it is very resource-intensive for the database as far as the amount of redo and undo generation
it takes to perform the operation. One good rule of thumb to use is that if you are deleting as little as 5–
10% of the rows of a large table, it can be simply faster to create a new table with all the rows you want to
keep. 

Here is an example where we are deleting about 20% of the rows from our EMP table of 1,234,568
rows: 

  delete /*+ parallel(emp,4) */ from emp 
  where empno > 1000000
SQL> / 

234568 rows deleted. 

Elapsed: 00:00:09.94 

-------------------------------------------------------------------------- 
| Id  | Operation                | Name     |    TQ  |IN-OUT| PQ Distrib |
-------------------------------------------------------------------------- 
|   0 | DELETE STATEMENT         |          |        |      |            |
|   1 |  PX COORDINATOR          |          |        |      |            |
|   2 |   PX SEND QC (RANDOM)    | :TQ10001 |  Q1,01 | P->S | QC (RAND)  |
|   3 |    INDEX MAINTENANCE     | EMP      |  Q1,01 | PCWP |            |
|   4 |     PX RECEIVE           |          |  Q1,01 | PCWP |            |
|   5 |      PX SEND RANGE       | :TQ10000 |  Q1,00 | P->P | RANGE      |
|   6 |       DELETE             | EMP      |  Q1,00 | PCWP |            |
|   7 |        PX BLOCK ITERATOR |          |  Q1,00 | PCWC |            |
|   8 |         TABLE ACCESS FULL| EMP      |  Q1,00 | PCWP |            |
-------------------------------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

538 

This delete took 9.94 seconds to run. If we now run a CREATE TABLE ... AS SELECT statement to 
achieve the same result, we can see the difference in performance. 

create table emp_ctas_new2 
parallel(degree 4) 
nologging 
as select /*+ parallel(a,4) */ * from emp_ctas 
where empno <= 1000000 
SQL> / 
Elapsed: 00:00:01.70 
 
-------------------------------------------------------------------------------------- 
| Id  | Operation                        | Name         |    TQ  |IN-OUT| PQ Distrib | 
-------------------------------------------------------------------------------------- 
|   0 | CREATE TABLE STATEMENT           |              |        |      |            | 
|   1 |  PX COORDINATOR                  |              |        |      |            | 
|   2 |   PX SEND QC (RANDOM)            | :TQ10001     |  Q1,01 | P->S | QC (RAND)  | 
|   3 |    LOAD AS SELECT                | EMP_CTAS_NEW |  Q1,01 | PCWP |            | 
|   4 |     PX RECEIVE                   |              |  Q1,01 | PCWP |            | 
|   5 |      PX SEND ROUND-ROBIN         | :TQ10000     |        | S->P | RND-ROBIN  | 
|   6 |       TABLE ACCESS BY INDEX ROWID| EMP_CTAS     |        |      |     | 
|   7 |        INDEX RANGE SCAN          | EMP_CTAS_PK  |        |      |     | 
-------------------------------------------------------------------------------- 

Creating the table took 1.7 seconds, over 5 times faster than performing the same operation with a 
DELETE statement. If you have indexes on the table, however, you need to consider that as a factor before 
choosing this method, because if you re-create a table, you must also re-create the associated indexes for 
that table. It’s still likely to be faster, however, as you can re-create any indexes in parallel as well. 

Keep in mind that, even though the foregoing example uses parallel DDL on these statements, this 
concept holds true even if you are running in serial mode. When you need to delete a large number of 
rows from a table, the CREATE TABLE ... AS SELECT can be compared favorably to DELETE with parallel-
executed DDL or non-parallel, serial-executed DDL. 

One potential drawback of creating tables in parallel is that the space allocations for these 
operations may leave the table more fragmented than if you created the table serially. This is a trade-off 
that should be considered when creating tables in parallel. The DOP that is specified in the operation 
spawns that number of parallel threads, and one extent is allocated for each thread. So, if you have 
specified a DOP of 4 for your parallel operation, there will be a minimum of 4 extents allocated for the 
operation. Depending on the MINIMUM EXTENT size for the tablespace, Oracle does attempt to trim unused 
space at the end of the operation. You should expect, though, that parallel create table operations are 
simply less space-efficient than operations run serially. 

15-6. Creating Indexes in Parallel 

Problem 
You need to create indexes for a large table as quickly as possible and want to employ the use of multiple 
processes to help speed up the index creation. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

539 

Solution 
Any time you have a large table, it is a good idea to always create any associated index for that table 
using parallel DDL, even if you want the DOP on the index to be non-parallelized for queries. The major 
benefit of creating an index in parallel is that it simply takes much less time to create the index. It always 
makes sense to create an index for a large table in parallel, and then optionally choose to reset the DOP 
used for queries after the create operation is complete. In the following example, we are creating the 
index with a DOP of 4, which will be used during the process of creating the index: 

CREATE INDEX EMP_COPY_I1  
ON EMP_COPY (HIREDATE) 
PARALLEL(DEGREE 4); 

Then, after the index has been created, we can choose to reset the DOP to a different value for use 
by queries, using either of the following examples: 

ALTER INDEX EMP_COPY_I1 NOPARALLEL; 
ALTER INDEX EMP_COPY_I1 PARALLEL(DEGREE 1); 

How It Works 
The primary reason you want to run parallel DDL on an index is to either create or rebuild a large, 
existing index. Some of the reasons you may have to do this include the following: 

• Adding an index to an already existing large table 

• Rebuilding an index that has become fragmented over time 

• Rebuilding an index after a large, direct-path load of data 

• You want to move an index to a different tablespace 

• The index is in an unusable state due to a partition-level operation on the 
associated table 

As with tables, if you wish to bypass the parallelism specified on the index, you can “force” the issue 
by running the following command: 

ALTER SESSION FORCE PARALLEL DDL; 

15-7. Rebuilding Indexes in Parallel 

Problem 
You have an existing index that needs to be rebuilt quickly, and you want to use multiple processes to 
speed up the index rebuild process. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

540 

Solution 
Situations may arise where you may need to rebuild an index, for many of the same reasons to re-create 
an index. To rebuild an index in parallel, use the ALTER INDEX command: 

ALTER INDEX EMP_COPY_I1 
REBUILD  
PARALLEL(DEGREE 4); 
 
-------------------------------------------------------------------------------- 
| Id  | Operation                   | Name        |    TQ  |IN-OUT| PQ Distrib | 
-------------------------------------------------------------------------------- 
|   0 | ALTER INDEX STATEMENT       |             |        |      |            | 
|   1 |  PX COORDINATOR             |             |        |      |            | 
|   2 |   PX SEND QC (ORDER)        | :TQ10001    |  Q1,01 | P->S | QC (ORDER) | 
|   3 |    INDEX BUILD NON UNIQUE   | EMP_COPY_I1 |  Q1,01 | PCWP |            | 
|   4 |     SORT CREATE INDEX       |             |  Q1,01 | PCWP |            | 
|   5 |      PX RECEIVE             |             |  Q1,01 | PCWP |            | 
|   6 |       PX SEND RANGE         | :TQ10000    |  Q1,00 | P->P | RANGE      | 
|   7 |        PX BLOCK ITERATOR    |             |  Q1,00 | PCWC |            | 
|   8 |         INDEX FAST FULL SCAN| EMP_COPY_I1 |  Q1,00 | PCWP |            | 
-------------------------------------------------------------------------------- 

If you need to rebuild a partition of a large local index, you can also use parallelism to perform this 
operation. See the following example: 

ALTER INDEX emppart_i1 
REBUILD PARTITION emppart2001_p 
PARALLEL(DEGREE 4); 
 
-------------------------------------------------------------------------------------- 
| Id  | Operation                   | Name       | Pstart| Pstop |IN-OUT| PQ Distrib | 
-------------------------------------------------------------------------------------- 
|   0 | ALTER INDEX STATEMENT       |            |       |       |      |            | 
|   1 |  PX COORDINATOR             |            |       |       |      |            | 
|   2 |   PX SEND QC (ORDER)        | :TQ10001   |       |       | P->S | QC ORDER)  | 
|   3 |    INDEX BUILD NON UNIQUE   | EMPPART_I1 |       |       | PCWP |            | 
|   4 |     SORT CREATE INDEX       |            |       |       | PCWP |            | 
|   5 |      PX RECEIVE             |            |       |       | PCWP |            | 
|   6 |       PX SEND RANGE         | :TQ10000   |       |       | P->P | RANGE      | 
|   7 |        PX BLOCK ITERATOR    |            |     2 |     2 | PCWC |            | 
|   8 |         INDEX FAST FULL SCAN| EMPPART_I1 |     2 |     2 | PCWP |            | 
-------------------------------------------------------------------------------------- 

How It Works 
Rebuilding an index has a key advantage over re-creating an index from scratch, as well as a key 
disadvantage. The advantage of rebuilding an index is that the existing index is in place until the rebuild 
operation is complete, so it can therefore be used by queries that are run concurrently with the rebuild 
process. The main disadvantage of the index rebuild process is that you will need space for both indexes, 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

541 

which is required during the rebuild process. Some of the key reasons to rebuild an index include the 
following: 

• Rebuilding an index that has become fragmented over time 

• Rebuilding an index after a large, direct-path load of data 

• You want to move an index to a different tablespace 

• The index is in an unusable state due to a partition-level operation on the 
associated table. 

15-8. Moving Partitions in Parallel 

Problem 
You need to move a table partition to a different tablespace, and wish to employ the use of multiple 
processes to accomplish this task. 

Solution 
Let’s say you want to move a table partition to another tablespace. For instance, you’ve created a 
tablespace on slower, cheaper storage, and you want to move older data there in order to reduce the 
overall cost of storage on your database. To alter a table to rebuild a partition in parallel, you would issue 
a command such as the one here: 

ALTER TABLE EMP 
MOVE PARTITION P2  
TABLESPACE EMP_S 
PARALLEL(DEGREE 4); 

How It Works 
The ALTER TABLE statement to move a partition is an easy, efficient way to move data around for a 
partitioned table. As with some of the other parallel DDL operations shown within this chapter, there are 
several reasons to need to move a table partition to a different tablespace: 

• You are moving older data to cheaper, slower storage. 

• You are consolidating a series of partitions to a single tablespace. 

• You are moving certain partitions to separate tablespaces to logically group types 
of data. 

Table partitioning is often done to store historical data. Over time, partition maintenance often 
needs to occur for partitioned tables. By enabling the use of parallelism when moving partitions for a 
table within your database, it can simply be done faster. With maintenance windows shrinking and data 
access needs growing, this helps perform necessary partition movements faster, while reducing 
downtime for your database tables. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

542 

15-9. Splitting Partitions in Parallel 

Problem 
You have a partition with a large amount of data, and want to split that larger partition into two or more 
smaller partitions. 

Solution 
As a DBA, at times the need arises to split partitions, and this operation can also be done in parallel. For 
instance, let’s say you have a partitioned table that has a default high-end partition with a large amount 
of data, and you want to split that data into multiple partitions. In cases such as these, you can split that 
default partition in parallel to speed up the partition split process. Here is an example of splitting a 
partition using parallelism: 

ALTER TABLE EMP 
SPLIT PARTITION PMAX at ('2011-04-01') INTO 
(PARTITION P4 TABLESPACE EMP_S, 
PARTITION PMAX TABLESPACE EMP_S) 
PARALLEL(DEGREE 4); 

How It Works 
Adding parallelism can speed up the process of splitting a partition with a large amount of data. Here is 
an example of a partition with over 16 million rows, and enabling parallelism for the split operation 
reduced the time of the split operation. First, the split was performed in parallel: 

ALTER TABLE EMPPART SPLIT PARTITION emppart2000_p AT ('2000-01-01') 
INTO (PARTITION emppart1990_p, PARTITION emppart2000_p) 
PARALLEL(DEGREE 4); 
 
Table altered. 
 
Elapsed: 00:00:53.61 

The same split was then performed on a similar table, to see the performance impact of doing the 
split serially: 

ALTER TABLE EMPPART2 SPLIT PARTITION emppart2000_p AT ('2000-01-01') 
INTO (PARTITION emppart1990_p, PARTITION emppart2000_p); 
 
Table altered. 
 
Elapsed: 00:01:05.36 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

543 

Again, keep in mind that for parallel operations, an extent needs to be allocated for each parallel 
operation. For the foregoing partition split operation, the table that used parallelism has a significantly 
higher number of extents allocated: 

SELECT segment_name, partition_name, extents 
FROM dba_segments 
WHERE segment_name LIKE '%EMP%' 
AND owner = 'SCOTT' 
ORDER BY 2,1; 
 
SEGMENT_NAME         PARTITION_NAME       EXTENTS 
-------------------- -------------------- ---------- 
EMPPART              EMPPART1990_P               335 
EMPPART2             EMPPART1990_P               121 
EMPPART              EMPPART2000_P               338 
EMPPART2             EMPPART2000_P               125 

15-10. Enabling Automatic Degree of Parallelism 

Problem 
You want to allow Oracle to automatically determine if a SQL statement should execute in parallel and 
what DOP it should use. 

Solution 
Set the PARALLEL_DEGREE_POLICY to AUTO to allow Oracle to determine whether a statement runs in 
parallel. You can set this either at the system level or session level. To set it for all SQL statements, run 
the following command: 

alter system set parallel_degree_policy=auto scope=both; 

To set it for a single SQL statement, you can alter your session to enable automatic DOP: 

alter session set parallel_degree_policy=auto; 

How It Works 
By default, Oracle executes a statement in parallel only when the DOP is set for the table or the parallel 
hint is used. You can instruct Oracle to automatically consider using parallelism for a statement via the 
PARALLEL_DEGREE_POLICY initialization parameter. Oracle takes the following steps when a SQL statement 
is issued when PARALLEL_DEGREE_POLICY is set to AUTO: 

 

 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

544 

1. Statement is parsed. 

2. The PARALLEL_MIN_TIME_THRESHOLD parameter is checked: 

• If execution time is less than the threshold set, then the statement runs 
without parallelism. 

• If execution time is greater than the threshold set, then the statement runs 
in parallel depending on the automatic DOP that is calculated by the 
optimizer. 

The PARALLEL_DEGREE_POLICY can be set to three different values: AUTO, LIMITED, and MANUAL. MANUAL is 
the default and turns off the automatic degree of parallelism. LIMITED instructs Oracle to use automatic 
DOP only on those objects with parallelism explicitly set. The AUTO setting gives Oracle full control over 
setting automatic DOP. One prerequisite of using automatic DOP is to run the 
DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure. This procedure needs to be run only once, and gathers 
information on the hardware characteristics of your system. 

With automatic DOP, there is a shift away from downgrading parallel operations based on available 
parallel slaves, to use a new feature in Oracle 11g R2 called statement queuing. With statement queuing, 
statements will not be downgraded, and will always be run with the query’s specified DOP. If there are 
not enough slaves to meet that DOP, the statement will be queued until that DOP is available. While it 
may appear that queuing could actually degrade the performance of queries in your database because 
some statements may have to wait for the specified DOP to be available, it is designed to improve the 
overall parallelism performance on the database, as running fewer statements with the specified DOP 
will outperform running more statements, some with a downgraded DOP. There are many other 
parameters that can be set related to parallelism. Table 15-3 lists other parallel parameters you may 
want to consider for your application. 

Table 15-3. Oracle Parallelism-Related Initialization Parameters 

Parameter Description 

parallel_degree_limit Automatic DOP is determined either by the number of CPUs on the system, 
the I/O requirements of a given query, or by a set integer value. In order to 
use the IO value, you must run the DBMS_RESOURCE_MANAGER.CALIBRATE_IO 
procedure. 

parallel_degree_policy Determines whether automatic DOP, statement queuing, and in-memory 
query execution are enabled. The MANUAL setting disables automatic DOP. 
The AUTO setting gives Oracle full control over setting automatic DOP. The 
LIMITED value exercises automatic DOP only on those objects with 
parallelism explicitly set. 

parallel_max_servers This specifies the maximum number of parallel processes (from 0 to 3600) 
for a database instance. 

 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

545 

Parameter Description 

parallel_min_servers This specifies the minimum number of parallel processes for a database 
instance. Setting to a nonzero value keeps that minimum number of parallel 
processes alive and ready to accept new requests. This saves startup costs of 
these processes, but costs more in memory utilization. 

parallel_servers_target Setting this parameter tells the database how many parallel processes can 
run at one time before query statements requiring parallel execution begin 
to be queued for execution. 

15-11. Examining Parallel Explain Plans 

Problem 
You want to understand how to read parallel explain plans. 

Solution 
When reading your explain plan, interpret it from the innermost to outermost levels, and from the 
bottom going up. For instance, here again is our parallel execution plan from using a parallel hint 
against the EMP table: 

select /*+ parallel(emp,4) */ * from emp; 
 
---------------------------------------------------------------------- 
| Id  | Operation            | Name     |    TQ  |IN-OUT| PQ Distrib | 
---------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |          |        |      |            | 
|   1 |  PX COORDINATOR      |          |        |      |            | 
|   2 |   PX SEND QC (RANDOM)| :TQ10000 |  Q1,00 | P->S | QC (RAND)  | 
|   3 |    PX BLOCK ITERATOR |          |  Q1,00 | PCWC |            | 
|   4 |     TABLE ACCESS FULL| EMP      |  Q1,00 | PCWP |            | 
---------------------------------------------------------------------- 

Looking at the foregoing plan starting at the bottom, we are doing a full table scan of the EMP table. 
The PX BLOCK INTERATOR just above the table scan is responsible for taking that request for a full table 
scan, and breaking it up into chunks based on the DOP specified. The PX SEND processes pass the data to 
the consuming processes. Finally, the PX COORDINATOR is the process used by the query coordinator to 
receive the data from a given parallel process and return to the SELECT statement. 

If you look at the IN-OUT column of your explain plan, you can see the execution flow of the 
operation, and determine if there are any bottlenecks, or any parts of the plan that are not parallelized, 
which may cause a decrease in the expected performance. As can be seen in Table 15-5, the operation 
that normally shows that there may be a bottleneck is the PARALLEL_FROM_SERIAL operation, because it 
means parallel processes are being spawned from a serial operation, which denotes an inefficiency in 
the process. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

546 

For instance, you have a series of employee tables by region of the country, and a user is performing 
a query to get information from several of these tables. However, the makeup of the query is such that a 
bottleneck occurs. 

select /*+ parallel(emp_north,4) */ * from emp_north 
union 
select * from emp_south; 
 
------------------------------------------------------------------------------------ 
| Id  | Operation                     | Name          |    TQ  |IN-OUT| PQ Distrib | 
------------------------------------------------------------------------------------ 
|   0 | SELECT STATEMENT              |               |        |      |            | 
|   1 |  PX COORDINATOR               |               |        |      |            | 
|   2 |   PX SEND QC (RANDOM)         | :TQ10002      |  Q1,02 | P->S | QC (RAND)  | 
|   3 |    SORT UNIQUE                |               |  Q1,02 | PCWP |            | 
|   4 |     PX RECEIVE                |               |  Q1,02 | PCWP |            | 
|   5 |      PX SEND HASH             | :TQ10001      |  Q1,01 | P->P | HASH       | 
|   6 |       BUFFER SORT             |               |  Q1,01 | PCWP |            | 
|   7 |        UNION-ALL              |               |  Q1,01 | PCWP |            | 
|   8 |         PX BLOCK ITERATOR     |               |  Q1,01 | PCWC |            | 
|   9 |          TABLE ACCESS FULL    | EMP_NORTH     |  Q1,01 | PCWP |            | 
|  10 |         BUFFER SORT           |               |  Q1,01 | PCWC |            | 
|  11 |          PX RECEIVE           |               |  Q1,01 | PCWP |            | 
|  12 |           PX SEND ROUND-ROBIN | :TQ10000      |        | S->P |RND-ROBIN   | 
|  13 |            TABLE ACCESS FULL  | EMP_SOUTH     |        |      |            | 
------------------------------------------------------------------------------------ 

You can tell from the foregoing explain plan output that the PX SEND process is serial, and is sending 
data back to be fed into a parallel process. This represents a bottleneck in this query. If we change all 
aspects of the query to run in parallel, we see an improvement in the execution plan: 

select /*+ parallel(emp_north,4) */ * from emp_north 
union 
select /*+ parallel(emp_south,4) */ * from emp_south; 
 
------------------------------------------------------------------------------- 
| Id  | Operation                | Name          |    TQ  |IN-OUT| PQ Distrib | 
------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT         |               |        |      |            | 
|   1 |  PX COORDINATOR          |               |        |      |            | 
|   2 |   PX SEND QC (RANDOM)    | :TQ10001      |  Q1,01 | P->S | QC (RAND)  | 
|   3 |    SORT UNIQUE           |               |  Q1,01 | PCWP |            | 
|   4 |     PX RECEIVE           |               |  Q1,01 | PCWP |            | 
|   5 |      PX SEND HASH        | :TQ10000      |  Q1,00 | P->P | HASH       | 
|   6 |       UNION-ALL          |               |  Q1,00 | PCWP |            | 
|   7 |        PX BLOCK ITERATOR |               |  Q1,00 | PCWC |            | 
|   8 |         TABLE ACCESS FULL| EMP_NORTH     |  Q1,00 | PCWP |            | 
|   9 |        PX BLOCK ITERATOR |               |  Q1,00 | PCWC |            | 
|  10 |         TABLE ACCESS FULL| EMP_SOUTH     |  Q1,00 | PCWP |            | 
------------------------------------------------------------------------------- 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

547 

How It Works 
Tables 15-4 and 15-5 delineate the fundamental information that can be used to determine the
execution plan for a parallel operation. In order to understand the basics of interpreting your explain
plan output, you should be aware of two aspects: 

• The possible parallel execution steps (Table 15-4) 

• The parallel operations that occur within each step (Table 15-5) 

The execution steps are the aspects of a parallelized plan, while the operations that occur within
your parallel execution plan can help you determine if you have an optimized plan, or one that needs
tuning and improvement. 

As with non-parallel operations, the explain plan utility is a very useful tool in determining what the
optimizer is planning to do to complete the task at hand. When executing operations in parallel, there
are specific aspects of the explain plan related to parallelism. These are important to understand, so you
can determine if the operation is running as optimized as possible. One of the key aspects of analyzing a
parallel explain plan is to determine if there are any aspects of the plan that are being run serially, as this
bottleneck can reduce the overall performance of a given operation. That it is why it is critical to
understand aspects of the explain plan that relate to parallel operations, with the end goal being that all
aspects of the operation are parallelized. 

Table 15-4. Parallel Execution Steps 

Operation  Description 

PX BLOCK ITERATOR In this step, the work to be done is split into pieces, which in turn will be done by
the parallel slaves specified. 

PX COORDINATOR Much like a project manager, this process coordinates and schedules the parallel
slaves’ work, as well as being responsible for getting data back from the parallel
slaves once they complete their tasks. 

PX RECEIVE These processes are consumer slaves of the data written via the producers of the
PX SEND processes. 

PX SEND These processes are the producer slaves of getting a portion of the data, and
writing to areas to be read by the consumers. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

548 

Table 15-5. Parallel Operations 

PLAN_TABLE Operation 
(Other_Tag Column) 

Explain Plan 
In/Out Tag  

Description 

PARALLEL_FROM_SERIAL S->P This denotes that a serial process with the operation is 
passing information to a parallel process. This is a sign 
of a bottleneck and an area of potential improvement. 

PARALLEL_TO_PARALLEL P->P This means that both the producer and the consumer 
are parallelized. This is the most desired execution 
flow. 

PARALLEL_TO_SERIAL P->S This step, although hinting at a bottleneck, is fairly 
normal. It is toward the top (that is, the end) of an 
operation, and denotes that results from a parallel 
process are being fed to the query coordinator at the 
end of the process. 

PARALLEL_COMBINED_WITH 
PARENT 

PCWP This means a step is being combined with its parent 
step and run simultaneously (for example, a 
sort/merge operation). 

PARALLEL_COMBINED_WITH CHILD PCWC This is the same as PCWP, except it means that a child 
step/slave process is being run simultaneously with 
the child process from the execution plan. 

15-12. Monitoring Parallel Operations 

Problem 
You want to quickly get information regarding the performance of your parallel operations from the 
database. 

Solution 
If you look at the V$SYSSTAT view, which gives information on system-level statistics in your database, 
including parallelism-related statistics, you can see, at a quick glance, if the DOP requested was actually 
used, and if any of those operations were downgraded: 

SELECT name , value 
FROM v$sysstat 
WHERE name LIKE '%Parallel%'; 
 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

549 

---------------------------------------------------------------- ---------- 
Parallel operations not downgraded                                    10331 
Parallel operations downgraded to serial                                  0 
Parallel operations downgraded 75 to 99 pct                               0 
Parallel operations downgraded 50 to 75 pct                               0 
Parallel operations downgraded 25 to 50 pct                               0 
Parallel operations downgraded 1 to 25 pct                                1 
 
6 rows selected. 

If you look at the V$PQ_SYSSTAT view, you can see parallel slave activity on your database. From 
looking at these statistics, you can quickly see if parallelism is properly configured on your database, just 
by looking at the parallel slave activity. For instance, if you see that the Servers Shutdown and Servers 
Started values are high, it can be an indication that the PARALLEL_MIN_SERVERS parameter is set too low, 
as there is overhead occurring to consistently start and stop parallel processes. 

SELECT * FROM v$pq_sysstat 
WHERE statistic LIKE 'Server%'; 
 
STATISTIC                           VALUE 
------------------------------ ---------- 
Servers Busy                            0 
Servers Idle                            0 
Servers Highwater                       4 
Server Sessions                         8 
Servers Started                         4 
Servers Shutdown                        4 
Servers Cleaned Up                      0 
 
7 rows selected. 

If you are looking for session-level statistics regarding a parallel operation, looking at the 
V$PQ_TQSTAT view is very useful in determining exactly how the work was split up among the parallel 
slaves, as well as giving you information about the actual DOP used based on the information within 
V$PQ_TQSTAT. Let’s rerun our parallel query against the EMP table with a hint specifying a DOP of 4. 

SELECT /*+ parallel(emp,4) */ * FROM emp; 

After completion of the query, but also within the same session, we can query the V$PQ_TQSTAT to get 
information about the parallel operations used for that query: 

SELECT dfo_number, tq_id, server_type, process, num_rows, bytes 
FROM v$pq_tqstat 
ORDER BY dfo_number DESC, tq_id, server_type DESC , process; 
 
DFO_NUMBER      TQ_ID SERVER_TYP PROCESS      NUM_ROWS      BYTES 
---------- ---------- ---------- ---------- ---------- ---------- 
         1          0 Producer   P000           298629   13211118 
         1          0 Producer   P001           302470   13372088 
         1          0 Producer   P002           315956   13978646 
         1          0 Producer   P003           317512   14052340 
         1          0 Consumer   QC            1234567   54614192 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

550 

We can see that between the four producer parallel slaves, the work was divided fairly evenly 
between them. We can also validate that the actual DOP used for this query was 4, as specified in the 
query hint. 

How It Works 
One of the quickest methods to analyze performance of parallel operations within your database is to 
analyze the dynamic performance views. These views give you a glimpse of how parallelism is 
performing overall within your database, which can indicate how well-tuned or badly tuned your 
database is for parallelism. It can also give you very session-specific details, such as how the work was 
split up between slaves, and information on the actual DOP used for a given operation. Table 15-6 gives 
you an overview of the parallelism-related dynamic performance views. 

Table 15-6. Key Dynamic Performance Views Related to Parallel Operations 

View Name Description 

V$PQ_SESSTAT Shows parallelism-related statistics for the current session, including number of 
parallel slaves used 

V$PQ_SYSSTAT Shows parallelism-related statistics for the database instance, including number of 
parallel slaves used 

V$PQ_TQSTAT Contains statistics on parallel operations across the database instance, including the 
DOP used and rows processed for each slave of a given operation 

V$SYSSTAT Contains at-a-glance statistics on downgraded parallel-related operations 

V$PX_SESSION Contains information about sessions running parallel operations, and information 
about the DOP requested and used 

V$PQ_SLAVE Contains information about the current parallel slaves being used by a database 
instance 

V$PX_PROCESS Contains information about parallel processes and status 

15-13. Finding Bottlenecks in Parallel Processes 

Problem 
You have some parallel processes that are underperforming, and you want to do analysis to find the 
bottlenecks. 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

551 

Solution 
There are many wait events related to parallelism. Many of these events are considered “idle” wait 
events—that is, they don’t usually indicate a problem. If you query the V$SYSTEM_EVENT view, you can get 
an idea of the parallelism-related waits that have occurred in your database instance. The following 
query results show some of the common wait events that can occur: 

SELECT event, wait_class, total_waits 
FROM v$session_event 
WHERE event LIKE 'PX%'; 
 
EVENT                        WAIT_CLASS   TOTAL_WAITS 
---------------------------- ------------ ----------- 
PX Deq Credit: need buffer   Idle             6667936 
PX Deq Credit: send blkd     Other            8161247 
PX Deq: Execute Reply        Idle              490827 
PX Deq: Execution Msg        Idle              685175 
PX Deq: Join ACK             Idle               26312 
PX Deq: Msg Fragment         Idle                  67 
PX Deq: Parse Reply          Idle               20891 
PX Deq: Signal ACK           Other              25729 
PX Deq: Table Q Get Keys     Other               3141 
PX Deq: Table Q Normal       Idle            25120970 
PX Deq: Table Q Sample       Idle               11124 
PX Deq: Table Q qref         Other            1705216 
PX Idle Wait                 Idle              241116 
PX qref latch                Other            1208472 

How It Works 
Table 15-7 describes some of the key parallelism-related wait events. If you are having significant 
performance issues, it may be worthwhile to browse these wait events to see if you have excessive waits 
or wait times. If so, it may indicate an issue with the processing occurring with the parallel slaves. Again, 
events that are “idle” generally do not indicate a problem. 

Table 15-7. Parallelism Wait Events That Could Signify a Tuning Issue 

View Name Description 

PX Deq: Execute Reply Denotes that the query coordinator (QC) is waiting for results from parallel 
slaves; this can be a sign of badly tuned SQL. If high waits, analyze the 
execution plan for efficiency. 

PX Deq: Parse Reply Denotes that parallel slaves are parsing SQL statements; high wait times 
may point to library cache contention. 

 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

552 

Continued 

View Name Description 

PX Deq: qref latch This wait can indicate that the producer slaves are processing too fast, and 
the consumer slaves cannot keep up. 

PX Deq: Table Q Normal This may indicate that some producer slaves are slow, and that the 
consumer slaves are waiting. 

15-14. Getting Detailed Information on Parallel Sessions 

Problem 
You have some underperforming parallel processes, and need more detailed information on the 
sessions. 

Solution 
By turning on session tracing, you can get detailed trace information on your parallel sessions. This is 
essentially a four-step process: 

1. Set the event in your session. 

2. Execute your SQL statement. 

3. Turn off your session tracing. 

4. Analyze your trace file output. 

For example, you are again executing a parallel query against our EMP table. In order to gather trace 
information, you would do the following: 

alter session set events '10391 trace name context forever, level 128'; 
 
select /*+ parallel(emp,4) */ * from emp; 
 
alter session set events '10391 trace name context off'; 

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15 ■ EXECUTING SQL IN PARALLEL 

 

553 

Then, within the trace file, you can analyze the parallel-related information, such as the following: 

kxfrDmpUpdSys 
        allocated slave set: nsset:1 nbslv:4 
          Slave set 0: #nodes:1 
          Min # slaves 4: Max # slaves:4 
            List of Slaves:  
              slv 0 nid:0 
              slv 1 nid:0 
              slv 2 nid:0 
              slv 3 nid:0 
            List of Nodes:  
              node 0 

How It Works 
As with other session tracing, the trace file can be found in the destination specified under the 
user_dump_dest parameter. The trace file shows granular information for the parallel processes. If you 
are experiencing significant performance issues with parallelism, and you wish to delve further into 
investigating the results of the trace files generated by this event, it may be beneficial to simply create a 
service request with Oracle in order to get the most detailed information. Reading and understanding 
these trace files can be difficult and cumbersome, and it may be more expedient to simply send the files 
to Oracle support for analysis. Yet another way to validate the DOP used for a parallel operation is to use 
the _px_trace facility, which also generates a trace file: 

alter session set "_px_trace"="compilation","execution","messaging";  
 
select /*+ parallel(emp,4) */ * from emp; 

Then, within the trace file, you can evaluate the DOP requested and used:  

kkscscid_pdm_eval 
        pdml_allowed=0, cursorPdmlMode=0,                sessPdmlMode=0 
        select /*+ parallel(emp,4) */ * from emp 
 
kxfrDefaultDOP 
        DOP Trace -- compute default DOP 
            # CPU       = 2 
            Threads/CPU = 2 ("parallel_threads_per_cpu") 
            default DOP = 4 (# CPU * Threads/CPU) 
 
kxfpAdaptDOP 
        Requested=4 Granted=4 Target=8 Load=2 Default=4 users=0 sets=1 
        load adapt num servers requested to = 4 (from kxfpAdaptDOP()) 

www.it-ebooks.info

http://www.it-ebooks.info/


 

555 

Index 

■A 
Active Session History (ASH) information, 

113, 117, 134–139 

ashrpt.sql script, 135 

awrrpt.sql script, 135 

background events, 135 

blocking sessions, 137 

circular buffer, 139 

data dictionary 

DBA_HIST_ACTIVE_SESS_HISTORY 
view, 142, 144 

SESSION_STATE column, 143 

time frame, 144 

V$ACTIVE_SESSION_HISTORY 
view, 142–145 

DBA_HIST_ACTIVE_SESS_HISTORY 
view, 139 

enterprise manager 

DBA_HIST_EVENT_NAME view, 141 

filter drop-down menu, 141 

filter option, 141, 142 

performance tuning activities, 140 

sample report, 140 

SQL_ID, 141 

time frames, 140 

P1/P2/P3 values, 136 

real-time/near real-time session 
information, 134 

report section information, 138 

SQL command types, 136 

SQL statements, 136 

user events, 135 

ashrpt.sql script, 140 

Automated SQL tuning, 367 

ADDM, 368 

in AWR 

creating SQL tuning set object, 388–
389 

DBMS_SQLTUNE.SELECT_WORKL
OAD_REPOSITORY funcion, 389–
390 

determine begin and end AWR 
snapshot IDs, 389 

viewing resource-intensive, 384–386 

DBMS_AUTO_TASK_ADMIN.ENABLE/
DISABLE procedure, 380–381 

DBMS_SQLTUNE.CREATE_SQLSET 
procedure, 383–384 

DBMS_SQLTUNE.CREATE_TUNING_T
ASK procedure, 398 

SQL ID, Cursor Cache, 399 

SQL_ID and AWR snapshot IDs, 
399–400 

SQL tuning set name, 400–401 

text for SQL statement, 399 

diagrammatic representation, 369 

with enterprise manager, 379 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

556 

in memory 

CAPTURE_CURSOR_CACHE_SQLS
ET parameter descriptions, 392 

DBMS_SQLTUNE.CAPTURE_CURS
OR_CACHE_SQLSET procedure, 
391–392 

DBMS_SQLTUNE.SELECT_CURSOR
_CACHE funcion, 390–391 

viewing resource-intensive, 386–388 

job details, 370–371 

maintenance task view descriptions, 
371 

modifying maintanence window, 382 

automatic SQL tuning, 382 

segment advice, 382 

statistics gathering, 382 

SQL Tuning Advisor, 368 

from ADDM, 404–407 

from enterprise manager, 403–404 

optimizer tuning modes, 402 

from SQL Developer, 403 

steps to run manually, 401 

SQL tuning set, 368 

deleting statements, 394–395 

displaying contents, 393–394 

transporting to another database, 
396–398 

tuning advice, 372 

DBMS_AUTO_SQLTUNE package, 
372 

DBMS_AUTO_SQLTUNE.SET_AUT
O_TUNING_TASK parameter, 377–
379 

detail section, 374–375 

e-mailing output, 373–374 

error section, 375 

findings section, 375 

general information section, 374 

REPORT_AUTO_TUNING_TASK 
function, 376 

SCRIPT_TUNING_TASK function, 
377 

summary section, 374 

Automatic Database Diagnostic Monitor 
(ADDM), 92, 368 

DBMS_ADDM Package, 406 

enterprise manager, 406–407 

performance recommendations, 407 

SQL*plus script, 405 

Automatic Diagnostic Repository 
Command Interpreter (ADRCI), 
229 

ADR base, 230 

alert log, 233–234 

in batch mode, 230 

diagnostic tasks, 231 

HELP command, 230 

homepath command, 231, 232 

in interactive mode, 229 

V$DIAG_INFO view, 231 

view incidents, 235–236 

Automatic memory management, 83 

buffer pool, 87 

KEEP, 87, 88 

RECYCLE, 87, 88 

caching client result sets, 103 

advantages, 104 

CLIENT_RESULT_CACHE_LAG, 103 

CLIENT_RESULT_CACHE_SIZE, 103 

OCIStmtExecute(), 105 

OCIStmtFetch(), 105 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

557 

optional client-side configuration 
file, 104 

caching PL/SQL function, 105 

considerations, 108 

restrictions, 108 

caching SQL query result, 99 

read consistency requirements, 102–
103 

RESULT_CACHE_MODE 
initialization parameter, 100 

table annotations and query hints, 
101–102 

configuring server query cache 

DBMS_RESULT_CACHE.FLUSH 
procedure, 96, 97 

initialization parameters, 95–96 

materialized views, 96 

PL/SQL collection, 96 

RESULT_CACHE_MAX_RESULT, 96 

RESULT_CACHE_MAX_SIZE, 96 

RESULT_CACHE_REMOTE_EXPIRA
TION, 97 

DBCA, 85 

implementing steps, 83–84 

managing server result cache, 97 

DBMS_RESULT_CACHE.STATUS(), 
97–99 

shared pool percentage, 99 

memory resizing operations 

V$MEMORY_RESIZE_OPS, 91 

V$MEMORY_TARGET_ADVICE, 90 

memory structures 

PGA, 83–87 

SGA, 83–87 

MEMORY_MAX_TARGET PARAMETER, 
86, 87 

MEMORY_TARGET parameter, 84, 85 

optimizing memory usage, 91 

ADDM reports, 92 

Memory Size Advice graph in DB, 91 

tuning steps, 91 

Oracle Database 11g, 85 

Oracle Database Smart Flash Cache, 
109–110 

DB_FLASH_CACHE_FILE, 109 

DB_FLASH_CACHE_SIZE, 109 

PGA memory allocation 

AWR, 95 

PGA_AGGREGATE_TARGET 
parameter, 93, 94 

steps, 93 

V$SQL_WORKAREA_HISTOGRAM, 
94 

V$SYSSTAT and V$SESSTAT, 95 

pga_memory_target, 84 

redo log buffer tuning, 110–112 

SCOPE parameter, 84 

setting minimum values, 89 

Automatic segment space management 
(ASSM), 5 

Automatic workload repository (AWR), 21, 
95, 113 

active session information. See Active 
Session History information 

baseline statistics 

adaptive metrics, 125 

AWR_REPORT_TEXT function, 131 

awrextr.sql script, 130 

awrload.sql script, 130 

awrrpt.sql script, 130 

CREATE_BASELINE_TEMPLATE 
procedure, 131–132 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

558 

DBA_HIST_BASELINE_TEMPLATE
view, 132 

DROP_BASELINE procedure, 129

DROP_BASELINE_TEMPLATE 
procedure, 132 

fixed baselines, 123 

moving baselines, 124–126

performance statistics, 123

RENAME_BASELINE procedure, 129

retention period, 124–126

template, 131–132 

via enterprise manager, 126–128 

categories, 115 

historical database performance 
statistics, 113 

interval and retention periods, 116–117

interval-based historical statistics, 114

output, 133–134 

report generation 

awrrpt.sql script, 117, 120 

data dictionary, 119 

database instance, 119 

report name, 119 

report type, 118 

single SQL statement, 121–122

snapshot ids, 119 

via enterprise manager, 120–121 

snapshots, 134, 324 

statistical components, 114–115

STATISTICS_LEVEL parameter, 114

time frame, 113 

type of information, 115

UTLBSTAT/UTLESTAT and Statspack, 
113

AUTOSTATS_TARGET parameter, 456 

■B 
Bitmap join index, 73

Bottlenecks 

CPU and memory (ps), 197–198

iostat command, 198 

AWR, 200 

column descriptions, 199

examining the output, 198

Statspack, 200 

V$ views, 200 

network-intensive process, 201–202

Solaris system, 192 

column descriptions, 193, 194

prstat utility, 193 

vmstat, 190 

interpreting the output, 191

output columns, descriptions, 191–
192

B-tree indexs, 50 

DBMS_SPACE CREATE_INDEX
procedure, 50 

index blocks 

Index fast full scan, 47

Index range scan, 47

Oracle’s Autotrace utility, 47 

INDEX RANGE SCAN, 49

ROWID, 46 

table blocks, 49–50

table layout, 46

technical aspects, 45 

■C 
Cartesian join, 261 

Center of Expertise (CoE), 342 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

559 

COALESCE function, 280 

Concatenated index, 60–62 

Contention, 147 

analyzing Oracle wait events, 151–152 

blocking locks, 163–165 

DML locks, 168 

enqueue wait event, 165–167 

exclusive locks, 164 

long-term strategy, 167 

shared locks, 164 

short-term strategy, 167 

transaction locks, 168 

V$LOCK view, 165 

V$SESSION view, 166 

buffer busy waits, 157 

data block, 157–158 

segment header, 157 

undo header and undo block, 158 

identifying locked object, 168–169 

indentifying SQL statements, 150–151 

latch contention, 178 

cache buffer chains, 179 

cache buffers LRU chain, 179 

CURSOR_SHARING parameter, 180 

shared pool and library latches, 179 

log file sync wait events, 158–160 

Oracle Enterprise Manager 

analyzing waits, 182–183 

managing locks, 181–182 

Oracle wait interface, 147 

read by other session wait event, 160–
161 

recent wait events in database, 174–175 

recently locked sessions, database, 171–
174 

reducing direct path read wait events, 
161–162 

RVWR, 162–163 

simultaneous requests, SGA, 147 

time spent waiting, locking, 175–178 

TM lock contention, 169–171 

transaction locks, 147 

understanding response time, 147 

detailed information, wait event, 
148–149 

processing time, 148 

time model statistics, 149 

wait time, 148 

understanding wait class events, 152 

Application wait class, 152, 153 

User I/O wait class, 152 

V$SESSION_WAIT view, 153, 154 

wait classes, 154 

concurrency issues, 157 

types, 154–155 

CONTROL_MANAGEMENT_PACK_ACCES
S parameter, 115 

Correlated subqueries, 267 

EXISTS clause, 268 

NOT EXISTS, 269 

Cost-based optimizer (CBO), 335, 358 

CPUspeedNW system statistics, 465 

CREATE DATABASE script 

creates automatic UNDO tablespace, 3 

default tablespace, USERS, 3 

default temporary tablespace, TEMP, 3 

online redo logs, 4 

placing datafiles in directories, 4 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

560 

sets passwords, DBA-related users, 4 

SYSTEM tablespace, 3 

Cross join, 261 

Cursor leak, 223 

cursor_sharing initialization parameter, 
473–476 

■D 
Database Configuration Assistant (DBCA), 

85 

Data loading speeds 

direct path loading, 14–16 

NOLOGGING, 14–16 

db file scattered read wait event, 156 

db file sequential read wait event, 156 

DBMS_AUTO_TASK_ADMIN package, 448 

DBMS_MONITOR package, 327 

DBMS_WORKLOAD_REPOSITORY 
package, 124–126, 129–131 

DBMS_WORKLOAD_REPOSITORY 
PL/SQL package, 116 

Degree of parallelism (DOP), 452, 526, 527 

■E 
Estimate_percent parameter, 453, 457 

Execution plan, SQL 

AUTOTRACE feature, 300–302 

DBMS_SQLPA package, 321–325 

DBMS_XPLAN.DISPLAY function, 303–
306 

ALL, 304 

BASIC, 304 

cost information, 305 

format options, 304 

 

SERIAL, 304 

TYPICAL, 304 

DISPLAY function, 303 

execution statistics, 312–315 

GUI view, 306–307 

identifying resource-consuming SQL 
statements 

DBA_HIST_SQL_PLAN view, 320 

DBA_HIST_SQLSTAT view, 319–320 

DBA_HIST_SQLTEXT view, 319 

monitoring 

DBMS_SQLTUNE.REPORT_SQL_M
ONITOR function, 317–318 

long-running query, 310–311 

V$SQL_PLAN_MONITOR view, 316–
318 

optimization, 409 

formulating steps, 410–411 

hints, 410, 412 

initialization parameters, 410, 412 

out-of-the-box settings, 410 

plan baselines, 412 

skep-shaped diagram, 410, 411 

SQL profiles, 412–417. See also SQL 
profiles 

statistics, 412 

stored outlines, 412 

reading 

AUTOTRACE, 307 

factors, 309 

Join methods, 310 

query processing, steps, 308 

resource-consuming SQL statements, 
311–312 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

561 

SQL performance Analyzer 

AWR snapshots, 324 

considerations, 324 

creating analysis task, 321 

DBA_ADVISOR, 325 

executing analysis task, 322 

reporting analysis task function, 
322, 325 

■F 
Foreign key columns, 59–60 

Function-based index, 64–66 

■G 
GRANULARITY parameter, 455 

■H 
Hybrid columnar compression, 38–39 

■I 
INCREMENTAL preference, 455–456 

Index, 43 

bitmap, 44 

bitmap index, star schema, 72 

bitmap join, 44, 73 

B-tree cluster, 44 

B-tree. See B-tree indexes 

compression, 63 

advantages, 64 

COMPRESS N clause, 63 

concatenated index, 60–62 

creating aspects, 43 

deciding which columns to index 

foreign key columns, 51 

index creation and maintenance 
guidelines, 53 

index creation standards, 51 

index with NOSEGMENT clause, 53–
54 

primary key constraint, 51 

unique key constraint, 51 

domain, 45 

foreign key columns, 59–60 

freeing up unused space, 78 

rebuilding the index, 79, 80 

shrinking the index, 79, 81 

function-based, 44, 64, 65, 66 

global partitioned, 45 

Hash cluster, 44 

indexed virtual column, 44 

index-organized table, 74 

DBA/ALL/USER_TABLES, 74 

INCLUDING clause, 75 

ORGANIZATION INDEX, 74 

invisible indexes 

advantages, 71 

OPTIMIZER_USE_INVISIBLE_INDE
XES, 70 

uses, 71 

key-compressed, 44 

local partitioned, 45 

maximizing index creation speed, 77 

increasing degree of parallelism, 77–
78 

NOLOGGING, 78 

turning off redo generation, 77 

monitoring usage, 75 

advantages, 76 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

562 

ALTER INDEX...MONITORING 
USAGE, 75 

V$OBJECT_USAGE, 76 

Oracle index types, 44 

primary key constraint, 54 

ALTER TABLE...AND CONSTRAINT 
statement, 54 

create constraint inline, 55–56 

create constraint out of line, 56 

create index and constraint, 55 

reverse-key, 44, 68. See also B-tree 
indexes 

REBUILD REVERSE, 69 

REVERSE clause, 69 

unique index, 56 

adding constraint, 58 

CREATE TABLE statement, 57–58 

techniques, 57 

virtual column, 67 

cautions, 68 

definition, 68 

vs. function-based indexes, 67 

improving performance, 67 

Index creation standards, 51 

Index Fast Full Scan (IndexFFS), 361 

Index-organized tables (IOTs), 74–75 

Inner join 

advantages, 259 

filtering criteria, 259 

ISO syntax, 258, 259 

JOIN ... ON clause, 258 

JOIN ... USING clause, 258 

NATURAL JOIN clause, 258 

traditional Oracle SQL, 258, 259 

 

Inner query, 264 

Invisible index, 70 

IOSEEKTIM system statistics, 465 

IOTFRSPEED system statistics, 465 

ISO syntax, 253 

advantages, 259 

methods, 258 

■J 
Join condition 

cross join, 261, 262 

full outer join, 262 

inner join, 258, 262. See also Inner join 

left outer join, 262 

outer join. See Outer join 

right outer join, 262 

■K 
KEEP buffer pool, 87–88 

■L 
Low cardinality indexes, 158 

■M 
METHOD_OPT parameter, 453–455 

MMON background process, 139 

Multicolumn indexes, 62 

Multiple-column subqueries, 266–267 

Multiple-row subqueries, 265 

ALL operator, 266 

ANY and SOME operators, 265 

IN operator, 265 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

563 

■N 
NO_INVALIDATE parameter, 455 

NOLOGGING 

advantages, 78 

data loading speeds, 14–16 

turning off redo generation, 77 

■O 
Operating system performance analysis, 

185 

bottlenecks 

CPU and memory (ps), 197–198 

I/O statistics, 198–201 

network-intensive processes, 201–
202 

Solaris system, 192–194 

vmstat, 190–192 

database network connectivity issues, 
202–203 

decision-making process, 185 

disk space issues, 187 

df command, 187 

du, sort and head commands, 188 

filesp.bsh, 190 

find, Is, sort and head commands, 
187 

mount point, 187 

shell script, monitoring, 188–189 

usedSpc variable, 189 

identifying top server-consuming 
resources, 194 

column descriptions of top Output, 
196 

commands to change the top 
Output, 196 

19888 process ID, 195 

top command, 194 

isolate database performance 
problems, 185 

oradebug, 206–207 

OS Watcher, 192 

resource-intensive process 

to database process, mapping, 204–
206 

termination, 207–208 

troubleshooting poor performance, 
186, 187 

Optimizer, 447 

adaptive cursor sharing 

BIND_AWARE column, 479, 480 

bind peeking, 476 

BIND_SHAREABLE column, 478 

child cursor, 481 

INDEX FAST FULL SCAN, 479, 480 

INDEX RANGE SCAN, 479, 480 

IS_BIND_AWARE column, 478 

Oracle Database 11g, 476, 481 

STATUS column, 478 

automatic statistics gathering 

dbms_auto_task_admin.disable 
procedure, 449 

dbms_auto_task_admin.enable 
procedure, 449 

DBMS_STATS.GATHER_DATABASE
_STATS procedure, 450 

DBMS_STATS.GATHER_DATABASE
_STATS_JOB_PROC procedure, 
450 

enable procedure, 448 

GATHER_DATABASE_STATS 
procedure, 450 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

564 

SYS and SYSTEM schemas, 450 

bind peeking behavior, 447 

bulk loaded tables, 457 

column groups, 484–486 

concurrent statistics collection 

DBMS_STATS.GATHER_TABLES_ST
ATS procedure, 488 

job_queue_processes parameter, 
488 

monitoring concurrent stats 
collection jobs, 489 

multi-processor environment, 488 

Oracle Database 11g Release 2, 488 

parallel execution strategy, 489 

SET_GLOBAL_PREFS procedure, 
488 

exporting statistics, 460–462 

goal, 447–448 

histograms, 472–473 

index, 468–470 

locking statistics, 458 

missing statistics, 459–460 

new statistics, 466–468 

non-use of bind variables, 473–476 

partitioned tables, 486–487 

query optimizer features, 470–471 

related columns, 483–484 

restoring previous versions, 462–463 

statistics on expressions, 482–483 

system statistics 

I/O and CPU characteristics, 463 

interval parameter, 464 

IOTFRSPEED, IOSEEKTIM, and 
CPUSPEEDNW, 465 

mbrc and mreadtim statistics, 466 

noworkload statistics, 463 

Oracle 11g database, 465 

workload mode, 465 

workload statistics, 464 

types of statistics 

add_sys, 451 

AUTOSTATS_TARGET parameter, 
456 

CASCADE parameter, 452 

DEGREE parameter, 452 

ESTIMATE_PERCENT parameter, 
452–453 

GRANULARITY parameter, 455 

INCREMENTAL preference, 455–456 

METHOD_OPT parameter, 453–455 

NO_INVALIDATE parameter, 455 

pname, 451 

PUBLISH parameter, 455 

pvalue, 451 

SET_DATABASE_PREFS, 451 

SET_GLOBAL_PREFS, 451 

SET_SCHEMA_PREFS, 451 

SET_TABLE_PREFS, 451 

STALE_PERCENT preference, 456 

volatile tables, 457 

Optimizer_dynamic_sampling 
initialization parameter, 459 

Optimizer_features_enable parameter, 
470–471 

Optimizer_index_cost_adj parameter, 468–
470 

Optimizer_use_pending_statistics 
parameter, 468 

Oracle’s Automatic Storage Management 
(ASM), 7 

Oracle’s Autotrace utility, 47, 48 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

565 

Oracle’s basic compression 

hybrid columnar compression, 38–39 

direct path loading, 34 

advantage, 35 

ALTER statemment, 35 

COMPRESS clause, 35 

CREATE TABLE...AS SELECT 
statement, 34 

DBA/ALL/USER_TABLES view, 34 

DML statements, 35 

MOVE COMPRES clause, 35 

DML 

ALTER TABLE statement, 37 

COMPRESS FOR OLTP clause, 36, 37 

I/O performance, 36 

OLTP compression, 36, 37 

Oracle Database 11g, 328, 331 

Oracle Database 11g R2, 3, 6, 12–14 

Oracle Diagnostics Pack, 115 

Oracle Enterprise Manager, 331 

$ORACLE_HOME/rdbms/admin 
directory, 117 

Oracle listener, 363–365 

Oracle locks, 164 

Oracle’s standard auditing feature, 40 

Oracle Trace Analyzer, 327, 344 

/trca/install/trcreate.sql script, 341 

CoE, 342 

individual SQL, 343 

installation and running steps, 341 

non-default initialization parameters, 
343 

non-recursive tome and totals, 343 

self - time, totals, waits, binds and row 
source plan, 343 

tables and indexes, 343 

tacreate.sql script, 341 

top SQL, 343 

trca_instructions HTML document, 342 

ZIP file, 342 

oradebug, 206 

Outer join 

cross join, 261 

FULL OUTER JOIN, 261 

ISO SQL syntax, 260 

ISO syntax, 261 

left outer join, 260 

Oracle SQL, 261 

right outer join, 260 

syntax, 260 

traditional Oracle SQL, 260 

■P 
Parallelism, 525 

bottlenecks, 550–552 

creating indexes, 538–539 

creating tables, 536 

DDL advantages, 537 

deleting rows, 537 

drawbacks, 538 

reasons, 536 

degree of parallelism, 526–528, 543–545 

DML operations, 533 

ALTER SESSION ENABLE PARALLEL 
DML, 533 

ALTER SESSION FORCE PARALLEL 
DML, 533 

considerations, 535–536 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

566 

DBMS_PARALLEL_EXECUTE 
PL/SQL package, 534 

DOP, 535 

INSERT statement, 533 

restrictions, 535 

UPDATE, MERGE and DELETE 
statements, 534 

existing object, 532 

explain plans, 545, 546 

execution steps, 547 

operations, 548 

general rule, 525 

indexes, 526–528, 529–530 

monitoring operations, 548–550 

moving partitions, 541 

object creation, 530–531 

pitfalls, 525 

rebuilding indexes, 539–541 

sessions, detailed information, 552–553 

splitting partitions, 542–543 

tables, 526, 528–529 

types, 528 

understanding factors, 525 

understanding system components, 
527 

Plan baselines 

altering 

ALTER_SQL_PLAN_BASELINE 
function, 434, 435 

ATTRIBUTE_NAME and 
ATTRIBUTE_VALUE, 435 

DBMS_SPM package, 434 

benefits, 410 

DBA_SQL_BASELINES, 436 

disabling, 442 

DISPLAY_SQL_PLAN_BASELINE 
function, 437–439 

EVOLVE_SQL_PLAN_BASELINE 
function, 439–441 

managing tasks, 428 

OPTIMIZER_CAPTURE_SQL_PLAN_BA
SELINES, 427 

PACK STGTAB BASELINE function, 446 

removing, 443–444 

for SQL statements, 428 

AWR baseline, 431 

DBMS_SPM.LOAD_PLANS_FROM_
CURSOR_CACHE function, 429 

LOAD_PLANS CURSOR CACHE 
function, 430 

resource-intensive queries, 433 

tuning set object, 431–433 

transporting, 444–456 

Primary key index, 54–56 

Program global area (PGA), 85 

PUBLISH parameter, 455, 467 

■Q 
Query coordinator (QC) controls, 345 

Query hints, 491 

caching query results, 509–513 

configuration hierarchy, 512 

initialization parameters, 513 

changing the access path 

index, 493–496 

table scan, 493, 495 

changing the join method, 498 

hash joins, 499, 501 

necessary factors, 500 

nested loops, 498–499, 501 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

567 

querying multiple tables, 500–501 

smart merge join, 500 

sort merge, 499–501 

changing the join order, 497 

LEADING hint, 497–498 

ORDERED hint, 497 

changing the optimizer version, 501–
502 

directing a distributed query, 513 

disadvantages, 514 

driving site, 514–517 

direct-path insert technique, 505–506 

fast response and overall optimization, 
502–504 

GATHER_PLAN_STATISTICS hint, 517–
519 

hint writing, 491–493 

in views, 506 

complex view, 507 

mergeable view, 507, 508 

non-mergeable view, 508 

simple view, 507 

REWRITE hint, 519–521 

star information/fact hint, 521–523 

■R 
Recovery writer process (RVWR), 162–163 

RECYCLE buffer pool, 87, 88 

Resource-intensive process 

to database process, 204 

termination 

OS Kill command, 208 

using SQL, 207 

Reverse-key index, 68–69 

■S 
Segment Advisor Advice 

display table information 

advice and recommendations, 21 

ASA_RECOMMENDATIONS, 21 

AWR, 21 

DBMS_SCHEDULER, 20 

DBMS_SPACE package, 19, 20 

enterprise manager, 23 

findings, 20 

retrieving tools, 21 

e-mailing segment advice 
automatically, 27–28 

freeing unused space, 32 

ALTER TABLE...SHRINK SPACE 
statement, 32–33 

enable row movement, 32 

generating advice manually, 23 

DBMS_ADVISOR.CREATE_TASK 
procedure, object types, 26–27 

DBMS_ADVISOR package, 23, 25 

DBMS_ADVISOR.SET_TASK_PARA
METER procedure, 27 

DBMS_SPACE package, 24 

rebuild spanned rows, 28 

MOVE statement, 29 

PCTFREE, 30 

row chaining, 30, 31 

UPDATE statement, 30 

SELECT statement, 254 

FROM clause, 255 

SELECT clause, 255 

subqueries. See Subqueries 

SELECT_BASELINE_DETAILS function, 
125 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

568 

Single-row subqueries, 264–265

Skip-scan feature, 62 

SQL, 253, 299 

avoiding full table scan, 288–290

avoiding NOT clause, 293 

comparison operators, 294

drawbacks, 293 

NOT IN, 294 

NOT LIKE, 294 

BETWEEN clause, 274 

Oracle optimizer, 276

pitfalls, 275 

comparing tables 

INTERSECT set operator, 271

MINUS set operator, 269–270 

controlling transaction sizes, 295–297

execution plan. See Execution plan, 
SQL 

inline view, 290–292 

BILLING_INFO view, 292

PRODUCT_INFO view, 292

SERVICE_INFO view, 292 

ISO syntax, 253

joining tables 

inner join. See Inner join

outer join. See Outer join 

null values, 277 

in SELECT clause, 277–278

in WHERE clause, 279–280 

partial column values

benefits, 283

considerations, 282

LIKE operator, 281

TO_CHAR function, 281 

plan baselines. See Plan baselines

re-using SQL statements, 284 

bind variables, 284–285 

execute immediate statement, bind 
variables, 287

hard-parsing, 286–287

PL/SQL block, 284–285

soft-parsing, 285

steps, 285–286

TKPROF utility, 286 

SAVEPOINT command, 297

SELECT statement. See SELECT 
statement 

UNION/UNION ALL, 272–273

WHERE clause, comparison operators, 
256 

SQL plan management 

plan baselines. See Plan baselines

plan history, 409 

SQL profiles, 409 

automatic acceptance, 417–419

vs. database profiles, 417

disabling, 421 

manage features, 423 

modifiable attributes, 422

SQLTUNE_CATEGORY parameter, 
422

dropping, 423–424

parameters 

CATEGORY, 416

DESCRIPTION, 416

FORCE_MATCH, 416

NAME, 416

OBJECT_ID, 416

PROFILE_TYPE, 416 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

569 

REPLACE, 416 

TASK_NAME, 416 

TASK_OWNER, 416 

transporting database, 424 

copy the staging table, 425 

DBMS_SQLTUNE.CREATE_STGTAB
_SQLPROF procedure, 425 

DBMS_SQLTUNE.PACK STGTAB 
SQLPROF procedure, 426 

DBMS_SQLTUNE.PACK_STGTAB_S
QLPROF procedure, 425 

DBMS_SQLTUNE.UNPACK STGTAB 
SQLPROF procedure, 426 

Tuning Advisor. See SQL Tuning 
Advisor 

SQL Test Case Builder (TCB), 242 

SQL tracing, 327 

<ADR Home>/trace subdirectory, 329 

archive logs, Data Guard environment, 
365–366 

automatic Oracle error traces, 361–362 

background process, 362–363 

correct session, 348 

$DIAG_INFO view, 329 

Diag Trace, 329 

diagnostic_dest initialization 
parameter, 329 

event 10046 trace 

instance, 356 

session, 354–355 

instance/database, 353 

login, 357–358 

max_dump_file_size parameter, 328, 
329 

multiple sessions, 352–353 

multiple trace files, 347–348 

optimizer’s execution path 

access path analysis for SALES, 360 

CBO, 358, 360 

IndexFFS, 361 

Oracle event 10053, 359 

types of information, 359 

Oracle Database 11g, 329 

Oracle listener, 363–365 

own session, 332 

parallel query 

alter system set events command, 
345 

MyTrace1, 344 

Oracle Database 11g, 346 

query coordinator, 345 

RAC system, 346–347 

show tracefile -t command, 345 

trcsess utility, 344–345 

process ID, 351–352 

running session, 356–357 

specific SQL statement, 330–332 

SQL session, 349–350 

timed_statistics parameter, 327–328 

TKPROF utility, 327 

trace dump file, 327 

trace files 

analysis, 335–336 

examination, 334–335 

execution plan, 340 

execution statistics, 338–339 

finding, 332–333 

formatting with TKPROF, 336–337 

header, 338 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

570 

Oracle Trace Analyzer. See Oracle 
Trace Analyzer 

row source operations, 339–340 

tkprof command, 338 

wait events, 340 

SQL Tuning Advisor, 368 

from ADDM, 404 

DBMS_ADDM Package, 406 

enterprise manager, 406 

SQL*plus script, 405 

types of recommendations, 407 

create and accept SQL profile, 415 

DBMS_SQLTUNE, 413–414 

from enterprise manager, 403–404 

executing the task, 414 

from SQL Developer, 403 

optimizer tuning modes, 402 

recommendations, 414 

steps to run manually, 401 

SQL Tuning Set (STS), 368 

creating object, 383–384 

deleting statements, 394–395 

displaying contents, 393–394 

high-resource consuming statements, 
in AWR, 388–390 

in memory 

DBMS_SQLTUNE.CAPTURE_CURS
OR_CACHE_SQLSET procedure, 
391–392 

resource-consuming statements, 
390–391 

transporting to another database 

copy the staging table, 397 

create staging table, 396 

 

populate staging table, 396–397 

unpack the staging table, 397–398 

STALE_PERCENT preference, 456 

Statspack, 113, 114, 133 

Subqueries, 263–264 

correlated subqueries, 267–269 

inline view, 264 

multiple-column subqueries, 266–267 

multiple-row subqueries, 265–266 

single-row subqueries, 264–265 

System global area (SGA), 85 

■T 
Table performance, 1 

building database 

CREATE DATABASE script, 2–3 

default permanent tablespaces, 2, 4 

default temporary tablespaces, 2, 4 

locally managed tablespaces, 2 

compressing data 

column level, 38–40 

direct path loading, 33–36 

DML, 36–38 

creating table 

avoiding extent allocation delays, 
12–14 

performance and sustainability 
issues, 10–11 

scalability and maintainability, 11–
12 

SEGMENT CREATION DEFERRED, 
14 

SEGMENT CREATION IMMEDIATE, 
14 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

571 

creating tablespaces 

ASSM, 5 

autoallocation behavior, 5 

AUTOEXTEND ON clause, 7 

bigfile tablespace, 7 

dictionary-managed tablespaces, 6 

locally managed tablespaces, 5, 6 

SEGMENT SPACE MANAGEMENT 
AUTO clause, 6 

smallfile tablespace, 7 

storage attributes, tables and 
indexes, 5 

maximizing data loading speeds 

direct path loading, 14–15 

NOLOGGING, 14–16 

monitoring, 40–42 

Oracle database, 1 

removing table data 

DELETE statement, 17–18 

DELETE vs. TRUNCATE statement, 
18–19 

TRUNCATE statement, 17–18 

ROWID pseudo-column, 32 

Segment Advisor Advice. See Segment 
Advisor Advice 

table types, 8 

clustered, 8 

external, 9 

heap-organized, 8, 9 

materialized view, 8, 9 

nested, 9 

object, 9 

partitioned, 8 

temporary, 8 

tablespace, 1 

TKPROF utility, 286 

TM lock contention wait events, 169–171 

tracefile_identifier parameter, 333 

Troubleshooting Database, 209 

AWR report 

awrrpt.sql script, 243–244 

compare Periods report, 246–247 

DBMS_WORKLOAD_REPOSITORY 
package, 245 

instance efficiency percentages, 249 

load profile section, 248–249 

PGA histogram, 251 

session information, 248 

SQL statements, 250–251 

Time Model Statistics, 250 

Top 5 Foreground Events, 250 

hung database 

oradebug hanganalyze command, 
225, 228 

prelim option, 227 

resolving steps, 224 

systemstate dump, 226 

true database hang, 227 

invoke ADRCI. See Automatic 
Diagnostic Repository Command 
Interpreter (ADRCI) 

optimal undo retention parameter, 209 

criteria, 211 

statistics, 212 

V$UNDOSTAT view, 211–212 

ORA-01555 error, 215 

guaranteed undo retain feature, 215 

snapshot too old error, 216 

undo extents, 216 

www.it-ebooks.info

http://www.it-ebooks.info/


■ INDEX 

572 

packaging incidents, Oracle Support, 
236–238 

resolving open cursor errors, 222–224 

running health check, 238–240 

SQL test case 

creation process information, 242 

DBMS_SQLDIAG package, 242 

EXPORT_SQL_TESTCASE 
procedure, 243 

exporting data, 240–241 

temporary tablespace 

identifying the user, 218–219 

monitoring the usage, 217 

unable to extend TEMP segment error, 
220–221 

Undo usage 

V$SESSION, 214 

V$TRANSACTION, 214 

UNDO_TABLESPACE initialization 
parameter, 211–212 

■U 
Unique index, 56–58 

UTLBSTAT/UTLESTAT, 113, 133 

 

 

 

 

■V 
Virtual column, index, 67–68 

Virtual memory statistics (vmstat), 190–
192 

■W, X, Y, Z 
Wait events. See also Contention 

analyzing Oracle wait events, 151–152 

application class, 152 

buffer busy waits, 157 

data block, 157–158 

segment header, 157 

undo header and undo block, 158 

by class, 154–157 

Commit class, 152 

db file scattered read wait event, 156 

db file sequential read wait event, 156 

examining session waits, 153, 154 

indentifying SQL statements, 150–151 

log file sync waits, 158–160 

Network class, 152 

read by other session, 160–161 

reducing direct path read, 161–162 

RVWR wait events, 162–163 

User I/O class, 152 

V$ACTIVE_SESSION_HISTORY view, 
174–175 

WHERE clause, comparison operators, 
256 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 

Oracle Database 11g 
Performance Tuning 

Recipes 
A Problem-Solution Approach 

 

 

 

 

 

 

■ ■ ■                

Sam R. Alapati 
Darl Kuhn 
Bill Padfield 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Oracle Database 11g Performance Tuning Recipes: A Problem-Solution Approach 

Copyright © 2011 by Sam R. Alapati, Darl Kuhn, and Bill Padfield 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-3662-7 

ISBN-13 (electronic): 978-1-4302-3663-4 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Jonathan Gennick 
Technical Reviewer: Surachart Opun 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick, 

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey 
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt 
Wade, Tom Welsh 

Coordinating Editor: Anita Castro 
Copy Editor: Mary Ann Fugate 
Production Support: Patrick Cunningham 
Indexer: SPI Global 
Artist: SPI Global 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail  
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have 
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused 
directly or indirectly by the information contained in this work.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.it-ebooks.info/


 

 

To Valerie, Nina, and Nicholas 
With love and affection 

—Sam Alapati 

 

To Heidi, Brandi, and Lisa 

—Darl Kuhn 

 

To Oyuna and Evan for putting up with me and all the evenings and  
weekends spent with my computer instead of with them!! 

To Carol, Gerry, Susan, Doug, Scott, Chris, Jaimie, Katie, Jenny, Jeremy, and Sean. I love my family! 

—Bill Padfield 

 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

v 

Contents 

About the Authors .................................................................................................... xvi 

About the Technical Reviewer ................................................................................ xvii 

Acknowledgments ................................................................................................. xviii 

 

■Chapter 1: Optimizing Table Performance ............................................................... 1 

1-1. Building a Database That Maximizes Performance .................................................... 2 

1-2. Creating Tablespaces to Maximize Performance ....................................................... 5 

1-3. Matching Table Types to Business Requirements ..................................................... 8 

1-4. Choosing Table Features for Performance ................................................................. 9 

1-5. Avoiding Extent Allocation Delays When Creating Tables ........................................ 12 

1-6. Maximizing Data Loading Speeds ............................................................................ 14 

1-7. Efficiently Removing Table Data .............................................................................. 17 

1-8. Displaying Automated Segment Advisor Advice ...................................................... 19 

1-9. Manually Generating Segment Advisor Advice ........................................................ 23 

1-10. Automatically E-mailing Segment Advisor Output ................................................. 27 

1-11. Rebuilding Rows Spanning Multiple Blocks ........................................................... 28 

1-12. Freeing Unused Table Space .................................................................................. 32 

1-13. Compressing Data for Direct Path Loading ............................................................ 33 

1-14. Compressing Data for All DML ............................................................................... 36 

1-15. Compressing Data at the Column Level ................................................................. 38 

1-16. Monitoring Table Usage ......................................................................................... 40 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

vi 

■Chapter 2: Choosing and Optimizing Indexes . ...................................................... 43 

2-1. Understanding B-tree Indexes ................................................................................. 45 

2-2. Deciding Which Columns to Index ........................................................................... 51 

2-3. Creating a Primary Key Index . ................................................................................. 54 

2-4. Creating a Unique Index . ......................................................................................... 56 

2-5. Indexing Foreign Key Columns . ............................................................................... 59 

2-6. Deciding When to Use a Concatenated Index .......................................................... 60 

2-7. Reducing Index Size Through Compression . ........................................................... 63 

2-8. Implementing a Function-Based Index .................................................................... 64 

2-9. Indexing a Virtual Column . ...................................................................................... 67 

2-10. Avoiding Concentrated I/O for Index ...................................................................... 68 

2-11. Adding an Index Without Impacting Existing Applications . ................................... 70 

2-12. Creating a Bitmap Index in Support of a Star Schema . ......................................... 72 

2-13. Creating a Bitmap Join Index . ............................................................................... 73 

2-14. Creating an Index-Organized Table . ...................................................................... 74 

2-15. Monitoring Index Usage. ........................................................................................ 75 

2-16. Maximizing Index Creation Speed . ........................................................................ 77 

2-17. Reclaiming Unused Index Space . .......................................................................... 78 

■Chapter 3: Optimizing Instance Memory . ............................................................. 83 

3-1. Automating Memory Management . ......................................................................... 83 

3-2. Managing Multiple Buffer Pools . ............................................................................. 87 

3-3. Setting Minimum Values for Memory . ..................................................................... 89 

3-4. Monitoring Memory Resizing Operations . ............................................................... 90 

3-5. Optimizing Memory Usage . ..................................................................................... 91 

3-6. Tuning PGA Memory Allocation . .............................................................................. 93 

3-7. Configuring the Server Query Cache . ...................................................................... 95 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

vii 

3-8. Managing the Server Result Cache .......................................................................... 97 

3-9. Caching SQL Query Results ...................................................................................... 99 

3-10. Caching Client Result Sets ................................................................................... 103 

3-11. Caching PL/SQL Function Results ........................................................................ 105 

3-12. Configuring the Oracle Database Smart Flash Cache .......................................... 109 

3-13. Tuning the Redo Log Buffer .................................................................................. 110 

■Chapter 4: Monitoring System Performance ....................................................... 113 

4-1. Implementing Automatic Workload Repository (AWR) ........................................... 113 

4-2. Modifying the Statistics Interval and Retention Periods ........................................ 116 

4-3. Generating an AWR Report Manually ..................................................................... 117 

4-4. Generating an AWR Report via Enterprise Manager ............................................... 120 

4-5. Generating an AWR Report for a Single SQL Statement ......................................... 121 

4-6. Creating a Statistical Baseline for Your Database .................................................. 123 

4-7. Managing AWR Baselines via Enterprise Manager ................................................ 126 

4-8. Managing AWR Statistics Repository ..................................................................... 129 

4-9. Creating AWR Baselines Automatically .................................................................. 131 

4-10. Quickly Analyzing AWR Output ............................................................................. 133 

4-11. Manually Getting Active Session Information ....................................................... 134 

4-12. Getting ASH Information from Enterprise Manager .............................................. 140 

4-13. Getting ASH Information from the Data Dictionary ............................................... 142 

■Chapter 5: Minimizing System Contention .......................................................... 147 

5-1. Understanding Response Time .............................................................................. 147 

5-2. Identifying SQL Statements with the Most Waits ................................................... 150 

5-3. Analyzing Wait Events ............................................................................................ 151 

5-4. Understanding Wait Class Events ........................................................................... 152 

5-5. Examining Session Waits ....................................................................................... 153 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

viii 

5-6. Examining Wait Events by Class ............................................................................ 154 

5-7. Resolving Buffer Busy Waits .................................................................................. 157 

5-8. Resolving Log File Sync Waits ................................................................................ 158 

5-9. Minimizing read by other session Wait Events ....................................................... 160 

5-10. Reducing Direct Path Read Wait Events ............................................................... 161 

5-11. Minimizing Recovery Writer Waits ....................................................................... 162 

5-12. Finding Out Who’s Holding a Blocking Lock ......................................................... 163 

5-13. Identifying Blocked and Blocking Sessions .......................................................... 165 

5-14. Dealing with a Blocking Lock ............................................................................... 167 

5-15. Identifying a Locked Object .................................................................................. 168 

5-16. Resolving enq: TM Lock Contention ..................................................................... 169 

5-17. Identifying Recently Locked Sessions .................................................................. 171 

5-18. Analyzing Recent Wait Events in a Database ....................................................... 174 

5-19. Identifying Time Spent Waiting Due to Locking ................................................... 175 

5-20. Minimizing Latch Contention ................................................................................ 178 

5-21. Managing Locks from Oracle Enterprise Manager ............................................... 181 

5-22. Analyzing Waits from Oracle Enterprise Manager ................................................ 182 

■Chapter 6: Analyzing Operating System Performance ........................................ 185 

6-1. Detecting Disk Space Issues .................................................................................. 187 

6-2. Identifying System Bottlenecks (vmstat) ................................................................ 190 

6-3. Identifying System Bottlenecks (Solaris) ................................................................ 192 

6-4. Identifying Top Server-Consuming Resources (top) ............................................... 194 

6-5. Identifying CPU and Memory Bottlenecks (ps) ....................................................... 197 

6-6. Identifying I/O Bottlenecks ..................................................................................... 198 

6-7. Identifying Network-Intensive Processes ............................................................... 201 

6-8. Troubleshooting Database Network Connectivity .................................................. 202 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

ix 

6-9. Mapping a Resource-Intensive Process to a Database Process ............................ 204 

6-10. Terminating a Resource-Intensive Process .......................................................... 207 

■Chapter 7: Troubleshooting the Database ........................................................... 209 

7-1. Determining the Optimal Undo Retention Period .................................................... 209 

7-2. Finding What’s Consuming the Most Undo ............................................................ 213 

7-3. Resolving an ORA-01555 Error ............................................................................... 215 

7-4. Monitoring Temporary Tablespace Usage .............................................................. 217 

7-5. Identifying Who Is Using the Temporary Tablespace ............................................. 218 

7-6. Resolving the “Unable to Extend Temp Segment” Error ........................................ 220 

7-7. Resolving Open Cursor Errors ................................................................................ 222 

7-8. Resolving a Hung Database ................................................................................... 224 

7-9. Invoking the Automatic Diagnostic Repository Command Interpreter ................... 229 

7-10. Viewing an Alert Log from ADRCI ......................................................................... 233 

7-11. Viewing Incidents with ADRCI .............................................................................. 235 

7-12. Packaging Incidents for Oracle Support ............................................................... 236 

7-13. Running a Database Health Check ....................................................................... 238 

7-14. Creating a SQL Test Case ..................................................................................... 240 

7-15. Generating an AWR Report ................................................................................... 243 

7-16. Comparing Database Performance Between Two Periods ................................... 246 

7-17. Analyzing an AWR Report ..................................................................................... 248 

■Chapter 8: Creating Efficient SQL ........................................................................ 253 

8-1. Retrieving All Rows from a Table ........................................................................... 254 

8-2. Retrieve a Subset of Rows from a Table ................................................................ 256 

8-3. Joining Tables with Corresponding Rows .............................................................. 258 

8-4. Joining Tables When Corresponding Rows May Be Missing .................................. 259 

8-5. Constructing Simple Subqueries ............................................................................ 263 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

x 

8-6. Constructing Correlated Subqueries ...................................................................... 267 

8-7. Comparing Two Tables to Finding Missing Rows ................................................... 269 

8-8. Comparing Two Tables to Finding Matching Rows ................................................ 271 

8-9. Combining Results from Similar SELECT Statements ............................................ 271 

8-10. Searching for a Range of Values .......................................................................... 274 

8-11. Handling Null Values ............................................................................................ 277 

8-12. Searching for Partial Column Values .................................................................... 280 

8-13. Re-using SQL Statements Within the Shared Pool ............................................... 284 

8-14. Avoiding Accidental Full Table Scans................................................................... 288 

8-15. Creating Efficient Temporary Views ..................................................................... 290 

8-16. Avoiding the NOT Clause ...................................................................................... 293 

8-17. Controlling Transaction Sizes ............................................................................... 295 

■Chapter 9: Manually Tuning SQL .......................................................................... 299 

9-1. Displaying an Execution Plan for a Query............................................................... 300 

9-2. Customizing Execution Plan Output ....................................................................... 302 

9-3. Graphically Displaying an Execution Plan .............................................................. 306 

9-4. Reading an Execution Plan ..................................................................................... 307 

9-5. Monitoring Long-Running SQL Statements ............................................................ 310 

9-6. Identifying Resource-Consuming SQL Statements  
That Are Currently Executing ......................................................................................... 311 

9-7. Seeing Execution Statistics for Currently Running SQL ......................................... 312 

9-8. Monitoring Progress of a SQL Execution Plan ........................................................ 316 

9-9. Identifying Resource-Consuming SQL Statements  
That Have Executed in the Past ..................................................................................... 319 

9-10. Comparing SQL Performance After a System Change ......................................... 321 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

xi 

■Chapter 10: Tracing SQL Execution ..................................................................... 327 

10-1. Preparing Your Environment ................................................................................ 327 

10-2. Tracing a Specific SQL Statement ........................................................................ 330 

10.3. Enabling Tracing in Your Own Session ................................................................. 332 

10-4. Finding the Trace Files ......................................................................................... 332 

10-5. Examining a Raw SQL Trace File .......................................................................... 334 

10-6. Analyzing Oracle Trace Files ................................................................................ 335 

10-7. Formatting Trace Files with TKPROF .................................................................... 336 

10-8. Analyzing TKPROF Output .................................................................................... 337 

10-9. Analyzing Trace Files with Oracle Trace Analyzer ............................................... 340 

10-10. Tracing a Parallel Query ..................................................................................... 343 

10-11. Tracing Specific Parallel Query Processes ......................................................... 345 

10-12. Tracing Parallel Queries in a RAC System .......................................................... 346 

10-13. Consolidating Multiple Trace Files ..................................................................... 347 

10-14. Finding the Correct Session for Tracing ............................................................. 348 

10-15. Tracing a SQL Session........................................................................................ 349 

10-16. Tracing a Session by Process ID ........................................................................ 351 

10-17. Tracing Multiple Sessions .................................................................................. 352 

10-18. Tracing an Instance or a Database ..................................................................... 353 

10-19. Generating an Event 10046 Trace for a Session ................................................ 354 

10-20. Generating an Event 10046 Trace for an Instance ............................................. 356 

10-21. Setting a Trace in a Running Session ................................................................ 356 

10-22. Enabling Tracing in a Session After a Login ....................................................... 357 

10-23. Tracing the Optimizer’s Execution Path ............................................................. 358 

10-24. Generating Automatic Oracle Error Traces ......................................................... 361 

10-25. Tracing a Background Process .......................................................................... 362 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

xii 

10-26. Enabling Oracle Listener Tracing ....................................................................... 363 

10-27. Setting Archive Tracing for Data Guard .............................................................. 365 

■Chapter 11: Automated SQL Tuning ..................................................................... 367 

11-1. Displaying Automatic SQL Tuning Job Details ..................................................... 370 

11-2. Displaying Automatic SQL Tuning Advice ............................................................. 372 

11-3. Generating a SQL Script to Implement Automatic Tuning Advice ........................ 376 

11-4. Modifying Automatic SQL Tuning Features .......................................................... 377 

11-5. Disabling and Enabling Automatic SQL Tuning .................................................... 380 

11-6. Modifying Maintenance Window Attributes ......................................................... 381 

11-7. Creating a SQL Tuning Set Object ........................................................................ 383 

11-8. Viewing Resource-Intensive SQL in the AWR ....................................................... 384 

11-9. Viewing Resource-Intensive SQL in Memory ....................................................... 386 

11-10. Populating SQL Tuning Set from High-Resource SQL in AWR ............................ 388 

11-11. Populating a SQL Tuning Set from Resource-Consuming SQL in Memory ......... 390 

11-12. Populating SQL Tuning Set with All SQL in Memory ........................................... 391 

11-13. Displaying the Contents of a SQL Tuning Set ..................................................... 393 

11-14. Selectively Deleting Statements from a SQL Tuning Set .................................... 394 

11-15. Transporting a SQL Tuning Set ........................................................................... 396 

11-16. Creating a Tuning Task ...................................................................................... 398 

11-17. Manually Running SQL Tuning Advisor .............................................................. 401 

11-18. Getting SQL Tuning Advice from the Automatic Database Diagnostic Monitor .. 404 

■Chapter 12: Execution Plan Optimization and Consistency ................................. 409 

12-1. Creating and Accepting a SQL Profile .................................................................. 413 

12-2. Automatically Accepting SQL Profiles .................................................................. 417 

12-3. Displaying SQL Profile Information ....................................................................... 419 

12-4. Disabling a SQL Profile ......................................................................................... 421 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

xiii 

12-5. Dropping a SQL Profile ......................................................................................... 423 

12-6. Moving a SQL Profile ............................................................................................ 424 

12-7. Automatically Adding Plan Baselines ................................................................... 426 

12-8. Creating a Plan Baseline for One SQL Statement ................................................. 428 

12-9. Creating Plan Baselines for SQL Contained in SQL Tuning Set ............................ 431 

12-10. Altering a Plan Baseline ..................................................................................... 433 

12-11. Determining If Plan Baselines Exist .................................................................... 436 

12-12. Displaying Plan Baseline Execution Plans .......................................................... 437 

12-13. Adding a New Plan to Plan Baseline (Evolving) .................................................. 439 

12-14. Disabling Plan Baselines .................................................................................... 442 

12-15. Removing Plan Baseline Information ................................................................. 443 

12-16. Transporting Plan Baselines ............................................................................... 444 

■Chapter 13: Configuring the Optimizer ................................................................ 447 

13-1. Choosing an Optimizer Goal ................................................................................. 447 

13-2. Enabling Automatic Statistics Gathering .............................................................. 448 

13-3. Setting Preferences for Statistics Collection ........................................................ 451 

13-4. Manually Generating Statistics ............................................................................ 456 

13-5. Locking Statistics ................................................................................................. 458 

13-6. Handling Missing Statistics .................................................................................. 459 

13-7. Exporting Statistics .............................................................................................. 460 

13-8. Restoring Previous Versions of Statistics ............................................................. 462 

13-9. Gathering System Statistics ................................................................................. 463 

13-10. Validating New Statistics ................................................................................... 466 

13-11. Forcing the Optimizer to Use an Index ............................................................... 468 

13-12. Enabling Query Optimizer Features .................................................................... 470 

13-13. Keeping the Database from Creating Histograms .............................................. 472 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

xiv 

13-14. Improving Performance When Not Using Bind Variables ................................... 473 

13-15. Understanding Adaptive Cursor Sharing ............................................................ 476 

13-16. Creating Statistics on Expressions ..................................................................... 482 

13-17. Creating Statistics for Related Columns ............................................................. 483 

13-18. Automatically Creating Column Groups .............................................................. 484 

13-19. Maintaining Statistics on Partitioned Tables ...................................................... 486 

13-20. Concurrent Statistics Collection for Large Tables .............................................. 488 

■Chapter 14: Implementing Query Hints ............................................................... 491 

14-1. Writing a Hint ....................................................................................................... 491 

14-2. Changing the Access Path .................................................................................... 493 

14-3. Changing the Join Order ...................................................................................... 497 

14-4. Changing the Join Method ................................................................................... 498 

14-5. Changing the Optimizer Version ........................................................................... 501 

14-6. Choosing Between a Fast Response and Overall Optimization ............................ 502 

14-7. Performing a Direct-Path Insert ........................................................................... 505 

14-8. Placing Hints in Views .......................................................................................... 506 

14-9. Caching Query Results ......................................................................................... 509 

14-10. Directing a Distributed Query to a Specific Database ........................................ 513 

14-11. Gathering Extended Query Execution Statistics ................................................. 517 

14-12. Enabling Query Rewrite ...................................................................................... 519 

14-13. Improving Star Schema Query Performance ...................................................... 521 

■Chapter 15: Executing SQL in Parallel ................................................................. 525 

15-1. Enabling Parallelism for a Specific Query ............................................................ 526 

15-2. Enabling Parallelism at Object Creation ............................................................... 530 

15-3. Enabling Parallelism for an Existing Object .......................................................... 532 

15-4. Implementing Parallel DML .................................................................................. 533 

www.it-ebooks.info

http://www.it-ebooks.info/


■ CONTENTS 

xv 

15-5. Creating Tables in Parallel ................................................................................... 536 

15-6. Creating Indexes in Parallel .................................................................................. 538 

15-7. Rebuilding Indexes in Parallel .............................................................................. 539 

15-8. Moving Partitions in Parallel ................................................................................ 541 

15-9. Splitting Partitions in Parallel ............................................................................... 542 

15-10. Enabling Automatic Degree of Parallelism ......................................................... 543 

15-11. Examining Parallel Explain Plans ....................................................................... 545 

15-12. Monitoring Parallel Operations ........................................................................... 548 

15-13. Finding Bottlenecks in Parallel Processes ......................................................... 550 

15-14. Getting Detailed Information on Parallel Sessions ............................................. 552 

 

Index ....................................................................................................................... 555 

www.it-ebooks.info

http://www.it-ebooks.info/


xvi 

About the Authors 

■Sam R. Alapati is an Oracle ACE and an experienced Oracle database
administrator (OCP Oracle Database 11g). Sam is currently the senior technical
director for Miro Consulting, Inc., in Woodbridge, New Jersey, and regularly
consults with Fortune 500 companies in the areas of Oracle Database, Oracle E-
Business, and Oracle Fusion Middleware technology. Sam has written several
books on Oracle database management, including Expert Oracle Database 11g
Administration, Oracle Database 11g: New Features for DBAs and Developers (with
Charles Kim), and RMAN Recipes for Oracle Database 11g (with Darl Kuhn and
Arup Nanda), all published by Apress. Sam lives in Dallas, Texas with his wife,
Valerie, and children Shannon, Nina and Nicholas. 

■Darl Kuhn is a senior database administrator working for Oracle. He handles all
facets of database administration from design and development to production
support. He also teaches advanced database courses at Regis University in
Colorado. Darl does volunteer DBA work for the Rocky Mountain Oracle Users
Group. He has a graduate degree from Colorado State University and lives near
Spanish Peaks, Colorado with his wife, Heidi, and daughters, Brandi and Lisa. 

■Bill Padfield is an Oracle Certified Professional, working for a large
telecommunications company in Denver, Colorado as a lead database
administrator. Bill helps administer and manage a large data warehouse
environment consisting of more than 75 databases. Bill has been an Oracle
Database administrator for more than 14 years, and has been in the IT industry
since 1985. Bill also teaches graduate database courses at Regis University and
currently resides in Aurora, Colorado with his wife, Oyuna, and son, Evan.

www.it-ebooks.info

http://www.it-ebooks.info/


 

xvii 

About the Technical Reviewer 

■Surachart Opun was born in Phetchabun, Thailand. He graduated with a bachelor’s 
degree in computer engineering. He has worked in the Internet service provider 
business over eight years. He has a lot of experience with Oracle Database and Linux. 
He has worked with Oracle Database and Oracle Real Applications Cluster over six 
years. He is an Oracle Certified Professional 10g and 11g. He is also an Oracle Certified 
Expert RAC. He is interested in Oracle Database technology and spends a lot of time 
on it. His blog is http://surachartopun.com. He has spent a lot of time sharing his 
Oracle knowledge and helping people with Oracle technology. In 2010, he became an 
Oracle ACE and developed the Oracle User Group in Thailand, to which he is a 
contributor. 
 

www.it-ebooks.info

http://surachartopun.com
http://www.it-ebooks.info/


 

xviii 

Acknowledgments 

The authors owe thanks to the great publishing team at Apress for helping them throughout the writing 
process. Jonathan Gennick, senior acquisitions editor, helped significantly in outlining the topics 
(recipes) for this book, and helped us produce the best book we possibly could, by nudging us along with 
incisive comments/suggestions/criticisms, all of which have tremendously increased both the 
presentation style of the book as well as the quality of the contents. Jonathan is that rare editor who is 
not only technically proficient, but also a consummate editor of books, in the traditional sense of the 
term. Thank you, Jonathan, for your patience and hard work throughout this project! All three of us are 
beneficiaries of your sagacious advice and continual encouragement over the past few months. 

The authors would like to thank the tremendous work done by the technical editor of the book, 
Surachart Opun, senior analyst at True Internet, who somehow found time from his prolific blogging 
and other work to perform a marvelous review of our draft chapters. Surachart not only caught several 
mistakes in code and elsewhere, but also made numerous suggestions to improve the presentation of 
the various recipes. Thank you, Surachart, for all your painstaking and cheerful work in helping us out 
with the book. Anita Castro, coordinating editor, has superbly guided us throughout this project, and 
helped keep things on schedule. Managing a three-author project isn’t a piece of cake by any means, but 
Anita sure makes it seem that way! Mary Ann Fugate copyedited the chapters with great skill, and we 
appreciate her contributions toward improving the quality of this book. 

Personal Acknowledgments 
First of all, my heartfelt thanks to the great help and cooperation from my two co-writers—Darl Kuhn 
and Bill Padfield—it sure  was great working with you, Darl and Bill—I've enjoyed every minute of it! I’d 
like to acknowledge the support and encouragement of my company, Miro Consulting Inc., Woodbridge, 
New Jersey, whose CEO, Scott Rosenberg, is not only a great leader but also an enthusiastic promoter of 
Oracle technology with our many clients across the United States. Miro’s president, Eliot Colon, its vice 
president of technical services, Wayne Federico, and its vice president, Bob Kinkade, have always been 
supportive of my work at Miro, and I’ve learned a lot from working with each of them. 

I’d like to express the generosity and help offered by my friends Kishore Rachamalla, Praveen 
Katapally, and Sreeny Chinta during my tenure at ERCOT in Taylor, Texas, where I started initial work on 
this and another book. I’m grateful for the kindness and show of support by Sam Nataros, whose gift 
from the heart I’ll always cherish—thank you, Sam, your gesture inspires me every single day! 

My family, of course, has sacrificed the most in making this book possible, and thus I’m grateful  
to Valerie, Shannon, Nicholas, and Nina for their help and support over the past few years while I  
was working on this and another book. Last but not least, I’d like to acknowledge my debt to my other 
family—my mother, Swarna Kumari, my father, Appa Rao, and my brothers, Hari Hara Prasad and Siva 
Sankara Prasad, Aruna, Vanaja, Ashwin, Teja, Aparna, and Soumya, for their abiding love and faith  
in me. 
 

Sam Alapati 
 

www.it-ebooks.info

http://www.it-ebooks.info/


■ ACKNOWLEDGMENTS 

xix 

 
Thanks to fellow co-authors Sam Alapati and Bill Padfield, and also thanks to the numerous DBAs and 
developers from whom I’ve learned performance tuning techniques over the years: Dave Jennings, Bob 
Suehrstedt, Scott Schulze, Pete Mullineaux, Janet Bacon, Sue Wagner, Mohan Koneru, Arup Nanda, 
Charles Kim, Bernard Lopuz, Barb Sannwald, Tim Gorman, Shawn Heisdorffer, Doug Davis, Sujit 
Pattanaik, Ken Roberts, Roger Murphy, Mehran Sowdaey, Kevin Bayer, Dan Fink, Guido Handley, 
Margaret Carson, Nehru Kaja, Tim Colbert, Glenn Balanoff, Bob Mason, Shari Plantz-Masters, Mike 
Nims, Denise Duncan, Brad Blake, Ravi Narayanaswamy, Abid Malik, Abdul Ebadi, Kevin Hoyt, Trent 
Sherman, Sandra Montijo, Jim Secor, Maureen Frazzini, Sean Best, Stephan Haisley, Geoff Strebel, 
Patrick Gates, Krish Hariharan, Buzzy Cheadle, Mark Blair, Gary Dodge, Karen Kappler, Mike 
Hutchinson, Liz Brill, Ennio Murroni, Mike O’Neill, Beth Loker, Mike Eason, Greg Roberts, Debbie 
Earman, Tom Wheltle, Ken Toney,  Gabor Gyurovszky, Scott Norris, Joey Canlas, Eric Wendelin, Gary 
Smith, Mark Lutze, Kevin Quinlivan, Dave Bourque, Roy Backstrom, Larry Carpenter, Joe Meeks, Ashish 
Ray, John Lilly, Dave Wood, Laurie Bourgeois, Steve Buckmelter, Casey Costley, John DiVirgilio, John 
Goggin, Brett Guy, Simon Ip, Pascal Ledru, Kevin O’Grady, Peter Schow, Todd Sherman, Jeff Shoup, 
Mike Tanaka, Todd Wichers, Doug Cushing, Will Thornburg, Steve Roughton, Ambereen Pasha, Dinesh 
Neelay, Kye Bae, Thom Chumley, Jeff Sherard, Dona Smith, Erik Jasiak, Gary Schut, Don Gritzmacher, 
Aaron Isom, Kristi Jackson, Karolyn Vowles, Amin Jiwani, Paula Still, K. P. Muthe, Joe Pinkerton, Arvin 
Kuhn, Darin Christensen, Terry Roam, Doug Drake, Marilyn Wenzel, Doc Heppler, Mert Lovell, Carl 
Beasly, Brian Beasly, Odean Bowler, and Jim Stark. 
 

Darl Kuhn 
 
I’d like to thank my gracious co-authors, Sam Alapati and Darl Kuhn, for all of their help and support, 
and for taking on a rookie for this project. I couldn’t have made it without their help. 

There are so many people I can thank that have helped me over the years in my career, so please 
know that I appreciate every single individual who has encouraged and helped me along. First of all, I’d 
like to thank Bob Ranney for giving me the opportunity to be a DBA. I also would like to thank some of 
my key managers over the years that have helped me, including Beth Bowen, Larry Wyzgala, John 
Zlamal, Linda Scheldrup, Amy Neff, and Maureen Frazzini. 

Of course, there are many DBAs, developers, system administrators, and architects that have helped 
me greatly in my career. First, I need to thank the DBAs on my current team who make the everyday 
grind a blast. These folks have helped me so much professionally and have become great friends over the 
many years we have worked together. This includes Dave Carter, Debbie Fitzgerald, Pankaj Guleria, Pete 
Sardaczuk, Brad Strom, and Rebecca Western. 

Over the years, I’ve learned an awful lot from the following folks, who have always been generous 
with their time and help, and patient with my questions. This includes Mark Nold, Mick McMahon, 
Sandra Montijo, Jerry Sanderson, Glen Sanderson, Jose Fernandez, Mike Hammontre, Pat Cain, Dave 
Steep, Gary Whiting, Ron Fullmer, Becky Enter, John Weber, Avanish Gupta, Scott Bunker, Paul Mayes, 
Bill Read, Rod Ermish, Rick Barry, Sun Yang, Sue Wagner, Glenn Balanoff, Linda Lee Burau, Deborah 
Lieou-McCall, Bob Zumpf, Kristi Sargent, Sandy Hass, George Huner, Pad Kail, Curtis Gay, Ross 
Bartholomay, Carol Rosenow, Scott Richards, Sheryl Gross, Lachelle Shambe, John Piel, Rob Grote, Rex 
Ellis, Zane Warton, Steve Pearson, Jim Barclay, Jason Hermstad, Shari Plantz-Masters, Denise Duncan, 
Bob Mason, Brad Blake, Mike Nims, Cathie Wilson, Rob Coates, Shirley Amend, Rob Bushlack, Cindy 
Patterson, Debbie Chartier, Blair Christensen, Meera Ganesan, and Kedar Panda. 
 

Bill Padfield

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Personal Acknowledgments


	Optimizing Table Performance
	1-1. Building a Database That Maximizes Performance
	Problem
	Solution
	How It Works

	1-2. Creating Tablespaces to Maximize Performance
	Problem
	Solution
	How It Works

	1-3. Matching Table Types to Business Requirements
	Problem
	Solution
	How It Works

	1-4. Choosing Table Features for Performance
	Problem
	Solution
	How It Works

	1-5. Avoiding Extent Allocation Delays When Creating Tables
	Problem
	Solution
	How It Works

	1-6. Maximizing Data Loading Speeds
	Problem
	Solution
	How It Works

	1-7. Efficiently Removing Table Data
	Problem
	Solution
	How It Works

	1-8. Displaying Automated Segment Advisor Advice
	Problem
	Solution
	How It Works

	1-9. Manually Generating Segment Advisor Advice
	Problem
	Solution
	How It Works

	1-10. Automatically E-mailing Segment Advisor Output
	Problem
	Solution
	How It Works

	1-11. Rebuilding Rows Spanning Multiple Blocks
	Problem
	Solution
	How It Works

	1-12. Freeing Unused Table Space
	Problem
	Solution
	How It Works

	1-13. Compressing Data for Direct Path Loading
	Problem
	Solution
	How It Works

	1-14. Compressing Data for All DML
	Problem
	Solution
	How It Works

	1-15. Compressing Data at the Column Level
	Problem
	Solution
	How It Works

	1-16. Monitoring Table Usage
	Problem
	Solution
	How It Works


	Choosing and Optimizing Indexes
	2-1. Understanding B-tree Indexes
	Problem
	Solution
	How It Works

	2-2. Deciding Which Columns to Index
	Problem
	Solution
	How It Works

	2-3. Creating a Primary Key Index
	Problem
	Solution
	How It Works

	2-4. Creating a Unique Index
	Problem
	Solution
	How It Works

	2-5. Indexing Foreign Key Columns
	Problem
	Solution
	How It Works

	2-6. Deciding When to Use a Concatenated Index
	Problem
	Solution
	How It Works

	2-7. Reducing Index Size Through Compression
	Problem
	Solution
	How It Works

	2-8. Implementing a Function-Based Index
	Problem
	Solution
	How It Works

	2-9. Indexing a Virtual Column
	Problem
	Solution
	How It Works

	2-10. Avoiding Concentrated I/O for Index
	Problem
	Solution
	How It Works

	2-11. Adding an Index Without Impacting Existing Applications
	Problem
	Solution
	How It Works

	2-12. Creating a Bitmap Index in Support of a Star Schema
	Problem
	Solution
	How It Works

	2-13. Creating a Bitmap Join Index
	Problem
	Solution
	How It Works

	2-14. Creating an Index-Organized Table
	Problem
	Solution
	How It Works

	2-15. Monitoring Index Usage
	Problem
	Solution
	How It Works

	2-16. Maximizing Index Creation Speed
	Problem
	Solution
	How It Works

	2-17. Reclaiming Unused Index Space
	Problem
	Solution
	How It Works


	Optimizing Instance Memory
	3-1. Automating Memory Management
	Problem
	Solution
	How It Works

	3-2. Managing Multiple Buffer Pools
	Problem
	Solution
	How It Works

	3-3. Setting Minimum Values for Memory
	Problem
	Solution
	How It Works

	3-4. Monitoring Memory Resizing Operations
	Problem
	Solution
	How It Works

	3-5. Optimizing Memory Usage
	Problem
	Solution
	How It Works

	3-6. Tuning PGA Memory Allocation
	Problem
	Solution
	How It Works

	3-7. Configuring the Server Query Cache
	Problem
	Solution
	How It Works

	3-8. Managing the Server Result Cache
	Problem
	Solution
	How It Works

	3-9. Caching SQL Query Results
	Problem
	Solution
	How It Works

	3-10. Caching Client Result Sets
	Problem
	Solution
	How It Works

	3-11. Caching PL/SQL Function Results
	Problem
	Solution
	How It Works

	3-12. Configuring the Oracle Database Smart Flash Cache
	Problem
	Solution
	How It Works

	3-13. Tuning the Redo Log Buffer
	Problem
	Solution
	How It Works


	Monitoring System Performance
	4-1. Implementing Automatic Workload Repository (AWR)
	Problem
	Solution
	How It Works

	4-2. Modifying the Statistics Interval and Retention Periods
	Problem
	Solution
	How It Works

	4-3. Generating an AWR Report Manually
	Problem
	Solution
	How It Works

	4-4. Generating an AWR Report via Enterprise Manager
	Problem
	Solution
	How It Works

	4-5. Generating an AWR Report for a Single SQL Statement
	Problem
	Solution
	How It Works

	4-6. Creating a Statistical Baseline for Your Database
	Problem
	Solution
	How It Works

	4-7. Managing AWR Baselines via Enterprise Manager
	Problem
	Solution
	How It Works

	4-8. Managing AWR Statistics Repository
	Problem
	Solution
	How It Works

	4-9. Creating AWR Baselines Automatically
	Problem
	Solution
	How It Works

	4-10. Quickly Analyzing AWR Output
	Problem
	Solution
	How It Works

	4-11. Manually Getting Active Session Information
	Problem
	Solution
	How It Works

	4-12. Getting ASH Information from Enterprise Manager
	Problem
	Solution
	How It Works

	4-13. Getting ASH Information from the Data Dictionary
	Problem
	Solution
	How It Works


	Minimizing System Contention
	5-1. Understanding Response Time
	Problem
	Solution
	How It Works

	5-2. Identifying SQL Statements with the Most Waits
	Problem
	Solution
	How It Works

	5-3. Analyzing Wait Events
	Problem
	Solution
	How It Works

	5-4. Understanding Wait Class Events
	Problem
	Solution
	How It Works

	5-5. Examining Session Waits
	Problem
	Solution
	How It Works

	5-6. Examining Wait Events by Class
	Problem
	Solution
	How It Works

	5-7. Resolving Buffer Busy Waits
	Problem
	Solution
	How It Works

	5-8. Resolving Log File Sync Waits
	Problem
	Solution
	How It Works

	5-9. Minimizing read by other session Wait Events
	Problem
	Solution
	How It Works

	5-10. Reducing Direct Path Read Wait Events
	Problem
	Solution
	How It Works

	5-11. Minimizing Recovery Writer Waits
	Problem
	Solution
	How It Works

	5-12. Finding Out Who’s Holding a Blocking Lock
	Problem
	Solution
	How It Works

	5-13. Identifying Blocked and Blocking Sessions
	Problem
	Solution
	How It Works

	5-14. Dealing with a Blocking Lock
	Problem
	Solution
	How It Works

	5-15. Identifying a Locked Object
	Problem
	Solution
	How It Works

	5-16. Resolving enq: TM Lock Contention
	Problem
	Solution
	How It Works

	5-17. Identifying Recently Locked Sessions
	Problem
	Solution
	How It works

	5-18. Analyzing Recent Wait Events in a Database
	Problem
	Solution
	How It Works

	5-19. Identifying Time Spent Waiting Due to Locking
	Problem
	Solution
	How It Works

	5-20. Minimizing Latch Contention
	Problem
	Solution
	How It Works

	5-21. Managing Locks from Oracle Enterprise Manager
	Problem
	Solution
	How It Works

	5-22. Analyzing Waits from Oracle Enterprise Manager
	Problem
	Solution
	How It Works


	Analyzing Operating System Performance
	6-1. Detecting Disk Space Issues
	Problem
	Solution
	How It Works

	6-2. Identifying System Bottlenecks (vmstat)
	Problem
	Solution
	How It Works

	6-3. Identifying System Bottlenecks (Solaris)
	Problem
	Solution
	How It Works

	6-4. Identifying Top Server-Consuming Resources (top)
	Problem
	Solution
	How It Works

	6-5. Identifying CPU and Memory Bottlenecks (ps)
	Problem
	Solution
	How It Works

	6-6. Identifying I/O Bottlenecks
	Problem
	Solution
	How It Works

	6-7. Identifying Network-Intensive Processes
	Problem
	Solution
	How It Works

	6-8. Troubleshooting Database Network Connectivity
	Problem
	Solution
	How It Works

	6-9. Mapping a Resource-Intensive Process to a Database Process
	Problem
	Solution
	How It Works

	6-10. Terminating a Resource-Intensive Process
	Problem
	Solution
	How It Works


	Troubleshooting the Database
	7-1. Determining the Optimal Undo Retention Period
	Problem
	Solution
	How It Works

	7-2. Finding What’s Consuming the Most Undo
	Problem
	Solution
	How It Works

	7-3. Resolving an ORA-01555 Error
	Problem
	Solution
	How It Works

	7-4. Monitoring Temporary Tablespace Usage
	Problem
	Solution
	How It Works

	7-5. Identifying Who Is Using the Temporary Tablespace
	Problem
	Solution
	How It Works

	7-6. Resolving the “Unable to Extend Temp Segment” Error
	Problem
	Solution
	How It Works

	7-7. Resolving Open Cursor Errors
	Problem
	Solution
	How It Works

	7-8. Resolving a Hung Database
	Problem
	Solution
	How It Works

	7-9. Invoking the Automatic Diagnostic Repository Command Interpreter
	Problem
	Solution
	How It Works

	7-10. Viewing an Alert Log from ADRCI
	Problem
	Solution
	How It Works

	7-11. Viewing Incidents with ADRCI
	Problem
	Solution
	How It Works

	7-12. Packaging Incidents for Oracle Support
	Problem
	Solution
	How It Works

	7-13. Running a Database Health Check
	Problem
	Solution
	How It Works

	7-14. Creating a SQL Test Case
	Problem
	Solution
	How It Works

	7-15. Generating an AWR Report
	Problem
	Solution
	How It Works

	7-16. Comparing Database Performance Between Two Periods
	Problem
	Solution
	How It Works

	7-17. Analyzing an AWR Report
	Problem
	Solution
	How It Works


	Creating Efficient SQL
	8-1. Retrieving All Rows from a Table
	Problem
	Solution
	How It Works

	8-2. Retrieve a Subset of Rows from a Table
	Problem
	Solution
	How It Works

	8-3. Joining Tables with Corresponding Rows
	Problem
	Solution
	How It Works

	8-4. Joining Tables When Corresponding Rows May Be Missing
	Problem
	Solution
	How It Works

	8-5. Constructing Simple Subqueries
	Problem
	Solution
	How It Works

	8-6. Constructing Correlated Subqueries
	Problem
	Solution
	How It Works

	8-7. Comparing Two Tables to Finding Missing Rows
	Problem
	Solution
	How It Works

	8-8. Comparing Two Tables to Finding Matching Rows
	Problem
	Solution
	How It Works

	8-9. Combining Results from Similar SELECT Statements
	Problem
	Solution
	How It Works

	8-10. Searching for a Range of Values
	Problem
	Solution
	How It Works

	8-11. Handling Null Values
	Problem
	Solution
	How It Works

	8-12. Searching for Partial Column Values
	Problem
	Solution
	How It Works

	8-13. Re-using SQL Statements Within the Shared Pool
	Problem
	Solution
	How It Works

	8-14. Avoiding Accidental Full Table Scans
	Problem
	Solution
	How It Works

	8-15. Creating Efficient Temporary Views
	Problem
	Solution
	How It Works

	8-16. Avoiding the NOT Clause
	Problem
	Solution
	How It Works

	8-17. Controlling Transaction Sizes
	Problem
	Solution
	How It Works


	Manually Tuning SQL
	9-1. Displaying an Execution Plan for a Query
	Problem
	Solution
	How It Works

	9-2. Customizing Execution Plan Output
	Problem
	Solution
	How It Works

	9-3. Graphically Displaying an Execution Plan
	Problem
	Solution
	How It Works

	9-4. Reading an Execution Plan
	Problem
	Solution
	How It Works

	9-5. Monitoring Long-Running SQL Statements
	Problem
	Solution
	How It Works

	9-6. Identifying Resource-Consuming SQL Statements That Are Currently Executing
	Problem
	Solution
	How It Works

	9-7. Seeing Execution Statistics for Currently Running SQL
	Problem
	Solution
	How It Works

	9-8. Monitoring Progress of a SQL Execution Plan
	Problem
	Solution
	How It Works

	9-9. Identifying Resource-Consuming SQL Statements That Have Executed in the Past
	Problem
	Solution
	How It Works

	9-10. Comparing SQL Performance After a System Change
	Problem
	Solution
	How It Works


	Tracing SQL Execution
	10-1. Preparing Your Environment
	Problem
	Solution
	How It Works

	10-2. Tracing a Specific SQL Statement
	Problem
	Solution
	How It Works

	10.3. Enabling Tracing in Your Own Session
	Problem
	Solution
	How It Works

	10-4. Finding the Trace Files
	Problem
	Solution
	How It Works

	10-5. Examining a Raw SQL Trace File
	Problem
	Solution
	How It Works

	10-6. Analyzing Oracle Trace Files
	Problem
	Solution
	How It Works

	10-7. Formatting Trace Files with TKPROF
	Problem
	Solution
	How It Works

	10-8. Analyzing TKPROF Output
	Problem
	Solution
	How It Works

	10-9. Analyzing Trace Files with Oracle Trace Analyzer
	Problem
	Solution
	How It Works

	10-10. Tracing a Parallel Query
	Problem
	Solution
	How It Works

	10-11. Tracing Specific Parallel Query Processes
	Problem
	Solution
	How It Works

	10-12. Tracing Parallel Queries in a RAC System
	Problem
	Solution
	How It Works

	10-13. Consolidating Multiple Trace Files
	Problem
	Solution
	How It Works

	10-14. Finding the Correct Session for Tracing
	Problem
	Solution
	How It Works

	10-15. Tracing a SQL Session
	Problem
	Solution
	How It Works

	10-16. Tracing a Session by Process ID
	Problem
	Solution
	How It Works

	10-17. Tracing Multiple Sessions
	Problem
	Solution
	How It Works

	10-18. Tracing an Instance or a Database
	Problem
	Solution
	How It Works

	10-19. Generating an Event 10046 Trace for a Session
	Problem
	Solution
	How It Works

	10-20. Generating an Event 10046 Trace for an Instance
	Problem
	Solution
	How It Works

	10-21. Setting a Trace in a Running Session
	Problem
	Solution
	How It Works

	10-22. Enabling Tracing in a Session After a Login
	Problem
	Solution
	How It Works

	10-23. Tracing the Optimizer’s Execution Path
	Problem
	Solution
	How It Works

	10-24. Generating Automatic Oracle Error Traces
	Problem
	Solution
	How It Works

	10-25. Tracing a Background Process
	Problem
	Solution
	How It Works

	10-26. Enabling Oracle Listener Tracing
	Problem
	Solution
	How It Works

	10-27. Setting Archive Tracing for Data Guard
	Problem
	Solution
	How It Works


	Automated SQL Tuning
	11-1. Displaying Automatic SQL Tuning Job Details
	Problem
	Solution
	How It Works

	11-2. Displaying Automatic SQL Tuning Advice
	Problem
	Solution
	How It Works

	11-3. Generating a SQL Script to Implement Automatic Tuning Advice
	Problem
	Solution
	How It Works

	11-4. Modifying Automatic SQL Tuning Features
	Problem
	Solution
	How It Works

	11-5. Disabling and Enabling Automatic SQL Tuning
	Problem
	Solution
	How It Works

	11-6. Modifying Maintenance Window Attributes
	Problem
	Solution
	How It Works

	11-7. Creating a SQL Tuning Set Object
	Problem
	Solution
	How It Works

	11-8. Viewing Resource-Intensive SQL in the AWR
	Problem
	Solution
	How It Works

	11-9. Viewing Resource-Intensive SQL in Memory
	Problem
	Solution
	How It Works

	11-10. Populating SQL Tuning Set from High-Resource SQL in AWR
	Problem
	Solution
	How It Works

	11-11. Populating a SQL Tuning Set from ResourceConsuming SQL in Memory
	Problem
	Solution
	How It Works

	11-12. Populating SQL Tuning Set with All SQL in Memory
	Problem
	Solution
	How It Works

	11-13. Displaying the Contents of a SQL Tuning Set
	Problem
	Solution
	How It Works

	11-14. Selectively Deleting Statements from a SQL Tuning Set
	Problem
	Solution
	How It Works

	11-15. Transporting a SQL Tuning Set
	Problem
	Solution
	How It Works

	11-16. Creating a Tuning Task
	Problem
	Solution
	How It Works

	11-17. Manually Running SQL Tuning Advisor
	Problem
	Solution
	How It Works

	11-18. Getting SQL Tuning Advice from the Automatic Database Diagnostic Monitor
	Problem
	Solution
	How It Works


	Execution Plan Optimization and Consistency
	12-1. Creating and Accepting a SQL Profile
	Problem
	Solution
	How It Works

	12-2. Automatically Accepting SQL Profiles
	Problem
	Solution
	How It Works

	12-3. Displaying SQL Profile Information
	Problem
	Solution
	How It Works

	12-4. Disabling a SQL Profile
	Problem
	Solution
	How It Works

	12-5. Dropping a SQL Profile
	Problem
	Solution
	How It Works

	12-6. Moving a SQL Profile
	Problem
	Solution
	How It Works

	12-7. Automatically Adding Plan Baselines
	Problem
	Solution
	How It Works

	12-8. Creating a Plan Baseline for One SQL Statement
	Problem
	Solution
	How It Works

	12-9. Creating Plan Baselines for SQL Contained in SQL Tuning Set
	Problem
	Solution
	How It Works

	12-10. Altering a Plan Baseline
	Problem
	Solution
	How It Works

	12-11. Determining If Plan Baselines Exist
	Problem
	Solution
	How It Works

	12-12. Displaying Plan Baseline Execution Plans
	Problem
	Solution
	How It Works

	12-13. Adding a New Plan to Plan Baseline (Evolving)
	Problem
	Solution
	How It Works

	12-14. Disabling Plan Baselines
	Problem
	Solution
	How It Works

	12-15. Removing Plan Baseline Information
	Problem
	Solution
	How It Works

	12-16. Transporting Plan Baselines
	Problem
	Solution
	How It Works


	Configuring the Optimizer
	13-1. Choosing an Optimizer Goal
	Problem
	Solution
	How It Works

	13-2. Enabling Automatic Statistics Gathering
	Problem
	Solution
	How It Works

	13-3. Setting Preferences for Statistics Collection
	Problem
	Solution
	How It Works

	13-4. Manually Generating Statistics
	Problem
	Solution
	How It Works

	13-5. Locking Statistics
	Problem
	Solution
	How It Works

	13-6. Handling Missing Statistics
	Problem
	Solution
	How It Works

	13-7. Exporting Statistics
	Problem
	Solution
	How It Works

	13-8. Restoring Previous Versions of Statistics
	Problem
	Solution
	How It Works

	13-9. Gathering System Statistics
	Problem
	Solution
	How It Works

	13-10. Validating New Statistics
	Problem
	Solution
	How It Works

	13-11. Forcing the Optimizer to Use an Index
	Problem
	Solution
	How It Works

	13-12. Enabling Query Optimizer Features
	Problem
	Solution
	How It Works

	13-13. Keeping the Database from Creating Histograms
	Problem
	Solution

	13-14. Improving Performance When Not Using Bind Variables
	Problem
	Solution
	How It Works

	13-15. Understanding Adaptive Cursor Sharing
	Problem
	Solution
	How It Works

	13-16. Creating Statistics on Expressions
	Problem
	Solution
	How It Works

	13-17. Creating Statistics for Related Columns
	Problem
	Solution
	How It Works

	13-18. Automatically Creating Column Groups
	Problem
	Solution
	How It Works

	13-19. Maintaining Statistics on Partitioned Tables
	Problem
	Solution
	How It Works

	13-20. Concurrent Statistics Collection for Large Tables
	Problem
	Solution
	How It Works


	Implementing Query Hints
	14-1. Writing a Hint
	Problem
	Solution
	How It Works

	14-2. Changing the Access Path
	Problem
	Solution
	How It Works

	14-3. Changing the Join Order
	Problem
	Solution
	How It Works

	14-4. Changing the Join Method
	Problem
	Solution
	How It Works

	14-5. Changing the Optimizer Version
	Problem
	Solution
	How It Works

	14-6. Choosing Between a Fast Response and Overall Optimization
	Problem
	Solution
	How It Works

	14-7. Performing a Direct-Path Insert
	Problem
	Solution
	How It Works

	14-8. Placing Hints in Views
	Problem
	Solution
	How It Works

	14-9. Caching Query Results
	Problem
	Solution
	How It Works

	14-10. Directing a Distributed Query to a Specific Database
	Problem
	Solution
	How It Works

	14-11. Gathering Extended Query Execution Statistics
	Problem
	Solution
	How It Works

	14-12. Enabling Query Rewrite
	Problem
	Solution
	How It Works

	14-13. Improving Star Schema Query Performance
	Problem
	Solution
	How It Works


	Executing SQL in Parallel
	15-1. Enabling Parallelism for a Specific Query
	Problem
	Solution
	How It Works

	15-2. Enabling Parallelism at Object Creation
	Problem
	Solution
	How It Works

	15-3. Enabling Parallelism for an Existing Object
	Problem
	Solution
	How It Works

	15-4. Implementing Parallel DML
	Problem
	Solution
	How It Works

	15-5. Creating Tables in Parallel
	Problem
	Solution
	How It Works

	15-6. Creating Indexes in Parallel
	Problem
	Solution
	How It Works

	15-7. Rebuilding Indexes in Parallel
	Problem
	Solution
	How It Works

	15-8. Moving Partitions in Parallel
	Problem
	Solution
	How It Works

	15-9. Splitting Partitions in Parallel
	Problem
	Solution
	How It Works

	15-10. Enabling Automatic Degree of Parallelism
	Problem
	Solution
	How It Works

	15-11. Examining Parallel Explain Plans
	Problem
	Solution
	How It Works

	15-12. Monitoring Parallel Operations
	Problem
	Solution
	How It Works

	15-13. Finding Bottlenecks in Parallel Processes
	Problem
	Solution
	How It Works

	15-14. Getting Detailed Information on Parallel Sessions
	Problem
	Solution
	How It Works


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	S
	R
	T
	U
	V
	W, X, Y, Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice




